Review Article

向抗生素混合载体的过渡:下一代抗菌药

卷 30, 期 1, 2023

发表于: 09 September, 2022

页: [104 - 125] 页: 22

弟呕挨: 10.2174/0929867329666220613105424

价格: $65

conference banner
摘要

随着新型抗生素的发现和开发日益减少,抗生素耐药性是一个日益严重的全球健康问题。人们提出了各种策略来解决日益增长的抗菌药物耐药性问题。其中一个策略就是开发混合抗生素。这些治疗系统是针对两种或两种以上已知抗菌剂的药效团设计的。这篇综述强调了抗生素杂交的最新发展,包括两种抗生素(可裂解和不可裂解),以及生物杀灭剂和新型化合物的组合来治疗细菌感染。双作用杂化化合物在克服细菌病原体耐药方面具有广阔的应用前景。

关键词: 抗生素杂交种,一氧化氮供体杂交种,辅助疗法,抗生素增效剂,外排泵抑制剂杂交种,抗菌药物,群体感应抑制剂杂交种

[1]
Angst, D.C.; Tepekule, B.; Sun, L.; Bogos, B.; Bonhoeffer, S. Comparing treatment strategies to reduce antibiotic resistance in an in vitro epidemiological setting. Proc. Natl. Acad. Sci. USA, 2021, 118(13), e2023467118.
[http://dx.doi.org/10.1073/pnas.2023467118] [PMID: 33766914]
[2]
Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic review and meta-analysis. Sci. Rep., 2019, 9(1), 15290.
[http://dx.doi.org/10.1038/s41598-019-51711-x] [PMID: 31664064]
[3]
Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev., 2012, 25(3), 450-470.
[4]
Domalaon, R.; Idowu, T.; Zhanel, G.G.; Schweizer, F. Antibiotic hybrids: The next generation of agents and adjuvants against gram-negative pathogens? 2018, 31(2), e00077-00017.
[http://dx.doi.org/10.1128/CMR.00077-17]
[5]
Grapsas, I.; Lerner, S.A.; Mobashery, S. Conjoint molecules of cephalosporins and aminoglycosides. Arch. Pharm. (Weinheim), 2001, 334(8-9), 295-301.
[http://dx.doi.org/10.1002/1521-4184(200109)334:8/9<295::AID-ARDP295>3.0.CO;2-3] [PMID: 11688141]
[6]
Klahn, P.; Brönstrup, M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat. Prod. Rep., 2017, 34(7), 832-885.
[http://dx.doi.org/10.1039/C7NP00006E] [PMID: 28530279]
[7]
Jia, Y.; Zhao, L. The antibacterial activity of fluoroquinolone derivatives: An update (2018-2021). Eur. J. Med. Chem., 2021, 224, 113741.
[http://dx.doi.org/10.1016/j.ejmech.2021.113741] [PMID: 34365130]
[8]
Surur, A.S.; Sun, D. Macrocycle-antibiotic hybrids: A path to clinical Candidates. Front. Chem., 2021, 9, 659845.
[http://dx.doi.org/10.3389/fchem.2021.659845] [PMID: 33996753]
[9]
Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol., 2019, 17(3), 141-155.
[http://dx.doi.org/10.1038/s41579-018-0141-x] [PMID: 30683887]
[10]
Arzanlou, M.; Chai, W.C.; Venter, H.J.E.i.b. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem., 2017, 61(1), 49-59.
[11]
Liu, Y.; Li, R.; Xiao, X.; Wang, Z.J.C.r.i.m. Antibiotic adjuvants: An alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit. Rev. Microbiol., 2019, 45(3), 301-314.
[http://dx.doi.org/10.1080/1040841X.2019.1599813]
[12]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[13]
Peschel, A.; Sahl, H-G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol., 2006, 4(7), 529-536.
[http://dx.doi.org/10.1038/nrmicro1441] [PMID: 16778838]
[14]
Nicolas, P. Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. 2009, 276(22), 6483-6496.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07359.x]
[15]
Maria-Neto, S.; de Almeida, K.C.; Macedo, M.L.R.; Franco, O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta, 2015, 1848(11 Pt B), 3078-3088.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.017] [PMID: 25724815]
[16]
Reinhardt, A.; Neundorf, I. Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 2016, 17(5), 701.
[http://dx.doi.org/10.3390/ijms17050701] [PMID: 27187357]
[17]
Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Nina, P.B.; Jp, D.; Kumar, S.; Singh, B.; Tiwari, R.R. Futuristic non-antibiotic therapies to combat antibiotic resistance: A review. Front. Microbiol., 2021, 12, 609459.
[http://dx.doi.org/10.3389/fmicb.2021.609459] [PMID: 33574807]
[18]
Hubschwerlen, C.; Specklin, J-L.; Sigwalt, C.; Schroeder, S.; Locher, H.H. Design, synthesis and biological evaluation of oxazolidinone-quinolone hybrids. Bioorg. Med. Chem., 2003, 11(10), 2313-2319.
[http://dx.doi.org/10.1016/S0968-0896(03)00083-X] [PMID: 12713843]
[19]
Shavit, M.; Pokrovskaya, V.; Belakhov, V.; Baasov, T. Covalently linked kanamycin - Ciprofloxacin hybrid antibiotics as a tool to fight bacterial resistance. Bioorg. Med. Chem., 2017, 25(11), 2917-2925.
[http://dx.doi.org/10.1016/j.bmc.2017.02.068] [PMID: 28343755]
[20]
Mölstad, S.; Lundborg, C.S.; Karlsson, A.K.; Cars, O. Antibiotic prescription rates vary markedly between 13 European countries. Scand. J. Infect. Dis., 2002, 34(5), 366-371.
[http://dx.doi.org/10.1080/00365540110080034] [PMID: 12069022]
[21]
Durkin, M.J.; Jafarzadeh, S.R.; Hsueh, K.; Sallah, Y.H.; Munshi, K.D.; Henderson, R.R.; Fraser, V.J. Outpatient antibiotic prescription trends in the United States: A National Cohort Study. Infect. Control Hosp. Epidemiol., 2018, 39(5), 584-589.
[http://dx.doi.org/10.1017/ice.2018.26] [PMID: 29485018]
[22]
Fleming, A. On the antibacterial action of cultures of a Penicillium, with special reference to their Use in the Isolation of B. influenzæ. Br. J. Exp. Pathol., 1929, 10(3), 226-236.
[23]
González-Bello, C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett., 2017, 27(18), 4221-4228.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.027] [PMID: 28827113]
[24]
Bonomo, R.A. β-Lactamases: A focus on current challenges. Cold Spring Harb. Perspect. Med., 2017, 7(1), a025239.
[http://dx.doi.org/10.1101/cshperspect.a025239] [PMID: 27742735]
[25]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[26]
Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol., 2019, 431(18), 3472-3500.
[http://dx.doi.org/10.1016/j.jmb.2019.04.002] [PMID: 30959050]
[27]
Barnes, M.D.; Kumar, V.; Bethel, C.R.; Moussa, S.H.; O’Donnell, J.; Rutter, J.D.; Good, C.E.; Hujer, K.M.; Hujer, A.M.; Marshall, S.H.; Kreiswirth, B.N.; Richter, S.S.; Rather, P.N.; Jacobs, M.R.; Papp-Wallace, K.M.; van den Akker, F.; Bonomo, R.A. Targeting multidrug-resistant Acinetobacter spp.: Sulbactam and the Diazabicyclooctenone β-Lactamase inhibitor ETX2514 as a novel therapeutic agent. MBio, 2019, 10(2), e00159-19.
[http://dx.doi.org/10.1128/mBio.00159-19] [PMID: 30862744]
[28]
Domalaon, R.; Yang, X.; Lyu, Y.; Zhanel, G.G.; Schweizer, F. Polymyxin B3–tobramycin hybrids with Pseudomonas aeruginosa-selective antibacterial activity and strong potentiation of rifampicin, minocycline, and vancomycin. ACS Infect. Dis., 2017, 3(12), 941-954.
[http://dx.doi.org/10.1021/acsinfecdis.7b00145] [PMID: 29045123]
[29]
Yang, X.; Goswami, S.; Gorityala, B.K.; Domalaon, R.; Lyu, Y.; Kumar, A.; Zhanel, G.G.; Schweizer, F.J.J. A tobramycin vector enhances synergy and efficacy of efflux pump inhibitors against multidrug-resistant Gram-negative bacteria. J. Med. Chem., 2017, 60(9), 3913-3932.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00156]
[30]
Lyu, Y.; Yang, X.; Goswami, S.; Gorityala, B.K.; Idowu, T.; Domalaon, R.; Zhanel, G.G.; Shan, A.; Schweizer, F. Amphiphilic tobramycin–lysine conjugates sensitize multidrug resistant gram-negative bacteria to rifampicin and minocycline. J. Med. Chem., 2017, 60(9), 3684-3702.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01742] [PMID: 28409644]
[31]
Negash, K.H.; Norris, J.K.S.; Hodgkinson, J.T. Siderophore–antibiotic conjugate design: New drugs for bad bugs? Molecules, 2019, 24(18), 3314.
[http://dx.doi.org/10.3390/molecules24183314] [PMID: 31514464]
[32]
Yusuf, E.; Bax, H.I.; Verkaik, N.J.; van Westreenen, M. An update on eight “new” antibiotics against multidrug-resistant gram-negative bacteria. J. Clin. Med., 2021, 10(5), 1068.
[http://dx.doi.org/10.3390/jcm10051068] [PMID: 33806604]
[33]
Liu, R.; Miller, P.A.; Vakulenko, S.B.; Stewart, N.K.; Boggess, W.C.; Miller, M.J. A synthetic dual drug Sideromycin Induces Gram-Negative bacteria To Commit Suicide with a Gram-Positive antibiotic. J. Med. Chem., 2018, 61(9), 3845-3854.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00218] [PMID: 29554424]
[34]
Antonoplis, A.; Zang, X.; Huttner, M.A.; Chong, K.K.L.; Lee, Y.B.; Co, J.Y.; Amieva, M.R.; Kline, K.A.; Wender, P.A.; Cegelski, L. A dual-function antibiotic-transporter conjugate exhibits superior activity in sterilizing MRSA biofilms and killing persister cells. J. Am. Chem. Soc., 2018, 140(47), 16140-16151.
[http://dx.doi.org/10.1021/jacs.8b08711] [PMID: 30388366]
[35]
Koopmans, T.; Wood, T.M.; ’t Hart, P.; Kleijn, L.H.; Hendrickx, A.P.; Willems, R.J.; Breukink, E.; Martin, N.I. Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J. Am. Chem. Soc., 2015, 137(29), 9382-9389.
[http://dx.doi.org/10.1021/jacs.5b04501] [PMID: 26122963]
[36]
Bolt, H.L.; Kleijn, L.H.J.; Martin, N.I.; Cobb, S.L. Synthesis of antibacterial Nisin-Peptoid Hybrids using click methodology. Molecules, 2018, 23(7), 1566.
[http://dx.doi.org/10.3390/molecules23071566] [PMID: 29958423]
[37]
Wu, L.; Estrada, O.; Zaborina, O.; Bains, M.; Shen, L.; Kohler, J.E.; Patel, N.; Musch, M.W.; Chang, E.B.; Fu, Y-X.; Jacobs, M.A.; Nishimura, M.I.; Hancock, R.E.W.; Turner, J.R.; Alverdy, J.C. Recognition of host immune activation by Pseudomonas aeruginosa. Science, 2005, 309(5735), 774-777.
[http://dx.doi.org/10.1126/science.1112422] [PMID: 16051797]
[38]
Luther, A.; Urfer, M.; Zahn, M.; Müller, M.; Wang, S-Y.; Mondal, M.; Vitale, A.; Hartmann, J-B.; Sharpe, T.; Monte, F.L.; Kocherla, H.; Cline, E.; Pessi, G.; Rath, P.; Modaresi, S.M.; Chiquet, P.; Stiegeler, S.; Verbree, C.; Remus, T.; Schmitt, M.; Kolopp, C.; Westwood, M-A.; Desjonquères, N.; Brabet, E.; Hell, S.; LePoupon, K.; Vermeulen, A.; Jaisson, R.; Rithié, V.; Upert, G.; Lederer, A.; Zbinden, P.; Wach, A.; Moehle, K.; Zerbe, K.; Locher, H.H.; Bernardini, F.; Dale, G.E.; Eberl, L.; Wollscheid, B.; Hiller, S.; Robinson, J.A.; Obrecht, D. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature, 2019, 576(7787), 452-458.
[http://dx.doi.org/10.1038/s41586-019-1665-6] [PMID: 31645764]
[39]
Barker, W.T.; Martin, S.E.; Chandler, C.E.; Nguyen, T.V.; Harris, T.L.; Goodell, C.; Melander, R.J.; Doi, Y.; Ernst, R.K.; Melander, C. Small molecule adjuvants that suppress both chromosomal and mcr-1 encoded colistin-resistance and amplify colistin efficacy in polymyxin-susceptible bacteria. Bioorg. Med. Chem., 2017, 25(20), 5749-5753.
[http://dx.doi.org/10.1016/j.bmc.2017.08.055] [PMID: 28958847]
[40]
Douafer, H.; Andrieu, V.; Phanstiel, O., IV; Brunel, J.M. Antibiotic adjuvants: Make antibiotics great again! J. Med. Chem., 2019, 62(19), 8665-8681.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01781] [PMID: 31063379]
[41]
Yang, X.; Ammeter, D.; Idowu, T.; Domalaon, R.; Brizuela, M.; Okunnu, O.; Bi, L.; Guerrero, Y.A.; Zhanel, G.G.; Kumar, A.; Schweizer, F. Amphiphilic nebramine-based hybrids Rescue legacy antibiotics from intrinsic resistance in multidrug-resistant Gram-negative bacilli. Eur. J. Med. Chem., 2019, 175, 187-200.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.003] [PMID: 31078866]
[42]
Tevyashova, A.N.; Bychkova, E.N.; Korolev, A.M.; Isakova, E.B.; Mirchink, E.P.; Osterman, I.A.; Erdei, R.; Szücs, Z.; Batta, G. Synthesis and evaluation of biological activity for dual-acting antibiotics on the basis of azithromycin and glycopeptides. Bioorg. Med. Chem. Lett., 2019, 29(2), 276-280.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.038] [PMID: 30473176]
[43]
Idowu, T.; Arthur, G.; Zhanel, G.G.; Schweizer, F. Heterodimeric Rifampicin-Tobramycin conjugates break intrinsic resistance of Pseudomonas aeruginosa to doxycycline and chloramphenicol in vitro and in a Galleria mellonella in vivo model. Eur. J. Med. Chem., 2019, 174, 16-32.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.034] [PMID: 31022550]
[44]
Corbett, D.; Wise, A.; Langley, T.; Skinner, K.; Trimby, E.; Birchall, S.; Dorali, A.; Sandiford, S.; Williams, J.; Warn, P.J. Potentiation of antibiotic activity by a novel cationic peptide: Potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother., 2017, 61(8), e00200-e00217.
[45]
Johnson, R.A.; Chan, A.N.; Ward, R.D.; McGlade, C.A.; Hatfield, B.M.; Peters, J.M.; Li, B. Inhibition of Isoleucyl-tRNA synthetase by the hybrid antibiotic thiomarinol. J. Am. Chem. Soc., 2021, 143(31), 12003-12013.
[http://dx.doi.org/10.1021/jacs.1c02622] [PMID: 34342433]
[46]
Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta, 2009, 1794(5), 808-816.
[http://dx.doi.org/10.1016/j.bbapap.2008.11.005] [PMID: 19100346]
[47]
Ayoub Moubareck, C. Polymyxins and bacterial membranes: A review of antibacterial activity and mechanisms of resistance. Membranes (Basel), 2020, 10(8), 181.
[http://dx.doi.org/10.3390/membranes10080181] [PMID: 32784516]
[48]
Azad, M.A.K.; Nation, R.L.; Velkov, T.; Li, J. Mechanisms of Polymyxin-induced nephrotoxicity. Adv. Exp. Med. Biol., 2019, 1145, 305-319.
[http://dx.doi.org/10.1007/978-3-030-16373-0_18] [PMID: 31364084]
[49]
Zurawski, D.V.; Reinhart, A.A.; Alamneh, Y.A.; Pucci, M.J.; Si, Y.; Abu-Taleb, R.; Shearer, J.P.; Demons, S.T.; Tyner, S.D.; Lister, T. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of Rifampin against clinically relevant extensively drug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother., 2017, 61(12), e01239-17.
[http://dx.doi.org/10.1128/AAC.01239-17] [PMID: 28947471]
[50]
Ferrer-Espada, R.; Shahrour, H.; Pitts, B.; Stewart, P.S.; Sánchez-Gómez, S.; Martínez-de-Tejada, G. A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci. Rep., 2019, 9(1), 3452.
[http://dx.doi.org/10.1038/s41598-019-39659-4] [PMID: 30837499]
[51]
van Groesen, E.; Slingerland, C.J.; Innocenti, P.; Mihajlovic, M.; Masereeuw, R.; Martin, N.I. Vancomyxins: Vancomycin-Polymyxin nonapeptide conjugates that retain Anti-Gram-Positive activity with enhanced potency against Gram-Negative Strains. ACS Infect. Dis., 2021, 7(9), 2746-2754.
[http://dx.doi.org/10.1021/acsinfecdis.1c00318] [PMID: 34387988]
[52]
Cassone, M.; Otvos, L.J.E., Jr. Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert. Rev. Anti. Infect. Ther., 2010, 8(6), 703-716.
[http://dx.doi.org/10.1586/eri.10.38]
[53]
Li, W.; O'Brien-Simpson, N.M.; Holden, J.A.; Otvos, L.; Reynolds, E.C.; Separovic, F.; Hossain, M.A.; Wade, J.D.J.P.S. Covalent conjugation of cationic antimicrobial peptides with a β-lactam antibiotic core. Peptide Sci., 2018, 110(3), e24059.
[http://dx.doi.org/10.1002/pep2.24059]
[54]
Brezden, A.; Mohamed, M.F.; Nepal, M.; Harwood, J.S.; Kuriakose, J.; Seleem, M.N.; Chmielewski, J. Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. J. Am. Chem. Soc., 2016, 138(34), 10945-10949.
[http://dx.doi.org/10.1021/jacs.6b04831] [PMID: 27494027]
[55]
Kuriakose, J.; Hernandez-Gordillo, V.; Nepal, M.; Brezden, A.; Pozzi, V.; Seleem, M.N.; Chmielewski, J. Targeting intracellular pathogenic bacteria with unnatural proline-rich peptides: Coupling antibacterial activity with macrophage penetration. Angew. Chem. Int. Ed. Engl., 2013, 52(37), 9664-9667.
[http://dx.doi.org/10.1002/anie.201302693] [PMID: 23960012]
[56]
Arnusch, C.J.; Pieters, R.J.; Breukink, E. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides. PLoS One, 2012, 7(6), e39768-e39768.
[http://dx.doi.org/10.1371/journal.pone.0039768] [PMID: 22768121]
[57]
Ludtke, S.J.; He, K.; Heller, W.T.; Harroun, T.A.; Yang, L.; Huang, H.W. Membrane pores induced by magainin. Biochemistry, 1996, 35(43), 13723-13728.
[http://dx.doi.org/10.1021/bi9620621] [PMID: 8901513]
[58]
Ahmad, I.; Perkins, W.R.; Lupan, D.M.; Selsted, M.E.; Janoff, A.S. Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim. Biophys. Acta, 1995, 1237(2), 109-114.
[http://dx.doi.org/10.1016/0005-2736(95)00087-J] [PMID: 7632702]
[59]
Selsted, M.E.; Novotny, M.J.; Morris, W.L.; Tang, Y-Q.; Smith, W.; Cullor, J.S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem., 1992, 267(7), 4292-4295.
[http://dx.doi.org/10.1016/S0021-9258(18)42830-X] [PMID: 1537821]
[60]
Aley, S.B.; Zimmerman, M.; Hetsko, M.; Selsted, M.E.; Gillin, F.D. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect. Immun., 1994, 62(12), 5397-5403.
[http://dx.doi.org/10.1128/iai.62.12.5397-5403.1994] [PMID: 7960119]
[61]
Schluesener, H.J.; Radermacher, S.; Melms, A.; Jung, S. Leukocytic antimicrobial peptides kill autoimmune T cells. J. Neuroimmunol., 1993, 47(2), 199-202.
[http://dx.doi.org/10.1016/0165-5728(93)90030-3] [PMID: 8370771]
[62]
Ghaffar, K.A.; Hussein, W.M.; Khalil, Z.G.; Capon, R.J.; Skwarczynski, M.; Toth, I. Levofloxacin and indolicidin for combination antimicrobial therapy. Curr. Drug Deliv., 2015, 12(1), 108-114.
[http://dx.doi.org/10.2174/1567201811666140910094050] [PMID: 25213074]
[63]
Pini, A.; Falciani, C.; Mantengoli, E.; Bindi, S.; Brunetti, J.; Iozzi, S.; Rossolini, G.M.; Bracci, L. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J., 2010, 24(4), 1015-1022.
[http://dx.doi.org/10.1096/fj.09-145474] [PMID: 19917670]
[64]
Ceccherini, F.; Falciani, C.; Onori, M.; Scali, S.; Pollini, S.; Rossolini, G.M.; Bracci, L.; Pini, A. Antimicrobial activity of levofloxacin - M33 peptide conjugation or combination. MedChemComm, 2016, 7(2), 258-262.
[http://dx.doi.org/10.1039/C5MD00392J]
[65]
De Groote, M.A.; Fang, F.C.; Inhibitions, N.O. NO inhibitions: Antimicrobial properties of nitric oxide. Clin. Infect. Dis., 1995, 21(Suppl. 2), S162-S165.
[http://dx.doi.org/10.1093/clinids/21.Supplement_2.S162] [PMID: 8845445]
[66]
Chi, D.S.; Qui, M.; Krishnaswamy, G.; Li, C.; Stone, W. Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide, 2003, 8(2), 127-132.
[http://dx.doi.org/10.1016/S1089-8603(02)00148-9] [PMID: 12620376]
[67]
Wink, D.A.; Kasprzak, K.S.; Maragos, C.M.; Elespuru, R.K.; Misra, M.; Dunams, T.M.; Cebula, T.A.; Koch, W.H.; Andrews, A.W.; Allen, J.S.; Keefer, L.K. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science, 1991, 254(5034), 1001-1003.
[http://dx.doi.org/10.1126/science.1948068] [PMID: 1948068]
[68]
Shiloh, M.U.; MacMicking, J.D.; Nicholson, S.; Brause, J.E.; Potter, S.; Marino, M.; Fang, F.; Dinauer, M.; Nathan, C. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity, 1999, 10(1), 29-38.
[http://dx.doi.org/10.1016/S1074-7613(00)80004-7] [PMID: 10023768]
[69]
Barraud, N.; Hassett, D.J.; Hwang, S.H.; Rice, S.A.; Kjelleberg, S.; Webb, J.S. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol., 2006, 188(21), 7344-7353.
[http://dx.doi.org/10.1128/JB.00779-06] [PMID: 17050922]
[70]
Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med., 2013, 3(4), a010306.
[http://dx.doi.org/10.1101/cshperspect.a010306] [PMID: 23545571]
[71]
Brooun, A.; Liu, S.; Lewis, K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2000, 44(3), 640-646.
[http://dx.doi.org/10.1128/AAC.44.3.640-646.2000] [PMID: 10681331]
[72]
Wang, P.G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A.J. Nitric oxide donors: Chemical activities and biological applications. Chem. Rev., 2002, 102(4), 1091-1134.
[http://dx.doi.org/10.1021/cr000040l] [PMID: 11942788]
[73]
Kutty, S.K.; Ka Kit Ho, K.; Kumar, N. Nitric Oxide Donors; Seabra, A.B., Ed.; Academic Press: FL, USA, 2017, pp. 169-189.
[http://dx.doi.org/10.1016/B978-0-12-809275-0.00007-7]
[74]
Rouillard, K.R.; Novak, O.P.; Pistiolis, A.M.; Yang, L.; Ahonen, M.J.R.; McDonald, R.A.; Schoenfisch, M.H. Exogenous Nitric Oxide improves antibiotic susceptibility in resistant bacteria. ACS Infect. Dis., 2021, 7(1), 23-33.
[http://dx.doi.org/10.1021/acsinfecdis.0c00337] [PMID: 33291868]
[75]
Barraud, N.; Kardak, B.G.; Yepuri, N.R.; Howlin, R.P.; Webb, J.S.; Faust, S.N.; Kjelleberg, S.; Rice, S.A.; Kelso, M.J. Cephalosporin-3′-diazeniumdiolates: Targeted NO-donor prodrugs for dispersing bacterial biofilms. Angew. Chem. Int. Ed. Engl., 2012, 51(36), 9057-9060.
[http://dx.doi.org/10.1002/anie.201202414] [PMID: 22890975]
[76]
Yepuri, N.R.; Barraud, N.; Mohammadi, N.S.; Kardak, B.G.; Kjelleberg, S.; Rice, S.A.; Kelso, M.J. Synthesis of cephalosporin-3′-diazeniumdiolates: Biofilm dispersing NO-donor prodrugs activated by β-lactamase. Chem. Commun. (Camb.), 2013, 49(42), 4791-4793.
[http://dx.doi.org/10.1039/c3cc40869h] [PMID: 23603842]
[77]
Collins, S.A.; Kelso, M.J.; Rineh, A.; Yepuri, N.R.; Coles, J.; Jackson, C.L.; Halladay, G.D.; Walker, W.T.; Webb, J.S.; Hall-Stoodley, L.; Connett, G.J.; Feelisch, M.; Faust, S.N.; Lucas, J.S.A.; Allan, R.N. Cephalosporin-3′-Diazeniumdiolate NO Donor Prodrug PYRRO-C3D enhances azithromycin susceptibility of nontypeable haemophilus influenzae biofilms. Antimicrob. Agents Chemother., 2017, 61(2), e02086-e02016.
[http://dx.doi.org/10.1128/AAC.02086-16] [PMID: 27919896]
[78]
Allan, R.N.; Kelso, M.J.; Rineh, A.; Yepuri, N.R.; Feelisch, M.; Soren, O.; Brito-Mutunayagam, S.; Salib, R.J.; Stoodley, P.; Clarke, S.C.; Webb, J.S.; Hall-Stoodley, L.; Faust, S.N. Cephalosporin-NO-donor prodrug PYRRO-C3D shows β-lactam-mediated activity against Streptococcus pneumoniae biofilms. Nitric Oxide, 2017, 65, 43-49.
[http://dx.doi.org/10.1016/j.niox.2017.02.006] [PMID: 28235635]
[79]
Bertinaria, M.; Galli, U.; Sorba, G.; Fruttero, R.; Gasco, A.; Brenciaglia, M.I.; Scaltrito, M.M.; Dubini, F. Synthesis and anti-Helicobacter pylori properties of NO-donor/metronidazole hybrids and related compounds. Drug Dev. Res., 2003, 60(3), 225-239.
[http://dx.doi.org/10.1002/ddr.10284]
[80]
Gasco, A.; Fruttero, R.; Sorba, G.; Stilo, A.D.; Calvino, R. NO donors: Focus on furoxan derivatives. Pure Appl. Chem., 2004, 76(5), 973-981.
[http://dx.doi.org/10.1351/pac200476050973]
[81]
Aziz, H.A.; Moustafa, G.A.I.; Abbas, S.H.; Hauk, G.; Siva Krishna, V.; Sriram, D.; Berger, J.M.; Abuo-Rahma, G.E-D.A. New fluoroquinolones/nitric oxide donor hybrids: Design, synthesis and antitubercular activity. Med. Chem. Res., 2019, 28(8), 1272-1283.
[http://dx.doi.org/10.1007/s00044-019-02372-y]
[82]
Tang, X.; Cai, T.; Wang, P.G. Synthesis of beta-lactamase activated nitric oxide donors. Bioorg. Med. Chem. Lett., 2003, 13(10), 1687-1690.
[http://dx.doi.org/10.1016/S0960-894X(03)00242-7] [PMID: 12729642]
[83]
Hrabie, J.A.; Keefer, L.K. Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives. Chem. Rev., 2002, 102(4), 1135-1154.
[http://dx.doi.org/10.1021/cr000028t] [PMID: 11942789]
[84]
Rineh, A.; Soren, O.; McEwan, T.; Ravikumar, V.; Poh, W.H.; Azamifar, F.; Naimi-Jamal, M.R.; Cheung, C.Y.; Elliott, A.G.; Zuegg, J.; Blaskovich, M.A.T.; Cooper, M.A.; Dolange, V.; Christodoulides, M.; Cook, G.M.; Rice, S.A.; Faust, S.N.; Webb, J.S.; Kelso, M.J. Discovery of Cephalosporin-3′-Diazeniumdiolates that show dual antibacterial and antibiofilm effects against Pseudomonas aeruginosa clinical cystic fibrosis isolates and efficacy in a murine respiratory infection model. ACS Infect. Dis., 2020, 6(6), 1460-1479.
[http://dx.doi.org/10.1021/acsinfecdis.0c00070] [PMID: 32329596]
[85]
Kutty, S.K.; Barraud, N.; Pham, A.; Iskander, G.; Rice, S.A.; Black, D.S.; Kumar, N. Design, synthesis, and evaluation of fimbrolide-nitric oxide donor hybrids as antimicrobial agents. J. Med. Chem., 2013, 56(23), 9517-9529.
[http://dx.doi.org/10.1021/jm400951f] [PMID: 24191659]
[86]
Kutty, S.K.; Barraud, N.; Ho, K.K.K.; Iskander, G.M.; Griffith, R.; Rice, S.A.; Bhadbhade, M.; Willcox, M.D.P.; Black, D.S.; Kumar, N. Hybrids of acylated homoserine lactone and nitric oxide donors as inhibitors of quorum sensing and virulence factors in Pseudomonas aeruginosa. Org. Biomol. Chem., 2015, 13(38), 9850-9861.
[http://dx.doi.org/10.1039/C5OB01373A] [PMID: 26282835]
[87]
Nguyen, T-K.; Selvanayagam, R.; Ho, K.K.K.; Chen, R.; Kutty, S.K.; Rice, S.A.; Kumar, N.; Barraud, N.; Duong, H.T.T.; Boyer, C. Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chem. Sci. (Camb.), 2016, 7(2), 1016-1027.
[http://dx.doi.org/10.1039/C5SC02769A] [PMID: 28808526]
[88]
Sundaramoorthy, N.S.; Suresh, P.; Selva Ganesan, S.; GaneshPrasad, A.; Nagarajan, S. Restoring colistin sensitivity in colistin-resistant E. coli: Combinatorial use of MarR inhibitor with efflux pump inhibitor. Sci. Rep., 2019, 9(1), 19845.
[http://dx.doi.org/10.1038/s41598-019-56325-x] [PMID: 31882661]
[89]
Asaithampi, G. Identification of benzochromene derivatives as a highly specific NorA efflux pump inhibitor to mitigate the drug resistant strains of S. aureus. In: RSC Advances; , 2016; 6, pp. (36)30258-30267.
[90]
Yang, X.; Domalaon, R.; Lyu, Y.; Zhanel, G.G.; Schweizer, F. Tobramycin-linked efflux pump inhibitor conjugates synergize Fluoroquinolones, Rifampicin and Fosfomycin against multidrug-resistant Pseudomonas aeruginosa. J. Clin. Med., 2018, 7(7), 158.
[http://dx.doi.org/10.3390/jcm7070158] [PMID: 29932132]
[91]
Yamaguchi, A.; Ohmori, H.; Kaneko-Ohdera, M.; Nomura, T.; Sawai, T. Delta pH-dependent accumulation of tetracycline in Escherichia coli. Antimicrob. Agents Chemother., 1991, 35(1), 53-56.
[http://dx.doi.org/10.1128/AAC.35.1.53] [PMID: 2014981]
[92]
Zhang, L-H.; Dong, Y-H. Quorum sensing and signal interference: Diverse implications. Mol. Microbiol., 2004, 53(6), 1563-1571.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04234.x] [PMID: 15341639]
[93]
Rajput, A.; Kaur, K.; Kumar, M. SigMol: Repertoire of quorum sensing signaling molecules in prokaryotes. Nucleic Acids Res., 2016, 44(D1), D634-D639.
[http://dx.doi.org/10.1093/nar/gkv1076] [PMID: 26490957]
[94]
Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 2005, 21(1), 319-346.
[http://dx.doi.org/10.1146/annurev.cellbio.21.012704.131001] [PMID: 16212498]
[95]
Lansdown, A.B.G. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol., 2006, 33, 17-34.
[http://dx.doi.org/10.1159/000093928] [PMID: 16766878]
[96]
Yu, H.; Sun, H.; Yin, C.; Lin, Z. Combination of sulfonamides, silver antimicrobial agents and quorum sensing inhibitors as a preferred approach for improving antimicrobial efficacy against Bacillus subtilis. Ecotoxicol. Environ. Saf., 2019, 181, 43-48.
[http://dx.doi.org/10.1016/j.ecoenv.2019.05.064] [PMID: 31158722]
[97]
Zarfl, C.; Matthies, M.; Klasmeier, J. A mechanistical model for the uptake of sulfonamides by bacteria. Chemosphere, 2008, 70(5), 753-760.
[http://dx.doi.org/10.1016/j.chemosphere.2007.07.045] [PMID: 17765286]
[98]
Wang, D.; Lin, Z.; Ding, X.; Hu, J.; Liu, Y. The Comparison of the Combined Toxicity between Gram-negative and Gram-positive bacteria: A case study of antibiotics and Quorum-sensing inhibitors. Mol. Inform., 2016, 35(2), 54-61.
[http://dx.doi.org/10.1002/minf.201500061] [PMID: 27491790]
[99]
Allegra, C.J.; Boarman, D.; Kovacs, J.A.; Morrison, P.; Beaver, J.; Chabner, B.A.; Masur, H. Interaction of sulfonamide and sulfone compounds with Toxoplasma gondii dihydropteroate synthase. J. Clin. Invest., 1990, 85(2), 371-379.
[http://dx.doi.org/10.1172/JCI114448] [PMID: 2298911]
[100]
Ejim, L.; Farha, M.A.; Falconer, S.B.; Wildenhain, J.; Coombes, B.K.; Tyers, M.; Brown, E.D.; Wright, G.D. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol., 2011, 7(6), 348-350.
[http://dx.doi.org/10.1038/nchembio.559] [PMID: 21516114]
[101]
Bernal, P.; Molina-Santiago, C.; Daddaoua, A.; Llamas, M.A. Antibiotic adjuvants: Identification and clinical use. Microb. Biotechnol., 2013, 6(5), 445-449.
[http://dx.doi.org/10.1111/1751-7915.12044] [PMID: 23445397]
[102]
Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res., 2019, 149(2), 129-145.
[http://dx.doi.org/10.4103/ijmr.IJMR_2079_17] [PMID: 31219077]
[103]
Martin, J.K., II; Sheehan, J.P.; Bratton, B.P.; Moore, G.M.; Mateus, A.; Li, S.H.-J.; Kim, H.; Rabinowitz, J.D.; Typas, A.; Savitski, M.M.J.C. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell, 2020, 181(7), 1518-1532.
[http://dx.doi.org/10.1016/j.cell.2020.05.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy