Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

A Mini-Review on the Synthesis of Substituted Isatins: From Early Approaches to Recent Advances with a Specific Focus on Sulfamoyl and Amino Derivatives

Author(s): Asu Büşra Temizer*, Taha Koulani, Özge Soylu Eter and Nilgun Karali

Volume 21, Issue 1, 2024

Published on: 03 October, 2022

Page: [58 - 72] Pages: 15

DOI: 10.2174/1570193X19666220602091649

Price: $65

conference banner
Abstract

As a member of heterocyclic compounds, indole possesses a diverse set of biological activities. Studies on the structure-activity relationship of 2-indolinones have shown that they are important bioactive compounds in the field of pharmaceutical chemistry. Isatin and structures bearing isatin scaffold are derivatives of indole, which have shown to be of biological and pharmacological significance. This review focuses on different ways of obtaining compounds containing isatin structure, considering both earlier and recent methods of synthesis. The syntheses given herein were grouped into three categories, syntheses using anilines as their starting substance, synthetic methods based on the oxidation of indoles, and finally, due to the extensive research going on 5-substituted isatins and their possible pharmacological efficacy, pathways for synthesizing 5-amino and 5-sulfamoylisatins were gathered to underline the importance of 2-indolinone and isatin derivatives as prospective therapeutic compounds in current and future drug discovery studies.

Keywords: 2-indolinones, 5-aminoisatins, 5-sulfamoylisatins, heterocycles, indoles, isatins, synthesis.

Graphical Abstract
[1]
Yoshikawa, M.; Murakami, T.; Kishi, A.; Sakurama, T.; Matsuda, H.; Nomura, M.; Matsuda, H.; Kubo, M. Novel indole S,O-bisdesmoside, calanthoside, the precursor glycoside of tryptanthrin, indirubin, and isatin, with increasing skin blood flow promoting effects, from two Calanthe species (Orchidaceae). Chem. Pharm. Bull. (Tokyo), 1998, 46(5), 886-888.
[http://dx.doi.org/10.1248/cpb.46.886] [PMID: 9621425]
[2]
Bergman, J.; Lindström, J-O.; Tilstam, U. The structure and properties of some indolic constituents in Couroupita guianensis aubl. Tetrahedron, 1985, 41(14), 2879-2881.
[http://dx.doi.org/10.1016/S0040-4020(01)96609-8]
[3]
Wei, L.; Wang, Q.; Liu, X. Application of thin-layer chromatography in quality control of Chinese medicinal preparations. II. Qualitative analysis of some Chinese medicinal preparations of Chansu. Yaowu Fenxi Zazhi, 1982, 2(5), 288-291.
[4]
Da Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc., 2001, 12(3), 273-324.
[http://dx.doi.org/10.1590/S0103-50532001000300002]
[5]
Kapadia, G.J.; Shukla, Y.N.; Melosatin, D.; Melosatin, D. A new isatin alkaloid from Melochia tomentosa roots. Planta Med., 1993, 59(6), 568-569.
[http://dx.doi.org/10.1055/s-2006-959766] [PMID: 17230369]
[6]
Gräfe, U.; Radics, L. Isolation and structure elucidation of 6-(3′-methylbuten-2′-yl)isatin, an unusual metabolite from Streptomyces albus. J. Antibiot. (Tokyo), 1986, 39(1), 162-163.
[http://dx.doi.org/10.7164/antibiotics.39.162] [PMID: 3949628]
[7]
Breinholt, J.; Demuth, H.; Heide, M.; Jensen, G.W.; Moeller, I.L.; Nielsen, R.I.; Olsen, C.E.; Rosendahl, C.N. Prenisatin (5-(3-Methyl-2-butenyl)-indole-2,3-dione): An antifungal isatin derivative from Chaetomium globosum. Acta Chem. Scand., 1996, 50(5), 443-445.
[http://dx.doi.org/10.3891/acta.chem.scand.50-0443]
[8]
Erdmann, O.L. Untersuchungen über den Indigo. J. Prakt. Chem., 1840, 19(1), 321-362.
[http://dx.doi.org/10.1002/prac.18400190161]
[9]
Laurent, A. Recherches sur l’indigo. Ann. Chim. Phys., 1840, 3(3), 393-434.
[10]
Jackson, C.M. Synthetical experiments and alkaloid analogues: Liebig, Hofmann, and the origins of organic synthesis. Hist. Stud. Nat. Sci., 2012, 44(4), 319-363.
[http://dx.doi.org/10.1525/hsns.2014.44.4.319]
[11]
Paul, B.K.; Ray, D.; Guchhait, N. Unraveling the binding interaction and kinetics of a prospective anti-HIV drug with a model transport protein: Results and challenges. Phys. Chem. Chem. Phys., 2013, 15(4), 1275-1287.
[http://dx.doi.org/10.1039/C2CP42539D] [PMID: 23232916]
[12]
Silva, B.V. Isatin, a Versatile Molecule: Studies in Brazil. J. Braz. Chem. Soc., 2013, 24(5), 707-720.
[http://dx.doi.org/10.5935/0103-5053.20130089]
[13]
Karalı, N.; Akdemir, A.; Göktaş, F.; Eraslan Elma, P.; Angeli, A.; Kızılırmak, M.; Supuran, C.T. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg. Med. Chem., 2017, 25(14), 3714-3718.
[http://dx.doi.org/10.1016/j.bmc.2017.05.029] [PMID: 28545816]
[14]
Sevinçli, Z.Ş.; Duran, G.N.; Özbil, M.; Karalı, N. Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazones. Bioorg. Chem., 2020, 104, 104202.
[http://dx.doi.org/10.1016/j.bioorg.2020.104202] [PMID: 32892069]
[15]
Chinnasamy, R.P.; Sundararajan, R.; Govindaraj, S. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res., 2010, 1(3), 342-347.
[http://dx.doi.org/10.4103/0110-5558.72428] [PMID: 22247869]
[16]
Sridhar, S.K.; Pandeya, S.N.; Stables, J.P.; Ramesh, A. Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur. J. Pharm. Sci., 2002, 16(3), 129-132.
[http://dx.doi.org/10.1016/S0928-0987(02)00077-5] [PMID: 12128166]
[17]
Ermut, G.; Karalı, N.; Özsoy, N.; Can, A. New spiroindolinones bearing 5-chlorobenzothiazole moiety. J. Enzyme Inhib. Med. Chem., 2014, 29(4), 457-468.
[http://dx.doi.org/10.3109/14756366.2013.800058] [PMID: 23738950]
[18]
Vine, K.L.; Locke, J.M.; Ranson, M.; Benkendorff, K.; Pyne, S.G.; Bremner, J.B. In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorg. Med. Chem., 2007, 15(2), 931-938.
[http://dx.doi.org/10.1016/j.bmc.2006.10.035] [PMID: 17088067]
[19]
Chen, L-R.; Wang, Y-C.; Lin, Y.W.; Chou, S-Y.; Chen, S-F.; Liu, L.T.; Wu, Y-T.; Kuo, C-J.; Chen, T.S-S.; Juang, S-H. Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(12), 3058-3062.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.027] [PMID: 15896959]
[20]
Özdemir, A.; Altintop, M.D.; Turan-Zitouni, G.; Çiftçi, G.A.; Ertorun, İ.; Alataş, Ö.; Kaplancikli, Z.A. Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents. Eur. J. Med. Chem., 2015, 89, 304-309.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.056] [PMID: 25462246]
[21]
Akdemir, A.; Güzel-Akdemir, Ö.; Karalı, N.; Supuran, C.T. Isatin analogs as novel inhibitors of Candida spp. β-carbonic anhydrase enzymes. Bioorg. Med. Chem., 2016, 24(8), 1648-1652.
[http://dx.doi.org/10.1016/j.bmc.2016.02.036] [PMID: 26951893]
[22]
Karali, N. Synthesis and primary cytotoxicity evaluation of new 5-nitroindole-2,3-dione derivatives. Eur. J. Med. Chem., 2002, 37(11), 909-918.
[http://dx.doi.org/10.1016/S0223-5234(02)01416-2] [PMID: 12446050]
[23]
Al-Wabli, R.I.; Almomen, A.A.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Attia, M.I. New isatin-indole conjugates: Synthesis, characterization, and a plausible mechanism of their in vitro antiproliferative activity. Drug Des. Devel. Ther., 2020, 14, 483-495.
[http://dx.doi.org/10.2147/DDDT.S227862] [PMID: 32099332]
[24]
Vine, K.L.; Matesic, L.; Locke, J.M.; Skropeta, D. Recent highlights in the development of isatin-based anticancer agents. Adv. Anticancer Agents Med. Chem., 2013, 2, 254-312.
[http://dx.doi.org/10.2174/9781608054961113020008]
[25]
Ferraz de Paiva, R.E.; Vieira, E.G.; Rodrigues da Silva, D.; Wegermann, C.A.; Costa Ferreira, A.M. Anticancer compounds based on isatin-derivatives: Strategies to ameliorate selectivity and efficiency. Front. Mol. Biosci., 2021, 7, 627272.
[http://dx.doi.org/10.3389/fmolb.2020.627272] [PMID: 33614708]
[26]
Gupta, A.K.; Tulsyan, S.; Bharadwaj, M.; Mehrotra, R. Systematic review on cytotoxic and anticancer potential of N-substituted isatins as novel class of compounds useful in multidrug-resistant cancer therapy: In silico and in vitro analysis. Top. Curr. Chem. (Cham), 2019, 377(3), 15.
[http://dx.doi.org/10.1007/s41061-019-0240-9] [PMID: 31073777]
[27]
Gao, F.; Ye, L.; Kong, F.; Huang, G.; Xiao, J. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids. Bioorg. Chem., 2019, 91, 103162.
[http://dx.doi.org/10.1016/j.bioorg.2019.103162] [PMID: 31382058]
[28]
Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct., 2020, 1222, 128900.
[http://dx.doi.org/10.1016/j.molstruc.2020.128900]
[29]
Karali, N.; Güzel, O.; Özsoy, N.; Özbey, S.; Salman, A. Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents. Eur. J. Med. Chem., 2010, 45(3), 1068-1077.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.001] [PMID: 20045221]
[30]
Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239]
[31]
Yakan, H.; Çavuş, M.S.; Zengin Kurt, B.; Muğlu, H.; Sönmez, F.; Güzel, E. A new series of asymmetric bis-isatin derivatives containing urea/thiourea moiety: Preparation, spectroscopic elucidation, antioxidant properties and theoretical calculations. J. Mol. Struct., 2021, 1239, 130495.
[http://dx.doi.org/10.1016/j.molstruc.2021.130495]
[32]
Pakravan, P.; Kashanian, S.; Khodaei, M.M.; Harding, F.J. Biochemical and pharmacological characterization of isatin and its derivatives: From structure to activity. Pharmacol. Rep., 2013, 65(2), 313-335.
[http://dx.doi.org/10.1016/S1734-1140(13)71007-7] [PMID: 23744416]
[33]
Pervez, H.; Iqbal, M.S.; Tahir, M.Y.; Nasim, F.U.; Choudhary, M.I.; Khan, K.M. In vitro cytotoxic, antibacterial, antifungal and urease inhibitory activities of some N4- substituted isatin-3-thiosemicarbazones. J. Enzyme Inhib. Med. Chem., 2008, 23(6), 848-854.
[http://dx.doi.org/10.1080/14756360701746179] [PMID: 19005943]
[34]
Karali, N.; Gürsoy, A.; Kandemirli, F.; Shvets, N.; Kaynak, F.B.; Özbey, S.; Kovalishyn, V.; Dimoglo, A. Synthesis and structure-antituberculosis activity relationship of 1H-indole-2,3-dione derivatives. Bioorg. Med. Chem., 2007, 15(17), 5888-5904.
[http://dx.doi.org/10.1016/j.bmc.2007.05.063] [PMID: 17561405]
[35]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[36]
Saravanan, G.; Alagarsamy, V.; Dineshkumar, P. Anticonvulsant activity of novel 1-(morpholinomethyl)-3-substituted isatin derivatives. Bull. Fac. Pharm. Cairo Univ., 2014, 52(1), 115-124.
[http://dx.doi.org/10.1016/j.bfopcu.2014.02.001]
[37]
Mathur, G.; Nain, S. Recent advancement in synthesis of isatin as anticonvulsant agents: A review. Med. Chem., 2014, 4(4), 417-427.
[38]
Ozgun, D.O.; Yamali, C.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Yanik, T.; Supuran, C.T. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1498-1501.
[http://dx.doi.org/10.3109/14756366.2016.1149479] [PMID: 26928426]
[39]
Pandeya, S.N.; Smitha, S.; Jyoti, M.; Sridhar, S.K. Biological activities of isatin and its derivatives. Acta Pharm., 2005, 55(1), 27-46.
[PMID: 15907222]
[40]
Sadler, P.W. Antiviral chemotherapy with isatin-β-thiosemicarbazone and its derivatives. Ann. N. Y. Acad. Sci., 1965, 130(1), 71-79.
[http://dx.doi.org/10.1111/j.1749-6632.1965.tb12541.x] [PMID: 5216633]
[41]
Borysiewicz, J.; Witaliński, W. Effect of N,N′-bis(methylisatin-β-thiosemicarbazone)-2-methylpiperazine on vaccinia virus replication in vitro and in vivo. Arch. Virol., 1979, 62(1), 83-86.
[http://dx.doi.org/10.1007/BF01314907] [PMID: 539911]
[42]
Faivre, S.; Delbaldo, C.; Vera, K.; Robert, C.; Lozahic, S.; Lassau, N.; Bello, C.; Deprimo, S.; Brega, N.; Massimini, G.; Armand, J-P.; Scigalla, P.; Raymond, E. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol., 2006, 24(1), 25-35.
[http://dx.doi.org/10.1200/JCO.2005.02.2194] [PMID: 16314617]
[43]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[http://dx.doi.org/10.1172/JCI69738] [PMID: 24382387]
[44]
Lee, D.; Long, S.A.; Adams, J.L.; Chan, G.; Vaidya, K.S.; Francis, T.A.; Kikly, K.; Winkler, J.D.; Sung, C-M.; Debouck, C.; Richardson, S.; Levy, M.A.; DeWolf, W.E., Jr; Keller, P.M.; Tomaszek, T.; Head, M.S.; Ryan, M.D.; Haltiwanger, R.C.; Liang, P-H.; Janson, C.A.; McDevitt, P.J.; Johanson, K.; Concha, N.O.; Chan, W.; Abdel-Meguid, S.S.; Badger, A.M.; Lark, M.W.; Nadeau, D.P.; Suva, L.J.; Gowen, M.; Nuttall, M.E. Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J. Biol. Chem., 2000, 275(21), 16007-16014.
[http://dx.doi.org/10.1074/jbc.275.21.16007] [PMID: 10821855]
[45]
Eldehna, W.M.; Fares, M.; Ceruso, M.; Ghabbour, H.A.; Abou-Seri, S.M.; Abdel-Aziz, H.A.; Abou El Ella, D.A.; Supuran, C.T. Amido/ureidosubstituted benzenesulfonamides-isatin conjugates as low nanomolar/subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform XII. Eur. J. Med. Chem., 2016, 110, 259-266.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.030] [PMID: 26840366]
[46]
London, C.A.; Malpas, P.B.; Wood-Follis, S.L.; Boucher, J.F.; Rusk, A.W.; Rosenberg, M.P.; Henry, C.J.; Mitchener, K.L.; Klein, M.K.; Hintermeister, J.G.; Bergman, P.J.; Couto, G.C.; Mauldin, G.N.; Michels, G.M. Multi-center, placebo-controlled, double-blind, randomized study of oral toceranib phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of dogs with recurrent (either local or distant) mast cell tumor following surgical excision. Clin. Cancer Res., 2009, 15(11), 3856-3865.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1860] [PMID: 19470739]
[47]
Varun; Sonam; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[48]
Marek, L.; Váňa, J.; Svoboda, J.; Hanusek, J. Synthesis of the kinase inhibitors nintedanib, hesperadin, and their analogues using the eschenmoser coupling reaction. J. Org. Chem., 2021, 86(15), 10621-10629.
[http://dx.doi.org/10.1021/acs.joc.1c01269] [PMID: 34269051]
[49]
Gunasekara, N.S.; Spencer, C.M.; Keating, G.M. Ziprasidone: A review of its use in schizophrenia and schizoaffective disorder. Drugs, 2002, 62(8), 1217-1251.
[http://dx.doi.org/10.2165/00003495-200262080-00015] [PMID: 12010089]
[50]
Matheson, A.J.; Spencer, C.M. Ropinirole: A review of its use in the management of Parkinson’s disease. Drugs, 2000, 60(1), 115-137.
[http://dx.doi.org/10.2165/00003495-200060010-00007] [PMID: 10929932]
[51]
Sandmeyer, T. Über Isonitrosoacetanilide und deren Kondensation zu Isatinen. Helv. Chim. Acta, 1919, 2(1), 234-242.
[http://dx.doi.org/10.1002/hlca.19190020125]
[52]
Smolders, R.R.; Waefelaer, A.; Francart, D. 7-Fluoroisatin. Ing. Chim. (Brussels), 1982, 64(303), 5-6.
[53]
Loloiu, G.; Loloiu, T.; Maior, O. Synthesis of 1H-pyrrolo[2,3-b]phenoxathiin-2,3-dione. Chem. Heterocycl. Compd., 1998, 34(3), 363-366.
[http://dx.doi.org/10.1007/BF02290733]
[54]
Stollé, R.; Bergdoll, R.; Luther, M.; Auerhahn, A.; Wacker, W. Über N-substituierte Oxindole und Isatine. J. Prakt. Chem., 1922, 105(1), 137-148.
[http://dx.doi.org/10.1002/prac.19221050111]
[55]
Loloiu, G.; Maior, O. Isatin Chemistry. Synthesis of N-Methyl-2,3-dioxo-2,3-dihydropyrrolo[2,3-b]phenoxathiin. Rev. Roum. Chim., 1997, 42(1), 67-69.
[56]
Fukuda, Y.; Itoh, Y.; Nakatani, K.; Terashima, S. Synthetic studies on duocarmycin. 1. Total synthesis of dl-duocarmycin A and its 2-epimer. Tetrahedron, 1994, 50(9), 2793-2808.
[http://dx.doi.org/10.1016/S0040-4020(01)86993-3]
[57]
Martinet, J. Synthéses dans la série de l’α-naphtindol. Compt. Rend, 1918, 166, 851-853.
[58]
Bonnefoy, J.; Martinet, J. 6-Methylisatin. Compt. Rend, 1921, 172, 220-221.
[59]
Rice, K.C.; Boone, B.J.; Rubin, A.B.; Rauls, T.J. Synthesis, antimalarial activity, and phototoxicity of some benzo(h)quinoline-4-methanols. J. Med. Chem., 1976, 19(7), 887-892.
[http://dx.doi.org/10.1021/jm00229a006] [PMID: 781245]
[60]
Taylor, A. The synthesis of the dimethoxyisatins. J. Chem. Res. Synop., 1980, 10, 347.
[61]
Gassman, P.G.; Cue, B.W., Jr; Luh, T-Y. A general method for the synthesis of isatins. J. Org. Chem., 1977, 42(8), 1344-1348.
[http://dx.doi.org/10.1021/jo00428a016]
[62]
Wright, S.W.; McClure, L.D.; Hageman, D.L. A convenient modification of the Gassman oxindole synthesis. Tetrahedron Lett., 1996, 37(27), 4631-4634.
[http://dx.doi.org/10.1016/0040-4039(96)00920-3]
[63]
Hewawasam, P.; Meanwell, N.A. A general method for the synthesis of isatins: Preparation of regiospecifically functionalized isatins from anilines. Tetrahedron Lett., 1994, 35(40), 7303-7306.
[http://dx.doi.org/10.1016/0040-4039(94)85299-5]
[64]
Ozawa, F.; Yanagihara, H.; Yamamoto, A. Palladium-catalyzed double carbonylation of aryl halides affording α-keto amides. Applications to synthesis of isatin and quinoline derivatives. J. Org. Chem., 1986, 51(3), 415-417.
[http://dx.doi.org/10.1021/jo00353a033]
[65]
Walsh, D.A.; Moran, H.W.; Shamblee, D.A.; Uwaydah, I.M.; Welstead, W.J., Jr; Sancilio, L.F.; Dannenburg, W.N. Antiinflammatory agents. 3. Synthesis and pharmacological evaluation of 2-amino-3-benzoylphenylacetic acid and analogues. J. Med. Chem., 1984, 27(11), 1379-1388.
[http://dx.doi.org/10.1021/jm00377a001] [PMID: 6436487]
[66]
Kraynack, E.A.; Dalgard, J.E.; Gaeta, F.C.A. An improved procedure for the regiospecific synthesis of electron deficient 4- and 6-substituted isatins. Tetrahedron Lett., 1998, 39(42), 7679-7682.
[http://dx.doi.org/10.1016/S0040-4039(98)01719-5]
[67]
Smith, K.; El-Hiti, G.A.; Hawes, A.C. A Novel Procedure for the Formation of Isatins via Carbonylation of Lithiated N′-Aryl-N,N-dimethylureas. Synlett, 1999, 1999(Spec.), 945-947.
[http://dx.doi.org/10.1055/s-1999-3085]
[68]
Mironov, M.A.; Kleban, M.I.; Mokrushin, V.S. Novel method for synthesis of isatins. Chem. Heterocycl. Compd., 2001, 37(3), 368-369.
[http://dx.doi.org/10.1023/A:1017575504084]
[69]
Böhme, H.; Sutoyo, P. Zur deprotonierung von chloromethyleniminiumchloriden. Tetrahedron Lett., 1981, 22(18), 1671-1674.
[http://dx.doi.org/10.1016/S0040-4039(01)90407-1]
[70]
Huber, S.M.; Hennig, A.; Pühlhofer, F.G.; Weiss, R. From DMF to isatine: A novel and general one-pot synthesis of isatine and its N-unsubstituted derivatives via nucleophilic substitution reactions on 1,2-bis(dimethylamino)-1,2-dichloro-ethene. J. Heterocycl. Chem., 2009, 46(3), 421-427.
[http://dx.doi.org/10.1002/jhet.8]
[71]
Tang, B-X.; Song, R-J.; Wu, C-Y.; Liu, Y.; Zhou, M-B.; Wei, W-T.; Deng, G-B.; Yin, D-L.; Li, J-H. Copper-catalyzed intramolecular C-H oxidation/acylation of formyl-N-arylformamides leading to indoline-2,3-diones. J. Am. Chem. Soc., 2010, 132(26), 8900-8902.
[http://dx.doi.org/10.1021/ja103426d] [PMID: 20540581]
[72]
Ilangovan, A.; Satish, G. Copper-mediated selective C-H activation and cross-dehydrogenative C-N coupling of 2′-aminoacetophenones. Org. Lett., 2013, 15(22), 5726-5729.
[http://dx.doi.org/10.1021/ol402750r] [PMID: 24191737]
[73]
Laursen, S.R.; Jensen, M.T.; Lindhardt, A.T.; Jacobsen, M.F.; Skrydstrup, T. A Palladium-Catalyzed Double Carbonylation Approach to Isatins from 2-Iodoanilines. Eur. J. Org. Chem., 2016, 2016(10), 1881-1885.
[http://dx.doi.org/10.1002/ejoc.201600143]
[74]
Eldehna, W.M.; Abo-Ashour, M.F.; Nocentini, A.; El-Haggar, R.S.; Bua, S.; Bonardi, A.; Al-Rashood, S.T.; Hassan, G.S.; Gratteri, P.; Abdel-Aziz, H.A.; Supuran, C.T. Enhancement of the tail hydrophobic interactions within the carbonic anhydrase IX active site via structural extension: Design and synthesis of novel N-substituted isatins-SLC-0111 hybrids as carbonic anhydrase inhibitors and antitumor agents. Eur. J. Med. Chem., 2019, 162, 147-160.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.068] [PMID: 30445264]
[75]
Raghavender Reddy, M.; Nageswara Rao, N.; Ramakrishna, K.; Meshram, H.M.I. 2–DMSO promoted intramolecular oxidative cyclization of 2-(aryl or alkyl amino)-acetophenones for the synthesis of isatins. Tetrahedron Lett., 2014, 55(34), 4758-4762.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.062]
[76]
Gui, Q.; Dai, F.; Liu, J.; Chen, P.; Yang, Z.; Chen, X.; Tan, Z. Synthesis of N-alkyl isatins via oxidative cyclization of N-alkyl 2-bromo(chloro)acetanilides. Org. Biomol. Chem., 2014, 12(21), 3349-3353.
[http://dx.doi.org/10.1039/c4ob00118d] [PMID: 24740324]
[77]
Lollar, C.T.; Krenek, K.M.; Bruemmer, K.J.; Lippert, A.R. Ylide mediated carbonyl homologations for the preparation of isatin derivatives. Org. Biomol. Chem., 2014, 12(3), 406-409.
[http://dx.doi.org/10.1039/C3OB42024H] [PMID: 24281127]
[78]
Klein, L.L.; Tufano, M.D. Synthesis of substituted isatins. Tetrahedron Lett., 2013, 54(8), 1008-1011.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.035] [PMID: 23467398]
[79]
Huang, P-C.; Gandeepan, P.; Cheng, C-H. Cu(I)-catalyzed intramolecular oxidative C-H amination of 2-aminoacetophenones: A convenient route toward isatins. Chem. Commun. (Camb.), 2013, 49(76), 8540-8542.
[http://dx.doi.org/10.1039/c3cc44435j] [PMID: 23945918]
[80]
Sun, J.; Liu, B.; Xu, B. Copper-catalyzed tandem oxidative cyclization of arylacetamides: Efficient access to N-functionalized isatins. RSC Advances, 2013, 3(17), 5824-5827.
[http://dx.doi.org/10.1039/c3ra40657a]
[81]
Ilangovan, A.; Satish, G. Direct amidation of 2′-aminoacetophenones using I2-TBHP: A unimolecular domino approach toward isatin and iodoisatin. J. Org. Chem., 2014, 79(11), 4984-4991.
[http://dx.doi.org/10.1021/jo500550d] [PMID: 24787642]
[82]
Satish, G.; Polu, A.; Ramar, T.; Ilangovan, A. Iodine-mediated C-H functionalization of sp, sp(2), and sp(3) carbon: A unified multisubstrate domino approach for isatin synthesis. J. Org. Chem., 2015, 80(10), 5167-5175.
[http://dx.doi.org/10.1021/acs.joc.5b00581] [PMID: 25906247]
[83]
Wu, J-C.; Song, R-J.; Wang, Z-Q.; Huang, X-C.; Xie, Y-X.; Li, J-H. Copper-catalyzed C-H oxidation/cross-coupling of α-amino carbonyl compounds. Angew. Chem. Int. Ed. Engl., 2012, 51(14), 3453-3457.
[http://dx.doi.org/10.1002/anie.201109027] [PMID: 22378689]
[84]
Luo, J.; Zhao, Y.; Xu, X.; Zheng, J.; Liang, H. Cu-catalyzed oxidation of indoles to isatins. Tetrahedron Lett., 2017, 58(49), 4591-4594.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.057]
[85]
Zi, Y.; Cai, Z-J.; Wang, S-Y.; Ji, S-J. Synthesis of isatins by I2/TBHP mediated oxidation of indoles. Org. Lett., 2014, 16(11), 3094-3097.
[http://dx.doi.org/10.1021/ol501203q] [PMID: 24850466]
[86]
Luo, J.; Gao, S.; Ma, Y.; Ge, G. Palladium-catalyzed oxidation of indoles to isatins by tert-butyl hydroperoxide. Synlett, 2018, 29(7), 969-973.
[http://dx.doi.org/10.1055/s-0036-1591904]
[87]
Ying, W-W.; Zhu, W-M.; Liang, H.; Wei, W-T. Synthesis of Indoline-2,3-diones by Radical Coupling of Indolin-2-ones with tert-Butyl Hydroperoxide. Synlett, 2018, 29(2), 215-218.
[http://dx.doi.org/10.1055/s-0036-1589106]
[88]
Wei, W-T.; Ying, W-W.; Zhu, W-M.; Wu, Y.; Huang, Y-L.; Cao, Y-Q.; Wang, Y-N.; Liang, H. Convenient and clean synthesis of isatins by metal-free oxidation of oxindoles. Synlett, 2017, 28(17), 2307-2310.
[http://dx.doi.org/10.1055/s-0036-1590965]
[89]
Wang, C-P.; Jiang, G-F. An efficient method based on indoles for the synthesis of isatins by taking advantage of I2O5 as oxidant. Tetrahedron Lett., 2017, 58(18), 1747-1750.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.060]
[90]
Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. Visible light photocatalytic aerobic oxygenation of indoles and pH as a chemoselective switch. ACS Catal., 2016, 6(10), 6853-6860.
[http://dx.doi.org/10.1021/acscatal.6b01969]
[91]
Yadav, J.S.; Subba Reddy, B.V.; Suresh Reddy, Ch.; Krishna, A.D. Indium(III) chloride/2-iodoxybenzoic acid: A novel reagent system for the conversion of indoles into isatins. Synthesis, 2007, 2007(5), 693-696.
[http://dx.doi.org/10.1055/s-2007-965930]
[92]
Chandra, A.; Yadav, N.R.; Moorthy, J.N. Facile synthesis of isatins by direct oxidation of indoles and 3-iodoindoles using NIS/IBX. Tetrahedron, 2019, 75(14), 2169-2174.
[http://dx.doi.org/10.1016/j.tet.2019.02.033]
[93]
Magiatis, P.; Polychronopoulos, P.; Skaltsounis, A-L.; Lozach, O.; Meijer, L.; Miller, D.B.; O’Callaghan, J.P. Indirubins deplete striatal monoamines in the Intact and MPTP-treated mouse brain and block kainate-induced striatal astrogliosis. Neurotoxicol. Teratol., 2010, 32(2), 212-219.
[http://dx.doi.org/10.1016/j.ntt.2009.12.005] [PMID: 20034560]
[94]
Gencer, N.; Sonmez, F.; Demir, D.; Arslan, O.; Kucukislamoglu, M. Synthesis, structure-activity relationships and biological activity of new isatin derivatives as tyrosinase inhibitors. Curr. Top. Med. Chem., 2014, 14(12), 1450-1462.
[http://dx.doi.org/10.2174/1568026614666140530104344] [PMID: 24875768]
[95]
Sonmez, F.; Gunesli, Z.; Kurt, B.Z.; Gazioglu, I.; Avci, D.; Kucukislamoglu, M. Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Mol. Divers., 2019, 23(4), 829-844.
[http://dx.doi.org/10.1007/s11030-018-09910-7] [PMID: 30612259]
[96]
Beauchard, A.; Ferandin, Y.; Frère, S.; Lozach, O.; Blairvacq, M.; Meijer, L.; Thiéry, V.; Besson, T. Synthesis of novel 5-substituted indirubins as protein kinases inhibitors. Bioorg. Med. Chem., 2006, 14(18), 6434-6443.
[http://dx.doi.org/10.1016/j.bmc.2006.05.036] [PMID: 16759872]
[97]
Jagadeesh, R.V.; Surkus, A-E.; Junge, H.; Pohl, M-M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science, 2013, 342(6162), 1073-1076.
[http://dx.doi.org/10.1126/science.1242005] [PMID: 24288327]
[98]
Prakash, C.R.; Raja, S. Design, synthesis and antiepileptic properties of novel 1-(substituted benzylidene)-3-(1-(morpholino/piperidino methyl)-2,3-dioxoindolin-5-yl)urea derivatives. Eur. J. Med. Chem., 2011, 46(12), 6057-6065.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.020] [PMID: 22037252]
[99]
Prakash, C.R.; Raja, S.; Saravanan, G. Anticonvulsant activity of novel 1-(substituted benzylidene)-4-(1-(morpholino/piperidino methyl)-2,3-dioxoindolin-5-yl) semicarbazide derivatives in mice and rats acute seizure models. Chem. Biol. Drug Des., 2012, 80(4), 524-532.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01399.x] [PMID: 22540392]
[100]
Jeankumar, V.U.; Alokam, R.; Sridevi, J.P.; Suryadevara, P.; Matikonda, S.S.; Peddi, S.; Sahithi, S.; Alvala, M.; Yogeeswari, P.; Sriram, D. Discovery and structure optimization of a series of isatin derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors. Chem. Biol. Drug Des., 2014, 83(4), 498-506.
[http://dx.doi.org/10.1111/cbdd.12265] [PMID: 24636345]
[101]
Hartwig, J.F. Palladium-catalyzed amination of aryl halides: Mechanism and rational catalyst design. Synlett, 1997, 1997(4), 329-340.
[http://dx.doi.org/10.1055/s-1997-789]
[102]
Yin, J.; Buchwald, S.L. Pd-catalyzed intermolecular amidation of aryl halides: The discovery that xantphos can be trans-chelating in a palladium complex. J. Am. Chem. Soc., 2002, 124(21), 6043-6048.
[http://dx.doi.org/10.1021/ja012610k] [PMID: 12022838]
[103]
Huang, X.; Anderson, K.W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S.L. Expanding Pd-catalyzed C-N bond-forming processes: The first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions. J. Am. Chem. Soc., 2003, 125(22), 6653-6655.
[http://dx.doi.org/10.1021/ja035483w] [PMID: 12769573]
[104]
Patel, D.V.; Patel, N.R.; Kanhed, A.M.; Teli, D.M.; Patel, K.B.; Gandhi, P.M.; Patel, S.P.; Chaudhary, B.N.; Shah, D.B.; Prajapati, N.K.; Patel, K.V.; Yadav, M.R. Further studies on triazinoindoles as potential novel multitarget-directed anti-alzheimer’s agents. ACS Chem. Neurosci., 2020, 11(21), 3557-3574.
[http://dx.doi.org/10.1021/acschemneuro.0c00448] [PMID: 33073564]
[105]
Somasekhara, S.; Dighe, V.S.; Suthar, G.K.; Mukherjee, S.L. Chlorosulfonation of isatins. Curr. Sci., 1965, 34(17), 508.
[106]
Lee, D.; Long, S.A.; Murray, J.H.; Adams, J.L.; Nuttall, M.E.; Nadeau, D.P.; Kikly, K.; Winkler, J.D.; Sung, C-M.; Ryan, M.D.; Levy, M.A.; Keller, P.M.; DeWolf, W.E. Jr Potent and selective nonpeptide inhibitors of caspases 3 and 7. J. Med. Chem., 2001, 44(12), 2015-2026.
[http://dx.doi.org/10.1021/jm0100537] [PMID: 11384246]
[107]
Lee, D.; Long, S.A.; Elliott, J.D.; Gleason, J.G. Preparation of aminosulfonylisatins as inhibitors of caspases for prevention of apoptosis. WO 2001022966 Al, 2001.
[108]
Ivachtchenko, A.V.; Il’yin, A.P.; Kobak, V.V.; Zolotarev, D.A.; Boksha, L.V.; Trifilenkov, A.S.; Ugoleva, D.M. New scaffolds for combinatorial synthesis. 1. 5-sulfamoylisatins and their reactions with 1,2-diamines. J. Comb. Chem., 2002, 4(5), 419-428.
[http://dx.doi.org/10.1021/cc0100316] [PMID: 12217013]
[109]
Kravchenko, D.V.; Kysil, V.M.; Tkachenko, S.E.; Maliarchouk, S.; Okun, I.M.; Ivachtchenko, A.V. Pyrrolo[3,4-c]quinoline-1,3-diones as potent caspase-3 inhibitors. Synthesis and SAR of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-pyrrolo[3,4-c]quinoline-1,3-diones. Eur. J. Med. Chem., 2005, 40(12), 1377-1383.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.011] [PMID: 16169127]
[110]
Martinez, F.; Naarmann, H. New isatin derivatives: Synthesis and reactions. Synth. Met., 1990, 39(2), 195-203.
[http://dx.doi.org/10.1016/0379-6779(90)90184-M]
[111]
Dollings, P.J.; Dietrich, A.J.; Havran, L.M.; Chong, C-K.D.; Huryn, D.M.; Robichaud, A.J.; Harrison, B.L.; Childers, W.E.; Greenfield, A.A.; Bicksler, J.J. Preparation of pyrimidoindolones as caspase inhibitors for treatment of inflammation, neurodegeneration, and ischemic injury. US 20050250798 A1 20051110, 2005.
[112]
Lawrence, H.R.; Pireddu, R.; Chen, L.; Luo, Y.; Sung, S-S.; Szymanski, A.M.; Yip, M.L.R.; Guida, W.C.; Sebti, S.M.; Wu, J.; Lawrence, N.J. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds. J. Med. Chem., 2008, 51(16), 4948-4956.
[http://dx.doi.org/10.1021/jm8002526] [PMID: 18680359]
[113]
Chu, W.; Rothfuss, J.; Chu, Y.; Zhou, D.; Mach, R.H. Synthesis and in vitro evaluation of sulfonamide isatin Michael acceptors as small molecule inhibitors of caspase-6. J. Med. Chem., 2009, 52(8), 2188-2191.
[http://dx.doi.org/10.1021/jm900135r] [PMID: 19326941]
[114]
Liu, W.; Zhu, H-M.; Niu, G-J.; Shi, E-Z.; Chen, J.; Sun, B.; Chen, W-Q.; Zhou, H-G.; Yang, C. Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2014, 22(1), 292-302.
[http://dx.doi.org/10.1016/j.bmc.2013.11.028] [PMID: 24316352]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy