Review Article

含有硫和氧硫族化合物的广谱抗黄病毒活性和化学性质

卷 30, 期 21, 2023

发表于: 18 August, 2022

页: [2396 - 2420] 页: 25

弟呕挨: 10.2174/0929867329666220610211441

价格: $65

conference banner
摘要

含硫和含氧化合物是一类相关的衍生物,由于其广泛的药理活性(包括抗病毒活性)而不断增长。作为证明,有几种 FDA 批准的抗病毒化合物在其结构中含有硫和氧。在 RNA 病毒中,黄病毒属(例如登革热病毒、西尼罗河病毒、黄热病病毒和寨卡病毒)在人畜共患病原体中占有重要地位,因此黄病毒感染被认为对公众健康的风险越来越大。因此,旨在鉴定新的抗黄病毒药物的药物发现过程具有重要意义,并将有助于找到目前尚不可用的有效疗法。黄病毒最令人担忧的特征之一是它们能够同时感染宿主,从而加重疾病的症状。因此,寻找具有广谱抗黄病毒活性的化合物成为当务之急。在这篇综述中,我们描述了最有前途的化合物,其结构中同时含有硫和氧,其特点是对不同的黄病毒具有广谱活性。此外,还报告了用于制备所述衍生物的合成进程。读者可以从这篇综述的内容中得到启发,设计和合成更有效的抗黄病毒药物,并选择病毒或宿主靶点以实现尽可能广泛的抗病毒活性。

关键词: 硫族化合物,含硫和含氧化合物,有机硫化合物,杂环,抗病毒剂,黄病毒抑制剂。

[1]
Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep., 2018, 8(1), 12009.
[http://dx.doi.org/10.1038/s41598-018-30614-3] [PMID: 30104708]
[2]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[3]
Singh, P.K.; Silakari, O. The current status of O-heterocycles: A synthetic and medicinal overview. ChemMedChem, 2018, 13(11), 1071-1087.
[http://dx.doi.org/10.1002/cmdc.201800119] [PMID: 29603634]
[4]
Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[5]
Scott, K.A.; Njardarson, J.T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. (Cham), 2018, 376(1), 5.
[http://dx.doi.org/10.1007/s41061-018-0184-5] [PMID: 29356979]
[6]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 10-13.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[7]
Koh, Y.; Nakata, H.; Maeda, K.; Ogata, H.; Bilcer, G.; Devasamudram, T.; Kincaid, J.F.; Boross, P.; Wang, Y-F.; Tie, Y.; Volarath, P.; Gaddis, L.; Harrison, R.W.; Weber, I.T.; Ghosh, A.K.; Mitsuya, H. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob. Agents Chemother., 2003, 47(10), 3123-3129.
[http://dx.doi.org/10.1128/AAC.47.10.3123-3129.2003] [PMID: 14506019]
[8]
Timm, J.; Kosovrasti, K.; Henes, M.; Leidner, F.; Hou, S.; Ali, A.; Kurt Yilmaz, N.; Schiffer, C.A. Molecular and structural mechanism of pan-genotypic HCV NS3/4A protease inhibition by glecaprevir. ACS Chem. Biol., 2020, 15(2), 342-352.
[http://dx.doi.org/10.1021/acschembio.9b00675] [PMID: 31868341]
[9]
Taylor, J.G.; Zipfel, S.; Ramey, K.; Vivian, R.; Schrier, A.; Karki, K.K.; Katana, A.; Kato, D.; Kobayashi, T.; Martinez, R.; Sangi, M.; Siegel, D.; Tran, C.V.; Yang, Z-Y.; Zablocki, J.; Yang, C.Y.; Wang, Y.; Wang, K.; Chan, K.; Barauskas, O.; Cheng, G.; Jin, D.; Schultz, B.E.; Appleby, T.; Villaseñor, A.G.; Link, J.O. Discovery of the pan-genotypic hepatitis C virus NS3/4A protease inhibitor voxilaprevir (GS-9857): A component of Vosevi®. Bioorg. Med. Chem. Lett., 2019, 29(16), 2428-2436.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.037] [PMID: 31133531]
[10]
Izquierdo, L.; Helle, F.; François, C.; Castelain, S.; Duverlie, G.; Brochot, E. Simeprevir for the treatment of hepatitis C virus infection. Pharm. Genom. Pers. Med., 2014, 7, 241-249.
[PMID: 25206310]
[11]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26(14), 1-25.
[http://dx.doi.org/10.3390/molecules26144230] [PMID: 34299505]
[12]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[13]
Thenin-Houssier, S.; de Vera, I.M.S.; Pedro-Rosa, L.; Brady, A.; Richard, A.; Konnick, B.; Opp, S.; Buffone, C.; Fuhrmann, J.; Kota, S.; Billack, B.; Pietka-Ottlik, M.; Tellinghuisen, T.; Choe, H.; Spicer, T.; Scampavia, L.; Diaz-Griffero, F.; Kojetin, D.J.; Valente, S.T. Ebselen, a small-molecule capsid inhibitor of HIV-1 replication. Antimicrob. Agents Chemother., 2016, 60(4), 2195-2208.
[http://dx.doi.org/10.1128/AAC.02574-15] [PMID: 26810656]
[14]
Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis., 2017, 17(3), e101-e106.
[http://dx.doi.org/10.1016/S1473-3099(16)30518-7] [PMID: 28011234]
[15]
Azevedo, R.S.S.; Araujo, M.T.; Martins Filho, A.J.; Oliveira, C.S.; Nunes, B.T.D.; Cruz, A.C.R.; Nascimento, A.G.P.A.C.; Medeiros, R.C.; Caldas, C.A.M.; Araujo, F.C.; Quaresma, J.A.S.; Vasconcelos, B.C.B.; Queiroz, M.G.L.; da Rosa, E.S.T.; Henriques, D.F.; Silva, E.V.P.; Chiang, J.O.; Martins, L.C.; Medeiros, D.B.A.; Lima, J.A.; Nunes, M.R.T.; Cardoso, J.F.; Silva, S.P.; Shi, P.Y.; Tesh, R.B.; Rodrigues, S.G.; Vasconcelos, P.F.C. Zika virus epidemic in Brazil. I. Fatal disease in adults: Clinical and laboratorial aspects. J. Clin. Virol., 2016, 85, 56-64.
[http://dx.doi.org/10.1016/j.jcv.2016.10.024] [PMID: 27835759]
[16]
Saiz, J.C.; Vázquez-Calvo, Á.; Blázquez, A.B.; Merino-Ramos, T.; Escribano-Romero, E.; Martín-Acebes, M.A. Zika virus: The latest newcomer. Front. Microbiol., 2016, 7, 1-19.
[17]
Monath, T.P.; Vasconcelos, P.F.C. Yellow fever. J. Clin. Virol., 2015, 64, 160-173.
[http://dx.doi.org/10.1016/j.jcv.2014.08.030] [PMID: 25453327]
[18]
Daep, C.A.; Muñoz-Jordán, J.L.; Eugenin, E.A. Flaviviruses, an expanding threat in public health: Focus on dengue, West Nile, and Japanese encephalitis virus. J. Neurovirol., 2014, 20(6), 539-560.
[http://dx.doi.org/10.1007/s13365-014-0285-z] [PMID: 25287260]
[19]
WHO. Ten threats to global health. 2019. Available from: https://www.who.int/emergencies/ten-threats-to-global- health-in-2019
[20]
Robertson, S.J.; Mitzel, D.N.; Taylor, R.T.; Best, S.M.; Bloom, M.E. Tick-borne flaviviruses: Dissecting host immune responses and virus countermeasures. Immunol. Res., 2009, 43(1-3), 172-186.
[http://dx.doi.org/10.1007/s12026-008-8065-6] [PMID: 18841330]
[21]
Boldescu, V.; Behnam, M.A.M.; Vasilakis, N.; Klein, C.D. Broad-spectrum agents for flaviviral infections: Dengue, Zika and beyond. Nat. Rev. Drug Discov., 2017, 16(8), 565-586.
[http://dx.doi.org/10.1038/nrd.2017.33] [PMID: 28473729]
[22]
Bernatchez, J.A.; Tran, L.T.; Li, J.; Luan, Y.; Siqueira-Neto, J.L.; Li, R. Drugs for the treatment of zika virus infection. J. Med. Chem., 2020, 63(2), 470-489.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00775] [PMID: 31549836]
[23]
Lim, S.P. Dengue drug discovery: Progress, challenges and outlook. Antiviral Res., 2019, 163, 156-178.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.016] [PMID: 30597183]
[24]
Felicetti, T.; Manfroni, G.; Cecchetti, V.; Cannalire, R. Broad-spectrum flavivirus inhibitors: A medicinal chemistry point of view. ChemMedChem, 2020, 15(24), 2391-2419.
[http://dx.doi.org/10.1002/cmdc.202000464] [PMID: 32961008]
[25]
Verma, R.; Khanna, P.; Chawla, S. Yellow fever vaccine: An effective vaccine for travelers. Hum. Vaccin. Immunother., 2014, 10(1), 126-128.
[http://dx.doi.org/10.4161/hv.26549] [PMID: 24056028]
[26]
Heinz, F.X.; Stiasny, K.; Holzmann, H.; Grgic-Vitek, M.; Kriz, B.; Essl, A.; Kundi, M. Vaccination and tick-borne encephalitis, central Europe. Emerg. Infect. Dis., 2013, 19(1), 69-76.
[http://dx.doi.org/10.3201/eid1901.120458] [PMID: 23259984]
[27]
Halstead, S.B.; Russell, P.K. Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine, 2016, 34(14), 1643-1647.
[http://dx.doi.org/10.1016/j.vaccine.2016.02.004] [PMID: 26873054]
[28]
Robinson, M.L.; Durbin, A.P. Dengue vaccines: Implications for dengue control. Curr. Opin. Infect. Dis., 2017, 30(5), 449-454.
[http://dx.doi.org/10.1097/QCO.0000000000000394] [PMID: 28719400]
[29]
WHO. The Weekly Epidemiological Record (WER), 2018. Available from: https://www.who.int/publications/journals/weekly-epidemiological-record
[30]
Zhao, R.; Wang, M.; Cao, J.; Shen, J.; Zhou, X.; Wang, D.; Cao, J. Flavivirus: From structure to therapeutics development. Life (Basel), 2021, 11(7), 1-25.
[http://dx.doi.org/10.3390/life11070615] [PMID: 34202239]
[31]
Vogels, C.B.F.; Rückert, C.; Cavany, S.M.; Perkins, T.A.; Ebel, G.D.; Grubaugh, N.D. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol., 2019, 17(1), e3000130.
[http://dx.doi.org/10.1371/journal.pbio.3000130] [PMID: 30668574]
[32]
Carrillo-Hernández, M.Y.; Ruiz-Saenz, J.; Villamizar, L.J.; Gómez-Rangel, S.Y.; Martínez-Gutierrez, M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect. Dis., 2018, 18(1), 61.
[http://dx.doi.org/10.1186/s12879-018-2976-1] [PMID: 29382300]
[33]
Laredo-Tiscareño, S.V.; Garza-Hernandez, J.A.; Salazar, M.I.; De Luna-Santillana, E.J.; Tangudu, C.S.; Cetina-Trejo, R.C.; Doria-Cobos, G.L.; Carmona-Aguirre, S.D.; Garcia-Rejon, J.E.; Machain-Williams, C.; Blitvich, B.J.; Pérez, M.A.R. Surveillance for Flaviviruses Near the Mexico-U.S. Border: Co-circulation of Dengue Virus Serotypes 1, 2, and 3 and West Nile Virus in Tamaulipas, Northern Mexico, 2014-2016. Am. J. Trop. Med. Hyg., 2018, 99(5), 1308-1317.
[http://dx.doi.org/10.4269/ajtmh.18-0426] [PMID: 30226141]
[34]
Barrows, N.J.; Campos, R.K.; Liao, K-C.; Prasanth, K.R.; Soto-Acosta, R.; Yeh, S-C.; Schott-Lerner, G.; Pompon, J.; Sessions, O.M.; Bradrick, S.S.; Garcia-Blanco, M.A. Biochemistry and molecular biology of flaviviruses. Chem. Rev., 2018, 118(8), 4448-4482.
[http://dx.doi.org/10.1021/acs.chemrev.7b00719] [PMID: 29652486]
[35]
Lou, Z.; Sun, Y.; Rao, Z. Current progress in antiviral strategies. Trends Pharmacol. Sci., 2014, 35(2), 86-102.
[http://dx.doi.org/10.1016/j.tips.2013.11.006] [PMID: 24439476]
[36]
Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev., 2020, 40(5), 1519-1557.
[http://dx.doi.org/10.1002/med.21664] [PMID: 32060956]
[37]
Shyr, Z.A.; Cheng, Y.S.; Lo, D.C.; Zheng, W. Drug combination therapy for emerging viral diseases. Drug Discov. Today, 2021, 26(10), 2367-2376.
[http://dx.doi.org/10.1016/j.drudis.2021.05.008] [PMID: 34023496]
[38]
Pastorino, B.; Nougairède, A.; Wurtz, N.; Gould, E.; de Lamballerie, X. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Antiviral Res., 2010, 87(3), 281-294.
[http://dx.doi.org/10.1016/j.antiviral.2010.04.014] [PMID: 20452379]
[39]
Naggie, S.; Muir, A.J. Oral combination therapies for hepatitis C virus infection: Successes, challenges, and unmet needs. Annu. Rev. Med., 2017, 68, 345-358.
[http://dx.doi.org/10.1146/annurev-med-052915-015720] [PMID: 27686017]
[40]
Ghosn, J.; Taiwo, B.; Seedat, S.; Autran, B.; Katlama, C. HIV. Lancet, 2018, 392(10148), 685-697.
[http://dx.doi.org/10.1016/S0140-6736(18)31311-4] [PMID: 30049419]
[41]
Zhang, X.; Jia, R.; Shen, H.; Wang, M.; Yin, Z.; Cheng, A. Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses, 2017, 9(11), 1-14.
[http://dx.doi.org/10.3390/v9110338] [PMID: 29137162]
[42]
Kok, W.M. New developments in flavivirus drug discovery. Expert Opin. Drug Discov., 2016, 11(5), 433-445.
[http://dx.doi.org/10.1517/17460441.2016.1160887] [PMID: 26966889]
[43]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6986-6991.
[http://dx.doi.org/10.1073/pnas.0832193100] [PMID: 12759475]
[44]
Kampmann, T.; Yennamalli, R.; Campbell, P.; Stoermer, M.J.; Fairlie, D.P.; Kobe, B.; Young, P.R. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res., 2009, 84(3), 234-241.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.007] [PMID: 19781577]
[45]
Villordo, S.M.; Alvarez, D.E.; Gamarnik, A.V. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA, 2010, 16(12), 2325-2335.
[http://dx.doi.org/10.1261/rna.2120410] [PMID: 20980673]
[46]
Byk, L.A.; Gamarnik, A.V. Properties and functions of the dengue virus capsid protein. Annu. Rev. Virol., 2016, 3(1), 263-281.
[http://dx.doi.org/10.1146/annurev-virology-110615-042334] [PMID: 27501261]
[47]
Byrd, C.M.; Dai, D.; Grosenbach, D.W.; Berhanu, A.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Wineinger, K.A.; Page, J.M.; Harver, C.; Stavale, E.; Tyavanagimatt, S.; Stone, M.A.; Bartenschlager, R.; Scaturro, P.; Hruby, D.E.; Jordan, R. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother., 2013, 57(1), 15-25.
[http://dx.doi.org/10.1128/AAC.01429-12] [PMID: 23070172]
[48]
Luo, D.; Vasudevan, S.G.; Lescar, J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res., 2015, 118, 148-158.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.014] [PMID: 25842996]
[49]
Behnam, M.A.M.; Graf, D.; Bartenschlager, R.; Zlotos, D.P.; Klein, C.D. Discovery of nanomolar dengue and west nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J. Med. Chem., 2015, 58(23), 9354-9370.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01441] [PMID: 26562070]
[50]
Li, Z.; Brecher, M.; Deng, Y.Q.; Zhang, J.; Sakamuru, S.; Liu, B.; Huang, R.; Koetzner, C.A.; Allen, C.A.; Jones, S.A.; Chen, H.; Zhang, N.N.; Tian, M.; Gao, F.; Lin, Q.; Banavali, N.; Zhou, J.; Boles, N.; Xia, M.; Kramer, L.D.; Qin, C-F.; Li, H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res., 2017, 27(8), 1046-1064.
[http://dx.doi.org/10.1038/cr.2017.88] [PMID: 28685770]
[51]
Du Pont, K.E.; McCullagh, M.; Geiss, B.J. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. Wiley Interdiscip. Rev. RNA, 2021, [Epub ahead of print].
[PMID: 34472205]
[52]
Byrd, C.M.; Grosenbach, D.W.; Berhanu, A.; Dai, D.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Yang, G.; Tyavanagimatt, S.; Harver, C.; Wineinger, K.A.; Page, J.; Stavale, E.; Stone, M.A.; Fuller, K.P.; Lovejoy, C.; Leeds, J.M.; Hruby, D.E.; Jordan, R. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob. Agents Chemother., 2013, 57(4), 1902-1912.
[http://dx.doi.org/10.1128/AAC.02251-12] [PMID: 23403421]
[53]
Zmurko, J.; Neyts, J.; Dallmeier, K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev. Med. Virol., 2015, 25(4), 205-223.
[http://dx.doi.org/10.1002/rmv.1835] [PMID: 25828437]
[54]
Fikatas, A.; Vervaeke, P.; Meyen, E.; Llor, N.; Ordeix, S.; Boonen, I.; Bletsa, M.; Kafetzopoulou, L.E.; Lemey, P.; Amat, M.; Pannecouque, C.; Schols, D. A novel series of indole alkaloid derivatives inhibit dengue and zika virus infection by interference with the viral replication complex. Antimicrob. Agents Chemother., 2021, 65(8), e0234920.
[http://dx.doi.org/10.1128/AAC.02349-20] [PMID: 34001508]
[55]
Bruenn, J.A. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res., 2003, 31(7), 1821-1829.
[http://dx.doi.org/10.1093/nar/gkg277] [PMID: 12654997]
[56]
Tarantino, D.; Cannalire, R.; Mastrangelo, E.; Croci, R.; Querat, G.; Barreca, M.L.; Bolognesi, M.; Manfroni, G.; Cecchetti, V.; Milani, M. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res., 2016, 134, 226-235.
[http://dx.doi.org/10.1016/j.antiviral.2016.09.007] [PMID: 27649989]
[57]
Simanjuntak, Y.; Liang, J.J.; Lee, Y.L.; Lin, Y.L. Japanese encephalitis virus exploits dopamine D2 receptor-phospholipase C to target dopaminergic human neuronal cells. Front. Microbiol., 2017, 8, 651.
[http://dx.doi.org/10.3389/fmicb.2017.00651] [PMID: 28443089]
[58]
Chen, W.C.; Simanjuntak, Y.; Chu, L.W.; Ping, Y.H.; Lee, Y.L.; Lin, Y.L.; Li, W.S. Benzenesulfonamide derivatives as calcium/calmodulin-dependent protein kinase inhibitors and antiviral agents against dengue and zika virus infections. J. Med. Chem., 2020, 63(3), 1313-1327.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01779] [PMID: 31972088]
[59]
Mulhern, O.; Bowie, A.G. Unexpected roles for DEAD-box protein 3 in viral RNA sensing pathways. Eur. J. Immunol., 2010, 40(4), 933-935.
[http://dx.doi.org/10.1002/eji.201040447] [PMID: 20309906]
[60]
Brai, A.; Martelli, F.; Riva, V.; Garbelli, A.; Fazi, R.; Zamperini, C.; Pollutri, A.; Falsitta, L.; Ronzini, S.; Maccari, L.; Maga, G.; Giannecchini, S.; Botta, M. DDX3X helicase inhibitors as a new strategy to fight the west nile virus infection. J. Med. Chem., 2019, 62(5), 2333-2347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01403] [PMID: 30721061]
[61]
Evans, C.G.; Chang, L.; Gestwicki, J.E. Heat shock protein 70 (hsp70) as an emerging drug target. J. Med. Chem., 2010, 53(12), 4585-4602.
[http://dx.doi.org/10.1021/jm100054f] [PMID: 20334364]
[62]
Gerold, G.; Bruening, J.; Weigel, B.; Pietschmann, T. Protein interactions during the flavivirus and hepacivirus life cycle. Mol. Cell. Proteomics, 2017, 16(4)(Suppl. 1), S75-S91.
[http://dx.doi.org/10.1074/mcp.R116.065649] [PMID: 28077444]
[63]
Pujhari, S.; Brustolin, M.; Macias, V.M.; Nissly, R.H.; Nomura, M.; Kuchipudi, S.V.; Rasgon, J.L. Heat shock protein 70 (Hsp70) mediates Zika virus entry, replication, and egress from host cells. Emerg. Microbes Infect., 2019, 8(1), 8-16.
[http://dx.doi.org/10.1080/22221751.2018.1557988] [PMID: 30866755]
[64]
Taguwa, S.; Maringer, K.; Li, X.; Bernal-Rubio, D.; Rauch, J.N.; Gestwicki, J.E.; Andino, R.; Fernandez-Sesma, A.; Frydman, J. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell, 2015, 163(5), 1108-1123.
[http://dx.doi.org/10.1016/j.cell.2015.10.046] [PMID: 26582131]
[65]
Puschnik, A.S.; Marceau, C.D.; Ooi, Y.S.; Majzoub, K.; Rinis, N.; Contessa, J.N.; Carette, J.E. A small-molecule oligosaccharyltransferase inhibitor with pan-flaviviral activity. Cell Rep., 2017, 21(11), 3032-3039.
[http://dx.doi.org/10.1016/j.celrep.2017.11.054] [PMID: 29241533]
[66]
Hoffmann, H.H.; Kunz, A.; Simon, V.A.; Palese, P.; Shaw, M.L. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl. Acad. Sci. USA, 2011, 108(14), 5777-5782.
[http://dx.doi.org/10.1073/pnas.1101143108] [PMID: 21436031]
[67]
Liu, B.; Tang, L.; Zhang, X.; Ma, J.; Sehgal, M.; Cheng, J.; Zhang, X.; Zhou, Y.; Du, Y.; Kulp, J.; Guo, J.T.; Chang, J. A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists. Antiviral Res., 2017, 147, 37-46.
[http://dx.doi.org/10.1016/j.antiviral.2017.10.001] [PMID: 28982551]
[68]
Pattabhi, S.; Wilkins, C.R.; Dong, R.; Knoll, M.L.; Posakony, J.; Kaiser, S.; Mire, C.E.; Wang, M.L.; Ireton, R.C.; Geisbert, T.W.; Bedard, K.M.; Iadonato, S.P.; Loo, Y-M.; Gale, M., Jr Targeting innate immunity for antiviral therapy through small molecule agonists of the RLR pathway. J. Virol., 2015, 90(5), 2372-2387.
[http://dx.doi.org/10.1128/JVI.02202-15] [PMID: 26676770]
[69]
Pryke, K.M.; Abraham, J.; Sali, T.M.; Gall, B.J.; Archer, I.; Liu, A.; Bambina, S.; Baird, J.; Gough, M.; Chakhtoura, M.; Haddad, E.K.; Kirby, I.T.; Nilsen, A.; Streblow, D.N.; Hirsch, A.J.; Smith, J.L.; DeFilippis, V.R. A novel agonist of the TRIF pathway induces a cellular state refractory to replication of zika, chikungunya, and dengue viruses. MBio, 2017, 8(3), 1-22.
[http://dx.doi.org/10.1128/mBio.00452-17] [PMID: 28465426]
[70]
Sali, T.M.; Pryke, K.M.; Abraham, J.; Liu, A.; Archer, I.; Broeckel, R.; Staverosky, J.A.; Smith, J.L.; Al-Shammari, A.; Amsler, L.; Sheridan, K.; Nilsen, A.; Streblow, D.N.; DeFilippis, V.R. Characterization of a novel human-specific STING agonist that elicits antiviral activity against emerging alphaviruses. PLoS Pathog., 2015, 11(12), e1005324.
[http://dx.doi.org/10.1371/journal.ppat.1005324] [PMID: 26646986]
[71]
de Wispelaere, M.; Lian, W.; Potisopon, S.; Li, P.C.; Jang, J.; Ficarro, S.B.; Clark, M.J.; Zhu, X.; Kaplan, J.B.; Pitts, J.D.; Wales, T.E.; Wang, J.; Engen, J.R.; Marto, J.A.; Gray, N.S.; Yang, P.L. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol., 2018, 25(8), 1006-1016.e8.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.011] [PMID: 29937406]
[72]
Nitsche, C.; Klein, C.D. Fluorimetric and HPLC-based dengue virus protease assays using a FRET substrate. Methods Mol. Biol., 2013, 1030, 221-236.
[http://dx.doi.org/10.1007/978-1-62703-484-5_18] [PMID: 23821272]
[73]
New derivative of 2-benzamido-5-nitrothiazoles. Patent no. US3950351A, 1976.
[74]
Chan-Bacab, M.J.; Hernández-Núñez, E.; Navarrete-Vázquez, G. Nitazoxanide, tizoxanide and a new analogue [4-nitro-N-(5-nitro-1,3-thiazol-2-yl)benzamide; NTB] inhibit the growth of kinetoplastid parasites (Trypanosoma cruzi and Leishmania mexicana) in vitro. J. Antimicrob. Chemother., 2009, 63(6), 1292-1293.
[http://dx.doi.org/10.1093/jac/dkp117] [PMID: 19346519]
[75]
Ballard, T.E.; Wang, X.; Olekhnovich, I.; Koerner, T.; Seymour, C.; Salamoun, J.; Warthan, M.; Hoffman, P.S.; Macdonald, T.L. Synthesis and antimicrobial evaluation of nitazoxanide-based analogues: Identification of selective and broad spectrum activity. ChemMedChem, 2011, 6(2), 362-377.
[http://dx.doi.org/10.1002/cmdc.201000475] [PMID: 21275058]
[76]
Stachulski, A.V.; Pidathala, C.; Row, E.C.; Sharma, R.; Berry, N.G.; Iqbal, M.; Bentley, J.; Allman, S.A.; Edwards, G.; Helm, A.; Hellier, J.; Korba, B.E.; Semple, J.E.; Rossignol, J-F. Thiazolides as novel antiviral agents. 1. Inhibition of hepatitis B virus replication. J. Med. Chem., 2011, 54(12), 4119-4132.
[http://dx.doi.org/10.1021/jm200153p] [PMID: 21553812]
[77]
Wang, Y.; Wang, J.; Dong, Z.; Yu, G.; Cheng, X.; Jiao, X. Process for preparation of parasiticide nitazoxanide. Patent CN103159697, 2013.
[78]
Cannalire, R.; Tarantino, D.; Piorkowski, G.; Carletti, T.; Massari, S.; Felicetti, T.; Barreca, M.L.; Sabatini, S.; Tabarrini, O.; Marcello, A.; Milani, M.; Cecchetti, V.; Mastrangelo, E.; Manfroni, G.; Querat, G. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Res., 2019, 167, 6-12.
[http://dx.doi.org/10.1016/j.antiviral.2019.03.004] [PMID: 30849420]
[79]
Cannalire, R.; Ki Chan, K.W.; Burali, M.S.; Gwee, C.P.; Wang, S.; Astolfi, A.; Massari, S.; Sabatini, S.; Tabarrini, O.; Mastrangelo, E.; Barreca, M.L.; Cecchetti, V.; Vasudevan, S.G.; Manfroni, G. Pyridobenzothiazolones exert potent anti-dengue activity by hampering multiple functions of NS5 polymerase. ACS Med. Chem. Lett., 2020, 11(5), 773-782.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00619] [PMID: 32435384]
[80]
Felicetti, T.; Burali, M.S.; Gwee, C.P.; Ki Chan, K.W.; Alonso, S.; Massari, S.; Sabatini, S.; Tabarrini, O.; Barreca, M.L.; Cecchetti, V.; Vasudevan, S.G.; Manfroni, G. Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. Eur. J. Med. Chem., 2021, 210, 112992.
[http://dx.doi.org/10.1016/j.ejmech.2020.112992] [PMID: 33208235]
[81]
Caracciolo, I.; Mora-Cardenas, E.; Aloise, C.; Carletti, T.; Segat, L.; Burali, M.S.; Chiarvesio, A.; Totis, V.; Avšič-Županc, T.; Mastrangelo, E.; Manfroni, G.; D’Agaro, P.; Marcello, A. Comprehensive response to Usutu virus following first isolation in blood donors in the Friuli Venezia Giulia region of Italy: Development of recombinant NS1-based serology and sensitivity to antiviral drugs. PLoS Negl. Trop. Dis., 2020, 14(3), e0008156.
[http://dx.doi.org/10.1371/journal.pntd.0008156] [PMID: 32226028]
[82]
Laxmikeshav, K.; Kumari, P.; Shankaraiah, N. Expedition of sulfur containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. Med. Res. Rev., 2021, [Epub ahead of print].
[PMID: 34453452]
[83]
Tay, M.Y.F.; Saw, W.G.; Zhao, Y.; Chan, K.W.K.; Singh, D.; Chong, Y.; Forwood, J.K.; Ooi, E.E.; Grüber, G.; Lescar, J.; Luo, D.; Vasudevan, S.G. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J. Biol. Chem., 2015, 290(4), 2379-2394.
[http://dx.doi.org/10.1074/jbc.M114.607341] [PMID: 25488659]
[84]
Zou, G.; Chen, Y.L.; Dong, H.; Lim, C.C.; Yap, L.J.; Yau, Y.H.; Shochat, S.G.; Lescar, J.; Shi, P.Y. Functional analysis of two cavities in flavivirus NS5 polymerase. J. Biol. Chem., 2011, 286(16), 14362-14372.
[http://dx.doi.org/10.1074/jbc.M110.214189] [PMID: 21349834]
[85]
Malet, H.; Egloff, M.P.; Selisko, B.; Butcher, R.E.; Wright, P.J.; Roberts, M.; Gruez, A.; Sulzenbacher, G.; Vonrhein, C.; Bricogne, G.; Mackenzie, J.M.; Khromykh, A.A.; Davidson, A.D.; Canard, B. Crystal structure of the RNA polymerase domain of the west nile virus non-structural protein 5. J. Biol. Chem., 2007, 282(14), 10678-10689.
[http://dx.doi.org/10.1074/jbc.M607273200] [PMID: 17287213]
[86]
Gebhard, L.G.; Filomatori, C.V.; Gamarnik, A.V. Functional RNA elements in the dengue virus genome. Viruses, 2011, 3(9), 1739-1756.
[http://dx.doi.org/10.3390/v3091739] [PMID: 21994804]
[87]
Li, X.; Srinivasan, S.R.; Connarn, J.; Ahmad, A.; Young, Z.T.; Kabza, A.M.; Zuiderweg, E.R.P.; Sun, D.; Gestwicki, J.E. Analogues of the allosteric Heat Shock Protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Med. Chem. Lett., 2013, 4, 1042-1047.
[http://dx.doi.org/10.1021/ml400204n]
[88]
Xia, H.; Xie, X.; Zou, J.; Noble, C.G.; Russell, W.K.; Holthauzen, L.M.F.; Choi, K.H.; White, M.A.; Shi, P.Y. A cocrystal structure of dengue capsid protein in complex of inhibitor. Proc. Natl. Acad. Sci. USA, 2020, 117(30), 17992-18001.
[http://dx.doi.org/10.1073/pnas.2003056117] [PMID: 32669438]
[89]
Dai, D.; Burgeson, J.R. Thienopyridine derivatives for the treatment and prevention of dengue virus infections. Patent no. WO2014089378, 2014.
[90]
Saudi, M.; Zmurko, J.; Kaptein, S.; Rozenski, J.; Gadakh, B.; Chaltin, P.; Marchand, A.; Neyts, J.; Van Aerschot, A. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus. Eur. J. Med. Chem., 2016, 121, 158-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.043] [PMID: 27240271]
[91]
Zhang, X.; Liu, B.; Tang, L.; Su, Q.; Hwang, N.; Sehgal, M.; Cheng, J.; Ma, J.; Zhang, X.; Tan, Y.; Zhou, Y.; Duan, Z.; DeFilippis, V.R.; Viswanathan, U.; Kulp, J.; Du, Y.; Guo, J.T.; Chang, J. Discovery and mechanistic study of a novel human-stimulator-of-interferon-genes agonist. ACS Infect. Dis., 2019, 5(7), 1139-1149.
[http://dx.doi.org/10.1021/acsinfecdis.9b00010] [PMID: 31060350]
[92]
Banerjee, M.; Middya, S.; Basu, S.; Ghosh, R.; Pryde, D.; Yadav, D.; Shrivastava, R.; Surya, A. Preparation of fused (hetero)arylthiazine carboxamides as STING modulators. Patent no. WO2018234805, 2018.
[93]
Smith, J.L.; Stein, D.A.; Shum, D.; Fischer, M.A.; Radu, C.; Bhinder, B.; Djaballah, H.; Nelson, J.A.; Früh, K.; Hirsch, A.J. Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling. J. Virol., 2014, 88(10), 5533-5542.
[http://dx.doi.org/10.1128/JVI.00365-14] [PMID: 24599995]
[94]
Rowley, M.; Broughton, H.B.; Collins, I.; Baker, R.; Emms, F.; Marwood, R.; Patel, S.; Patel, S.; Ragan, C.I.; Freedman, S.B.; Leeson, P.D. 5-(4-Chlorophenyl)-4-methyl-3-(1-(2-phenylethyl)piperidin-4-yl)isoxazole: A potent, selective antagonist at human cloned dopamine D4 receptors. J. Med. Chem., 1996, 39(10), 1943-1945.
[http://dx.doi.org/10.1021/jm960072u] [PMID: 8642551]
[95]
Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.Y.; Qin, H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[96]
Pitts, J.; Hsia, C.Y.; Lian, W.; Wang, J.; Pfeil, M.P.; Kwiatkowski, N.; Li, Z.; Jang, J.; Gray, N.S.; Yang, P.L. Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Res., 2019, 164, 147-153.
[http://dx.doi.org/10.1016/j.antiviral.2019.02.008] [PMID: 30771406]
[97]
Feng, Y.; Yu, Z-X. Formal synthesis of (±)-galanthamine and (±)-lycoramine using Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-ene-vinylcyclopropane and CO. J. Org. Chem., 2015, 80(3), 1952-1956.
[http://dx.doi.org/10.1021/jo502604p] [PMID: 25558884]
[98]
Brai, A.; Boccuto, A.; Monti, M.; Marchi, S.; Vicenti, I.; Saladini, F.; Trivisani, C.I.; Pollutri, A.; Trombetta, C.M.; Montomoli, E.; Riva, V.; Garbelli, A.; Nola, E.M.; Zazzi, M.; Maga, G.; Dreassi, E.; Botta, M. Exploring the implication of DDX3X in DENV infection: Discovery of the first-in-class DDX3X fluorescent inhibitor. ACS Med. Chem. Lett., 2020, 11(5), 956-962.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00681] [PMID: 32435411]
[99]
Vincetti, P.; Kaptein, S.J.F.; Costantino, G.; Neyts, J.; Radi, M. Scaffold morphing approach to expand the toolbox of broad-spectrum antivirals blocking dengue/zika replication. ACS Med. Chem. Lett., 2019, 10(4), 558-563.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00583] [PMID: 30996796]
[100]
Amat, M.; Checa, B.; Llor, N.; Molins, E.; Bosch, J. Enantioselective total synthesis of the indole alkaloid 16-episilicine. Chem. Commun. (Camb.), 2009, (20), 2935-2937.
[http://dx.doi.org/10.1039/b904521j] [PMID: 19436915]
[101]
Contessa, J.N.; Golden, J.E.; Flaherty, D.P. Preparation of benzenesulfonylamide derivatives as inhibitors of N-linked glycosylation. Patent no. WO 2017/019540 A2, 2016.
[102]
Kaptein, S.J.F.; Goethals, O.; Kiemel, D.; Marchand, A.; Kesteleyn, B.; Bonfanti, J.; Bardiot, D.; Stoops, B.; Jonckers, T.H.M.; Dallmeier, K.; Geluykens, P.; Thys, K.; Crabbe, M.; Chatel-Chaix, L.; Münster, M.; Querat, G.; Touret, F.; de Lamballerie, X.; Raboisson, P.; Simmen, K.; Chaltin, P.; Bartenschlager, R.; Van Loock, M.; Neyts, J. A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature, 2021, 598, 504-509.
[http://dx.doi.org/10.1038/s41586-021-03990-6]
[103]
Moquin, S.A.; Simon, O.; Karuna, R.; Lakshminarayana, S.B.; Yokokawa, F.; Wang, F.; Saravanan, C.; Zhang, J.; Day, C.W.; Chan, K.; Wang, Q.Y.; Lu, S.; Dong, H.; Wan, K.F.; Lim, S.P.; Liu, W.; Seh, C.C.; Chen, Y.L.; Xu, H.; Barkan, D.T.; Kounde, C.S.; Sim, W.L.S.; Wang, G.; Yeo, H.Q.; Zou, B.; Chan, W.L.; Ding, M.; Song, J.G.; Li, M.; Osborne, C.; Blasco, F.; Sarko, C.; Beer, D.; Bonamy, G.M.C.; Sasseville, V.G.; Shi, P.Y.; Diagana, T.T.; Yeung, B.K.S.; Gu, F. NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Sci. Transl. Med., 2021, 13(579), 1-14.
[http://dx.doi.org/10.1126/scitranslmed.abb2181] [PMID: 33536278]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy