Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Promising Essential Oils/Plant Extracts in the Prevention and Treatment of Dandruff Pathogenesis

Author(s): KM Uma Kumari, Narayan Prasad Yadav and Suaib Luqman*

Volume 22, Issue 13, 2022

Published on: 28 June, 2022

Page: [1104 - 1133] Pages: 30

DOI: 10.2174/1568026622666220531120226

Price: $65

conference banner
Abstract

Background: Dandruff is a scalp disorder affecting the male populace predominantly. Topical agents and synthetic drugs used for dandruff treatment have specific side effects including burning at the application site, depression, dizziness, headache, itching or skin rash, nausea, stomach pain, vision change, vomiting, discoloration of hair, dryness or oiliness of the scalp and increased loss of hair. Thus, essential oils and extracts from plants could be valuable in the treatment and prevention of dandruff.

Aims & Objectives: This review aims to highlight current findings in dandruff occurrence, its etiology, promising plant essential oils/extracts, and novel treatment strategies. The main emphasis has been given on the anti-dandruff effect of essential oils and plant extracts to disrupt microbial growth. The proposed mechanism(s) of action, novel approaches used to perk up its biopharmaceutical properties, and topical application have been discussed.

Results: The literature survey was done, and bibliographic sources and research papers were retrieved from different search engines and databases, including SciFinder, PubMed, NCBI, Scopus, and Google Scholar. The selection of papers was accomplished based on exclusion and inclusion criteria. The scalp of diverse populations revealed an association of dandruff with microbial symbiosis, including Staphylococcus, Propionibacterium, Malassezia, and Candida as the pathogens responsible for the cause of dandruff. Topical antifungals are considered the first line of treatment for dandruff including azoles, with clotrimazole (1%), ketoconazole (2%), and miconazole (2%). Other commonly used therapies integrate benzoyl peroxide, coal tar, glycerin, zinc pyrithione, lithium succinate/gluconate, salicylic acid, selenium disulfide/sulfide, sodium sulfacetamide, etc. However, these medicaments and chemicals are known to cause specific side effects. Alternative therapies, including tea tree oil, thyme, Aloe vera, Mentha have been reported to demonstrate anti-dandruff activity by disrupting the microbial growth associated with dandruff formation.

Conclusion: Overall, this review explains the occurrence of dandruff, its pathogenesis, and the potential applicability of promising plant essential oils/extracts and their novel treatment strategies. Further studies based on pre-clinical and clinical research are essential before making any conclusion about its efficacy in humans.

Keywords: Dandruff, Malassezia furfur, Scalp, Keratin, Herbal drugs, Essential oil.

« Previous
Graphical Abstract
[1]
Piérard-Franchimont, C.; Xhauflaire-Uhoda, E.; Piérard, G.E. Revisiting dandruff. Int. J. Cosmet. Sci., 2006, 28(5), 311-318.
[http://dx.doi.org/10.1111/j.1467-2494.2006.00326.x] [PMID: 18489295]
[2]
Daulatkar, K. Dandruff-Ayurveda management for better hair care. J. Ayurved. Integr. Med. Sci., 2018, 3(02), 85-88.
[3]
Chandrani, D.; Lubaina, S.Z.; Soosamma, M. A review of antifungal effect of plant extract vs chemical substances against Malassezia spp. Int. J. Pharm. Biol. Sci., 2012, 3(3), 773-780.
[4]
Sharma, R.; Sharma, G.; Sharma, M. Comparative antifungal study of essential oil with allopathic drugs against Malassezia furfur. Int. J. Pharm. Biol. Arch., 2012, 3(1), 89-93.
[5]
Borda, L.J.; Wikramanayake, T.C. Seborrheic dermatitis and dandruff: A comprehensive review. J. Clin. Investig. Dermatol., 2015, 3(2), 1-22.
[PMID: 27148560]
[6]
Manuel, F.; Ranganathan, S. A new postulate on two stages of dandruff: A clinical perspective. Int. J. Trichology, 2011, 3(1), 3-6.
[http://dx.doi.org/10.4103/0974-7753.82117] [PMID: 21769228]
[7]
Tiwari, A.K.; Mishra, R.K.; Kumar, A.; Srivastava, S.; Dikshit, A.; Pandey, A.; Bajaj, K. A comparative novel method of antifungal susceptibil-ity for Malassezia furfur and modification of culture medium by adding lipid supplement. J. Phytol., 2011, 3(3), 44-52.
[8]
Schwartz, J.R.; DeAngelis, Y.M.; Dawson, T.L., Jr Dandruff and seborrheic dermatitis: A head scratcher. Practical Modern Hair Sci., 2012, 12, 389-413.
[9]
Harding, C.R.; Moore, A.E.; Rogers, J.S.; Meldrum, H.; Scott, A.E.; McGlone, F.P. Dandruff: A condition characterized by decreased levels of intercellular lipids in scalp stratum corneum and impaired barrier function. Arch. Dermatol. Res., 2002, 294(5), 221-230.
[http://dx.doi.org/10.1007/s00403-002-0323-1] [PMID: 12115025]
[10]
Turner, G.A.; Hoptroff, M.; Harding, C.R. Stratum corneum dysfunction in dandruff. Int. J. Cosmet. Sci., 2012, 34(4), 298-306.
[http://dx.doi.org/10.1111/j.1468-2494.2012.00723.x] [PMID: 22515370]
[11]
Rudramurthy, S.M.; Honnavar, P.; Dogra, S.; Yegneswaran, P.P.; Handa, S.; Chakrabarti, A. Association of Malassezia species with dan-druff. Indian J. Med. Res., 2014, 139(3), 431-437.
[PMID: 24820838]
[12]
Narshana, M.; Ravikumar, P. An overview of dandruff and novel formulations as a treatment strategy. Int. J. Pharm. Sci. Res., 2018, 9(2), 417-431.
[13]
Rieder, F.; Fiocchi, C. Mechanisms of tissue remodeling in inflammatory bowel disease. Dig. Dis., 2013, 31(2), 186-193.
[http://dx.doi.org/10.1159/000353364] [PMID: 24030223]
[14]
Patidar, K. Polyherbal anti-dandruff shampoo: Basic concept, benefits, and challenges. Asian J. Pharm., 2018, 12(3), 849-859.
[15]
Chee, H.Y.; Lee, M.H. In vitro activity of celery essential oil against Malassezia furfur. Mycobiology, 2009, 37(1), 67-68.
[http://dx.doi.org/10.4489/MYCO.2009.37.1.067] [PMID: 23983510]
[16]
Saxena, R.; Mittal, P.; Clavaud, C.; Dhakan, D.B.; Hegde, P.; Veeranagaiah, M.M.; Saha, S.; Souverain, L.; Roy, N.; Breton, L.; Misra, N.; Sharma, V.K. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health. Front. Cell. Infect. Microbiol., 2018, 8, 346.
[http://dx.doi.org/10.3389/fcimb.2018.00346] [PMID: 30338244]
[17]
Vijayakumar, R.; Muthukumar, C.; Kumar, T.; Saravanamuthu, R. Characterization of Malassezia furfur and its control by using plant extracts. Indian J. Dermatol., 2006, 51(2), 145-148.
[http://dx.doi.org/10.4103/0019-5154.26942]
[18]
Dessinioti, C.; Katsambas, A. Seborrheic dermatitis: Etiology, risk factors, and treatments: Facts and controversies. Clin. Dermatol., 2013, 31(4), 343-351.
[http://dx.doi.org/10.1016/j.clindermatol.2013.01.001] [PMID: 23806151]
[19]
Prohic, A.; Jovovic Sadikovic, T.; Krupalija-Fazlic, M.; Kuskunovic-Vlahovljak, S. Malassezia species in healthy skin and in dermatolog-ical conditions. Int. J. Dermatol., 2016, 55(5), 494-504.
[http://dx.doi.org/10.1111/ijd.13116] [PMID: 26710919]
[20]
Borda, L.J.; Perper, M.; Keri, J.E. Treatment of seborrheic dermatitis: A comprehensive review. J. Dermatolog. Treat., 2019, 30(2), 158-169.
[http://dx.doi.org/10.1080/09546634.2018.1473554] [PMID: 29737895]
[21]
DeAngelis, Y.M.; Gemmer, C.M.; Kaczvinsky, J.R.; Kenneally, D.C.; Schwartz, J.R.; Dawson, T.L., Jr Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J. Investig. Dermatol. Symp. Proc; , 2005, 10, pp. (3)295-297.
[22]
Ro, B.I.; Dawson, T.L. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J. Investig. Dermatol. Symp. Proc; , 2005, 10, pp. (3)194-197.
[http://dx.doi.org/10.1111/j.1087-0024.2005.10104.x]
[23]
Ranganathan, S.; Mukhopadhyay, T. Dandruff: The most commercially exploited skin disease. Indian J. Dermatol., 2010, 55(2), 130-134.
[http://dx.doi.org/10.4103/0019-5154.62734] [PMID: 20606879]
[24]
Adamski, Z.; Deja, M. The treatment of dandruff of the scalp. Aesthet. Dermatol., 2006, 2, 49-56.
[25]
Shuster, S. The aetiology of dandruff and the mode of action of therapeutic agents. Br. J. Dermatol., 1984, 111(2), 235-242.
[http://dx.doi.org/10.1111/j.1365-2133.1984.tb04050.x] [PMID: 6235835]
[26]
Saint-Léger, D. The history of dandruff and dandruff in history. A homage to Raymond Sabouraud. Ann. Dermatol. Venereol., 1990, 117(1), 23-27.
[PMID: 2181905]
[27]
Sei, Y. Seborrheic dermatitis--clinical diagnosis and therapeutic value of different drugs. Nippon Ishinkin Gakkai Zasshi, 2003, 44(2), 77-80.
[http://dx.doi.org/10.3314/jjmm.44.77] [PMID: 12748587]
[28]
Gordon, M.A. The lipophilic mycoflora of the skin. I. In vitro culture of Pityrosporum orbiculare n. sp. Mycologia, 1951, 43(5), 524-535.
[http://dx.doi.org/10.1080/00275514.1951.12024152]
[29]
Yarrow, D. Saccharomyces Meyen ex Reess. In: The yeasts: A taxonomic study; Kreger-van Rij, N.J.W., Ed.; Elsevier Science Publishers: Amsterdam, 1984, pp. 379-395.
[30]
Guého, E.; Midgley, G.; Guillot, J. The genus Malassezia with description of four new species. Antonie van Leeuwenhoek, 1996, 69(4), 337-355.
[http://dx.doi.org/10.1007/BF00399623] [PMID: 8836432]
[31]
Honnavar, P.; Prasad, G.S.; Ghosh, A.; Dogra, S.; Handa, S.; Rudramurthy, S.M. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrheic dermatitis patients and healthy individuals from India. J. Clin. Microbiol., 2016, 54(7), 1826-1834.
[http://dx.doi.org/10.1128/JCM.00683-16] [PMID: 27147721]
[32]
Guillot, J.; Bond, R. Malassezia yeasts in veterinary dermatology: An updated overview. Front. Cell. Infect. Microbiol., 2020, 10, 79.
[http://dx.doi.org/10.3389/fcimb.2020.00079] [PMID: 32181160]
[33]
Saunders, C.W.; Scheynius, A.; Heitman, J. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathog., 2012, 8(6), e1002701.
[http://dx.doi.org/10.1371/journal.ppat.1002701] [PMID: 22737067]
[34]
Park, M.; Cho, Y.J.; Lee, Y.W.; Jung, W.H. Understanding the mechanism of action of the anti-dandruff agent zinc pyrithione against Malassezia restricta. Sci. Rep., 2018, 8(1), 12086.
[http://dx.doi.org/10.1038/s41598-018-30588-2] [PMID: 30108245]
[35]
Ranganathan, S.; Gogul Shangar, S.; Ranjith, M.S. Fungal disease of the skin. The Hindu Magazine: 22nd April, 2001.
[36]
Krämer, H.J.; Podobinska, M.; Bartsch, A.; Battmann, A.; Thoma, W.; Bernd, A.; Kummer, W.; Irlinger, B.; Steglich, W.; Mayser, P. Malassezin, a novel agonist of the aryl hydrocarbon receptor from the yeast Malassezia furfur, induces apoptosis in primary human mel-anocytes. ChemBioChem, 2005, 6(5), 860-865.
[http://dx.doi.org/10.1002/cbic.200400247] [PMID: 15812864]
[37]
DeAngelis, Y.M.; Saunders, C.W.; Johnstone, K.R.; Reeder, N.L.; Coleman, C.G.; Kaczvinsky, J.R., Jr; Gale, C.; Walter, R.; Mekel, M.; Lacey, M.P.; Keough, T.W.; Fieno, A.; Grant, R.A.; Begley, B.; Sun, Y.; Fuentes, G.; Youngquist, R.S.; Xu, J.; Dawson, T.L. Jr Isolation and expression of a Malassezia globosa lipase gene, LIP1. J. Invest. Dermatol., 2007, 127(9), 2138-2146.
[http://dx.doi.org/10.1038/sj.jid.5700844] [PMID: 17460728]
[38]
Entezari Heravi, Y.; Bua, S.; Nocentini, A.; Del Prete, S.; Saboury, A.A.; Sereshti, H.; Capasso, C.; Gratteri, P.; Supuran, C.T. Inhibition of Malassezia globosa carbonic anhydrase with phenols. Bioorg. Med. Chem., 2017, 25(9), 2577-2582.
[http://dx.doi.org/10.1016/j.bmc.2017.03.026] [PMID: 28343756]
[39]
Ashbee, H.R.; Evans, E.G. Immunology of diseases associated with Malassezia species. Clin. Microbiol. Rev., 2002, 15(1), 21-57.
[http://dx.doi.org/10.1128/CMR.15.1.21-57.2002] [PMID: 11781265]
[40]
Gupta, A.K.; Batra, R.; Bluhm, R.; Boekhout, T.; Dawson, T.L. Jr Skin diseases associated with Malassezia species. J. Am. Acad. Dermatol., 2004, 51(5), 785-798.
[http://dx.doi.org/10.1016/j.jaad.2003.12.034] [PMID: 15523360]
[41]
Gaitanis, G.; Magiatis, P.; Stathopoulou, K.; Bassukas, I.D.; Alexopoulos, E.C.; Velegraki, A.; Skaltsounis, A.L. AhR ligands, malas-sezin, and indolo[3, 2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J. Invest. Dermatol., 2008, 128(7), 1620-1625.
[http://dx.doi.org/10.1038/sj.jid.5701252] [PMID: 18219281]
[42]
Barchmann, T.; Hort, W.; Krämer, H.J.; Mayser, P. Glycine as a regulator of tryptophan-dependent pigment synthesis in Malassezia fur-fur. Mycoses, 2011, 54(1), 17-22.
[http://dx.doi.org/10.1111/j.1439-0507.2009.01758.x] [PMID: 19702622]
[43]
Shinde, R.; McGaha, T.L. The aryl hydrocarbon receptor: Connecting immunity to the microenvironment. Trends Immunol., 2018, 39(12), 1005-1020.
[http://dx.doi.org/10.1016/j.it.2018.10.010] [PMID: 30409559]
[44]
Xu, Z.; Wang, Z.; Yuan, C.; Liu, X.; Yang, F.; Wang, T.; Wang, J.; Manabe, K.; Qin, O.; Wang, X.; Zhang, Y.; Zhang, M. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci. Rep., 2016, 6(1), 24877.
[http://dx.doi.org/10.1038/srep24877] [PMID: 27172459]
[45]
Plotkin, L.I.; Squiquera, L.; Mathov, I.; Galimberti, R.; Leoni, J. Characterization of the lipase activity of Malassezia furfur. J. Med. Vet. Mycol., 1996, 34(1), 43-48.
[http://dx.doi.org/10.1080/02681219680000071] [PMID: 8786470]
[46]
Dawson, T.; Darcy, T.; DeAngelis, Y.; Whitaker, S. Malassezia require saturated, not unsaturated fatty acids for growth: Role of Malas-sezia lipid metabolism in seborrheic dermatitis (dandruff). J. Am. Acad. Dermatol., 2006, 54(3)
[47]
Katsuta, Y.; Iida, T.; Hasegawa, K.; Inomata, S.; Denda, M. Function of oleic acid on epidermal barrier and calcium influx into keratino-cytes is associated with N-methyl D-aspartate-type glutamate receptors. Br. J. Dermatol., 2009, 160(1), 69-74.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08860.x] [PMID: 18808414]
[48]
Coelho, M.A.; Sampaio, J.P.; Gonçalves, P. Living and thriving on the skin: Malassezia genomes tell the story. MBio, 2013, 4(2), e00117-e13.
[http://dx.doi.org/10.1128/mBio.00117-13] [PMID: 23512963]
[49]
Schwartz, J.R.; Messenger, A.G.; Tosti, A.; Todd, G.; Hordinsky, M.; Hay, R.J.; Wang, X.; Zachariae, C.; Kerr, K.M.; Henry, J.P.; Rust, R.C.; Robinson, M.K. A comprehensive pathophysiology of dandruff and seborrheic dermatitis - towards a more precise definition of scalp health. Acta Derm. Venereol., 2013, 93(2), 131-137.
[http://dx.doi.org/10.2340/00015555-1382] [PMID: 22875203]
[50]
Sommer, B.; Overy, D.P.; Haltli, B.; Kerr, R.G. Secreted lipases from Malassezia globosa: Recombinant expression and determination of their substrate specificities. Microbiology, 2016, 162(7), 1069-1079.
[http://dx.doi.org/10.1099/mic.0.000299] [PMID: 27130210]
[51]
Mayser, P.; Schäfer, U.; Krämer, H.J.; Irlinger, B.; Steglich, W. Pityriacitrin -- an ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur. Arch. Dermatol. Res., 2002, 294(3), 131-134.
[http://dx.doi.org/10.1007/s00403-002-0294-2] [PMID: 12029500]
[52]
James, A.G.; Abraham, K.H.; Cox, D.S.; Moore, A.E.; Pople, J.E. Metabolic analysis of the cutaneous fungi Malassezia globosa and M. restricta for insights on scalp condition and dandruff. Int. J. Cosmet. Sci., 2013, 35(2), 169-175.
[http://dx.doi.org/10.1111/ics.12022] [PMID: 23106637]
[53]
Clavaud, C.; Jourdain, R.; Bar-Hen, A.; Tichit, M.; Bouchier, C.; Pouradier, F.; El Rawadi, C.; Guillot, J.; Ménard-Szczebara, F.; Breton, L.; Latgé, J.P.; Mouyna, I. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One, 2013, 8(3), e58203.
[http://dx.doi.org/10.1371/journal.pone.0058203] [PMID: 23483996]
[54]
Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol., 2011, 9(4), 244-253.
[http://dx.doi.org/10.1038/nrmicro2537] [PMID: 21407241]
[55]
Findley, K.; Oh, J.; Yang, J.; Conlan, S.; Deming, C.; Meyer, J.A.; Schoenfeld, D.; Nomicos, E.; Park, M.; Kong, H.H.; Segre, J.A. Topo-graphic diversity of fungal and bacterial communities in human skin. Nature, 2013, 498(7454), 367-370.
[http://dx.doi.org/10.1038/nature12171] [PMID: 23698366]
[56]
Wang, L.; Clavaud, C.; Bar-Hen, A.; Cui, M.; Gao, J.; Liu, Y.; Liu, C.; Shibagaki, N.; Guéniche, A.; Jourdain, R.; Lan, K.; Zhang, C.; Alt-meyer, R.; Breton, L. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp. Dermatol., 2015, 24(5), 398-400.
[http://dx.doi.org/10.1111/exd.12684] [PMID: 25739873]
[57]
Ingham, E.; Holland, K.T.; Gowland, G.; Cunliffe, W.J. Partial purification and characterization of lipase (EC 3.1.1.3) from Propionibac-terium acnes. J. Gen. Microbiol., 1981, 124(2), 393-401.
[PMID: 7035615]
[58]
Gribbon, E.M.; Cunliffe, W.J.; Holland, K.T. Interaction of Propionibacterium acnes with skin lipids in vitro. J. Gen. Microbiol., 1993, 139(8), 1745-1751.
[http://dx.doi.org/10.1099/00221287-139-8-1745] [PMID: 8409917]
[59]
Scharschmidt, T.C.; Fischbach, M.A. What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov. Today Dis. Mech., 2013, 10(3-4), e83-e89.
[http://dx.doi.org/10.1016/j.ddmec.2012.12.003] [PMID: 24273587]
[60]
Wang, Y.; Kuo, S.; Shu, M.; Yu, J.; Huang, S.; Dai, A.; Two, A.; Gallo, R.L.; Huang, C.M. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: Implications of probiotics in acne vulgaris. Appl. Microbiol. Biotechnol., 2014, 98(1), 411-424.
[http://dx.doi.org/10.1007/s00253-013-5394-8] [PMID: 24265031]
[61]
Tamer, F.; Yuksel, M.E.; Sarifakioglu, E.; Karabag, Y. Staphylococcus aureus is the most common bacterial agent of the skin flora of patients with seborrheic dermatitis. Dermatol. Pract. Concept., 2018, 8(2), 80-84.
[http://dx.doi.org/10.5826/dpc.0802a04] [PMID: 29785324]
[62]
Thiboutot, D.; Jabara, S.; McAllister, J.M.; Sivarajah, A.; Gilliland, K.; Cong, Z.; Clawson, G. Human skin is a steroidogenic tissue: Steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J. Invest. Dermatol., 2003, 120(6), 905-914.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12244.x] [PMID: 12787114]
[63]
Zouboulis, C.C. Sebaceous gland in human skin--the fantastic future of a skin appendage. J. Invest. Dermatol., 2003, 120(6), xiv-xv.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12263.x] [PMID: 12787152]
[64]
Kligman, A.M. The uses of sebum? In: Advances in Biology of the Skin, The Sebaceous Glands; Montagne, W.; Ellia, R.A.; Silver, A.F., Eds.;: Pergamon Press: Oxford, 1963, 4, pp. 110-124.
[http://dx.doi.org/10.1016/B978-0-08-009945-3.50011-X]
[65]
Pilgram, G.S.; van der Meulen, J.; Gooris, G.S.; Koerten, H.K.; Bouwstra, J.A. The influence of two azones and sebaceous lipids on the lateral organization of lipids isolated from human stratum corneum. Biochim. Biophys. Acta, 2001, 1511(2), 244-254.
[http://dx.doi.org/10.1016/S0005-2736(01)00271-1] [PMID: 11286967]
[66]
Niemann, C.; Horsley, V. Development and homeostasis of the sebaceous gland. Semin. Cell Dev. Biol., 2012, 23(8), 928-936.
[http://dx.doi.org/10.1016/j.semcdb.2012.08.010] [PMID: 22960253]
[67]
Zouboulis, C.C.; Akamatsu, H.; Stephanek, K.; Orfanos, C.E. Androgens affect the activity of human sebocytes in culture in a manner dependent on the localization of the sebaceous glands and their effect is antagonized by spironolactone. Skin Pharmacol., 1994, 7(1-2), 33-40.
[http://dx.doi.org/10.1159/000211271] [PMID: 8003320]
[68]
Strauss, J.S.; Downing, D.T.; Ebling, F.J. Sebaceous glands. In: Biochemistry and physiology of skin; Goldsmith, L.A., Ed.; Oxford Uni-versity Press: New York, 1983, pp. 569-595.
[69]
Gupta, A.K.; Bluhm, R.; Cooper, E.A.; Summerbell, R.C.; Batra, R. Seborrheic dermatitis. Dermatol. Clin., 2003, 21(3), 401-412.
[http://dx.doi.org/10.1016/S0733-8635(03)00028-7] [PMID: 12956195]
[70]
Schwartz, R.A.; Janusz, C.A.; Janniger, C.K. Seborrheic dermatitis: An overview. Am. Fam. Physician, 2006, 74(1), 125-130.
[PMID: 16848386]
[71]
Sampaio, A.L.; Mameri, Â.C.; Vargas, T.J.; Ramos-e-Silva, M.; Nunes, A.P.; Carneiro, S.C. Seborrheic dermatitis. An. Bras. Dermatol., 2011, 86(6), 1061-1071.
[http://dx.doi.org/10.1590/S0365-05962011000600002] [PMID: 22281892]
[72]
Sommer, B.; Overy, D.P.; Kerr, R.G. Identification and characterization of lipases from Malassezia restricta, a causative agent of dan-druff. FEMS Yeast Res., 2015, 15(7), fov078.
[http://dx.doi.org/10.1093/femsyr/fov078] [PMID: 26298017]
[73]
Harding, C.R. The stratum corneum: Structure and function in health and disease. Dermatol. Ther., 2004, 17(s1)(Suppl. 1), 6-15.
[http://dx.doi.org/10.1111/j.1396-0296.2004.04S1001.x] [PMID: 14728694]
[74]
Imokawa, G.; Okamoto, K. The inhibitory effect of zinc pyrithione on the epidermal proliferation of animal skins. Acta Derm. Venereol., 1982, 62(6), 471-475.
[PMID: 6187150]
[75]
Warner, R.R.; Schwartz, J.R.; Boissy, Y.; Dawson, T.L., Jr Dandruff has an altered stratum corneum ultrastructure that is improved with zinc pyrithione shampoo. J. Am. Acad. Dermatol., 2001, 45(6), 897-903.
[http://dx.doi.org/10.1067/mjd.2001.117849] [PMID: 11712036]
[76]
Simon, M.; Tazi-Ahnini, R.; Jonca, N.; Caubet, C.; Cork, M.J.; Serre, G. Alterations in the desquamation-related proteolytic cleavage of corneodesmosin and other corneodesmosomal proteins in psoriatic lesional epidermis. Br. J. Dermatol., 2008, 159(1), 77-85.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08578.x] [PMID: 18460028]
[77]
Sheu, H-M.; Chao, S-C.; Wong, T-W. Yu-Yun Lee, J.; Tsai, J-C. Human skin surface lipid film: An ultrastructural study and interaction with corneocytes and intercellular lipid lamellae of the stratum corneum. Br. J. Dermatol., 1999, 140(3), 385-391.
[http://dx.doi.org/10.1046/j.1365-2133.1999.02697.x] [PMID: 10233255]
[78]
Sugarman, J.L. The epidermal barrier in atopic dermatitis. Semin. Cutan. Med. Surg., 2008, 27(2), 108-114.
[http://dx.doi.org/10.1016/j.sder.2008.04.005] [PMID: 18620132]
[79]
Danby, S.; Cork, M.J. A new understanding of atopic dermatitis: The role of epidermal barrier dysfunction and subclinical inflammation. J. Clin. Dermatol., 2010, 1(2), 33-46.
[80]
Al-Saeed, W.Y.; Al-Dawood, K.M.; Bukhari, I.A.; Bahnassy, A.A. Risk factors and co-morbidity of skin disorders among female schoolchildren in Eastern Saudi Arabia. Invest. Clin., 2007, 48(2), 199-212.
[PMID: 17598643]
[81]
Chikakane, K.; Takahashi, H. Measurement of skin pH and its significance in cutaneous diseases. Clin. Dermatol., 1995, 13(4), 299-306.
[http://dx.doi.org/10.1016/0738-081X(95)00076-R] [PMID: 8665438]
[82]
Schmid, M.H.; Korting, H.C. The concept of the acid mantle of the skin: Its relevance for the choice of skin cleansers. Dermatology, 1995, 191(4), 276-280.
[http://dx.doi.org/10.1159/000246568] [PMID: 8573921]
[83]
Surber, C.; Humbert, P.; Abels, C.; Maibach, H. The acid mantle: A myth or an essential part of skin health? Curr. Probl. Dermatol., 2018, 54, 1-10.
[http://dx.doi.org/10.1159/000489512] [PMID: 30125885]
[84]
Matousek, J.L.; Campbell, K.L.; Kakoma, I.; Solter, P.F.; Schaeffer, D.J. Evaluation of the effect of pH on in vitro growth of Malassezia pachydermatis. Can. J. Vet. Res., 2003, 67(1), 56-59.
[PMID: 12528830]
[85]
Hay, R.J.; Midgley, G. ntroduction: Malassezia yeasts from a historical perspective. In: Malassezia and the Skin; Springer: Berlin: Heidelberg, 2010; pp. 1-16.
[86]
Chen, T.A.; Hill, P.B. The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet. Dermatol., 2005, 16(1), 4-26.
[http://dx.doi.org/10.1111/j.1365-3164.2005.00424.x] [PMID: 15725101]
[87]
Park, M.; Jung, W.H.; Han, S.H.; Lee, Y.H.; Lee, Y.W. Characterisation and Expression Analysis of MrLip1, a Class 3 Family Lipase of Malassezia restricta. Mycoses, 2015, 58(11), 671-678.
[http://dx.doi.org/10.1111/myc.12412] [PMID: 26404462]
[88]
Del Prete, S.; De Luca, V.; Vullo, D.; Osman, S.M.; AlOthman, Z.; Carginale, V.; Supuran, C.T.; Capasso, C. A new procedure for the cloning, expression and purification of the β-carbonic anhydrase from the pathogenic yeast Malassezia globosa, an anti-dandruff drug target. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1156-1161.
[http://dx.doi.org/10.3109/14756366.2015.1102137] [PMID: 26523349]
[89]
Nocentini, A.; Bua, S.; Del Prete, S.; Heravi, Y.E.; Saboury, A.A.; Karioti, A.; Bilia, A.R.; Capasso, C.; Gratteri, P.; Supuran, C.T. Natural polyphenols selectively inhibit β-carbonic anhydrase from the dandruff-producing fungus Malassezia globosa: Activity and modeling studies. ChemMedChem, 2018, 13(8), 816-823.
[http://dx.doi.org/10.1002/cmdc.201800015] [PMID: 29575699]
[90]
Ali, S.; Khan, F.I.; Mohammad, T.; Lan, D.; Hassan, M.I.; Wang, Y. Identification and evaluation of inhibitors of lipase from Malassezia restricta using virtual high-throughput screening and molecular dynamics studies. Int. J. Mol. Sci., 2019, 20(4), 884.
[http://dx.doi.org/10.3390/ijms20040884] [PMID: 30781686]
[91]
Kim, D.; Lim, Y.R.; Ohk, S.O.; Kim, B.J.; Chun, Y.J. Functional expression and characterization of CYP51 from dandruff-causing Malassezia globosa. FEMS Yeast Res., 2011, 11(1), 80-87.
[http://dx.doi.org/10.1111/j.1567-1364.2010.00692.x] [PMID: 21114623]
[92]
Ohk, S.O.; Park, H.G.; Lee, H.; Kwon, Y.J.; Kim, B.J.; Kim, D.; Chun, Y.J. Heterologous expression and characterization of CYP61A1 from dandruff-causing Malassezia globosa. Protein Expr. Purif., 2015, 114, 89-94.
[http://dx.doi.org/10.1016/j.pep.2015.07.002] [PMID: 26160660]
[93]
Warrilow, A.G.; Price, C.L.; Parker, J.E.; Rolley, N.J.; Smyrniotis, C.J.; Hughes, D.D.; Thoss, V.; Nes, W.D.; Kelly, D.E.; Holman, T.R.; Kelly, S.L. Azole antifungal sensitivity of sterol 14α-demethylase (CYP51) and CYP5218 from Malassezia globosa. Sci. Rep., 2016, 6(1), 1-10.
[http://dx.doi.org/10.1038/srep27690] [PMID: 28442746]
[94]
Viodé, C.; Lejeune, O.; Turlier, V.; Rouquier, A.; Casas, C.; Mengeaud, V.; Redoulès, D.; Schmitt, A.M. Cathepsin S, a new pruritus biomarker in clinical dandruff/seborrhoeic dermatitis evaluation. Exp. Dermatol., 2014, 23(4), 274-275.
[http://dx.doi.org/10.1111/exd.12357] [PMID: 24690038]
[95]
Pandey, A.; Mishra, R.K.; Tiwari, A.K.; Kumar, A.; Bajaj, A.K.; Dikshit, A. Management of cosmetic embarrassment caused by Malas-sezia spp. with fruticose lichen Cladia using phylogenetic approach. BioMed Res. Int., 2013, 2013, 169794.
[http://dx.doi.org/10.1155/2013/169794] [PMID: 24069589]
[96]
Kerr, K.; Darcy, T.; Henry, J.; Mizoguchi, H.; Schwartz, J.R.; Morrall, S.; Filloon, T.; Wimalasena, R.; Fadayel, G.; Mills, K.J. Epidermal changes associated with symptomatic resolution of dandruff: Biomarkers of scalp health. Int. J. Dermatol., 2011, 50(1), 102-113.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04629.x] [PMID: 21182510]
[97]
Arndt, K.A.; Hsu, J.T. Manual of dermatologic therapeutics; Lippincott Williams & Wilkins, 2007.
[98]
Suvitha, S.; Abilasha, R. General awareness about seborrheic dermatitis/dandruff among dental students-A questionnaire-based study. Drug Invent. Today, 2019, 11(5), 1245-1248.
[99]
Ravichandran, G.; Bharadwaj, V.S.; Kolhapure, S.A. Evaluation of the clinical efficacy and safety of “Anti-Dandruff Shampoo” in the treatment of dandruff. Antiseptic, 2004, 201(1), 5-8.
[100]
Elewski, B.E. Clinical diagnosis of common scalp disorders. J. Investig. Dermatol. Symp. Proc; , 2005, 10, pp. (3)190-193.
[http://dx.doi.org/10.1111/j.1087-0024.2005.10103.x]
[101]
Misery, L.; Rahhali, N.; Duhamel, A.; Taieb, C. Epidemiology of dandruff, scalp pruritus and associated symptoms. Acta Derm. Venereol., 2013, 93(1), 80-81.
[http://dx.doi.org/10.2340/00015555-1315] [PMID: 22277979]
[102]
Pople, J.E.; Bhogal, R.K.; Moore, A.E.; Jenkins, G. Changes in epidermal morphology associated with dandruff. Int. J. Cosmet. Sci., 2019, 41(4), 357-363.
[http://dx.doi.org/10.1111/ics.12539] [PMID: 31087801]
[103]
Chen, C.; Long, L.; Zhang, F.; Chen, Q.; Chen, C.; Yu, X.; Liu, Q.; Bao, J.; Long, Z. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS One, 2018, 13(3), e0194284.
[http://dx.doi.org/10.1371/journal.pone.0194284] [PMID: 29543859]
[104]
Ghannoum, M.A.; Rice, L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[105]
Pooja; Prasher, P.; Singh, P.; Pawar, K.; Vikramdeo, K.S.; Mondal, N.; Komath, S.S. Synthesis of amino acid appended indoles: Appre-ciable anti-fungal activity and inhibition of ergosterol biosynthesis as their probable mode of action. Eur. J. Med. Chem., 2014, 80, 325-339.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.063] [PMID: 24794769]
[106]
Sanfilippo, A.; English, J.C. An overview of medicated shampoos used in dandruff treatment. P&T, 2006, 31(7), 396.
[107]
Angiolella, L.; Carradori, S.; Maccallini, C.; Giusiano, G.; Supuran, C.T.T.; Supuran, C. Targeting Malassezia species for novel synthetic and natural antidandruff agents. Curr. Med. Chem., 2017, 24(22), 2392-2412.
[http://dx.doi.org/10.2174/0929867324666170404110631] [PMID: 28393697]
[108]
Ford, G.P.; Farr, P.M.; Ive, F.A.; Shuster, S. The response of seborrhoeic dermatitis to ketoconazole. Br. J. Dermatol., 1984, 111(5), 603-607.
[http://dx.doi.org/10.1111/j.1365-2133.1984.tb06631.x] [PMID: 6093845]
[109]
Tripathi, R.; Rizvi, A.; Pandey, S.K.; Dwivedi, H.; Saxena, J.K. Ketoconazole, a cytochrome P(450) inhibitor can potentiate the antimalar-ial action of α/β arteether against MDR Plasmodium yoelii nigeriensis. Acta Trop., 2013, 126(2), 150-155.
[http://dx.doi.org/10.1016/j.actatropica.2013.01.012] [PMID: 23391499]
[110]
Kumari, B.; Kesavan, K. Effect of chitosan coating on microemulsion for effective dermal clotrimazole delivery. Pharm. Dev. Technol., 2017, 22(4), 617-626.
[http://dx.doi.org/10.1080/10837450.2016.1230629] [PMID: 27574791]
[111]
Patil, P.S.; Reddy, V.M.; Biradar, K.V.; Patil, C.B.; Rao, K.S. Development and evaluation of anti dandruff hair gel. Int. J. Res. Pharm. Chem., 2011, 1(4), 936-944.
[112]
Reeder, N.L.; Xu, J.; Youngquist, R.S.; Schwartz, J.R.; Rust, R.C.; Saunders, C.W. The antifungal mechanism of action of zinc pyrithione. Br. J. Dermatol., 2011, 165(Suppl. 2), 9-12.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10571.x] [PMID: 21919897]
[113]
Richter, E.; Wick, A.; Ternes, T.A.; Coors, A. Ecotoxicity of climbazole, a fungicide contained in antidandruff shampoo. Environ. Toxicol. Chem., 2013, 32(12), 2816-2825.
[http://dx.doi.org/10.1002/etc.2367] [PMID: 23982925]
[114]
Schmidt-Rose, T.; Braren, S.; Fölster, H.; Hillemann, T.; Oltrogge, B.; Philipp, P.; Weets, G.; Fey, S. Efficacy of a piroctone olamine/climbazol shampoo in comparison with a zinc pyrithione shampoo in subjects with moderate to severe dandruff. Int. J. Cosmet. Sci., 2011, 33(3), 276-282.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00623.x] [PMID: 21272039]
[115]
Paz-Alvarez, M.; Pudney, P.D.A.; Hadgraft, J.; Lane, M.E. Topical delivery of climbazole to mammalian skin. Int. J. Pharm., 2018, 549(1-2), 317-324.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.058] [PMID: 30055301]
[116]
Pople, J.E.; Moore, A.E.; Talbot, D.C.; Barrett, K.E.; Jones, D.A.; Lim, F.L. Climbazole increases expression of cornified envelope pro-teins in primary keratinocytes. Int. J. Cosmet. Sci., 2014, 36(5), 419-426.
[http://dx.doi.org/10.1111/ics.12137] [PMID: 24811958]
[117]
do Couto, F.M.; do Nascimento, S.C.; Júnior, S.F.; da Silva, V.K.; Leal, A.F.; Neves, R.P. Antifungal activity of the piroctone olamine in experimental intra-abdominal candidiasis. Springerplus, 2016, 5(1), 468.
[http://dx.doi.org/10.1186/s40064-016-2130-8] [PMID: 27119072]
[118]
Lee, J.H.; Lee, H.S.; Eun, H.C.; Cho, K.H. Successful treatment of dandruff with 1.5% ciclopirox olamine shampoo in Korea. J. Dermatolog. Treat., 2003, 14(4), 212-215.
[http://dx.doi.org/10.1080/jdt.14.4.212.215] [PMID: 14660265]
[119]
Baysal, V.; Yildirim, M.; Ozcanli, C.; Ceyhan, A.M. Itraconazole in the treatment of seborrheic dermatitis: A new treatment modality. Int. J. Dermatol., 2004, 43(1), 63-66.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02123.x] [PMID: 14693026]
[120]
Das, J.; Majumdar, M.; Chakraborty, U.; Majumdar, V.; Mazumdar, G.; Nath, J. Oral itraconazole for the treatment of severe seborrhoeic dermatitis. Indian J. Dermatol., 2011, 56(5), 515-516.
[http://dx.doi.org/10.4103/0019-5154.87137] [PMID: 22121267]
[121]
Ghodsi, S.Z.; Abbas, Z.; Abedeni, R. Efficacy of oral itraconazole in the treatment and relapse prevention of moderate to severe sebor-rheic dermatitis: A randomized, placebo-controlled trial. Am. J. Clin. Dermatol., 2015, 16(5), 431-437.
[http://dx.doi.org/10.1007/s40257-015-0133-9] [PMID: 26016699]
[122]
Shemer, A.; Kaplan, B.; Nathansohn, N.; Grunwald, M.H.; Amichai, B.; Trau, H. Treatment of moderate to severe facial seborrheic der-matitis with itraconazole: An open non-comparative study. Isr. Med. Assoc. J., 2008, 10(6), 417-418.
[PMID: 18669136]
[123]
Cömert, A.; Bekiroglu, N.; Gürbüz, O.; Ergun, T. Efficacy of oral fluconazole in the treatment of seborrheic dermatitis: A placebo-controlled study. Am. J. Clin. Dermatol., 2007, 8(4), 235-238.
[http://dx.doi.org/10.2165/00128071-200708040-00005] [PMID: 17645378]
[124]
Zisova, L.G. Treatment of Malassezia species associated seborrheic blepharitis with fluconazole. Folia Med. (Plovdiv), 2009, 51(3), 57-59.
[PMID: 19957565]
[125]
Zisova, L.G. Fluconazole and its place in the treatment of seborrheic dermatitis--new therapeutic possibilities. Folia Med. (Plovdiv), 2006, 48(1), 39-45.
[PMID: 16918053]
[126]
Kunze, K.L.; Wienkers, L.C.; Thummel, K.E.; Trager, W.F.; Warfarin-fluconazole, I.; Warfarin-fluconazole, I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: In vitro studies. Drug Metab. Dispos., 1996, 24(4), 414-421.
[PMID: 8801056]
[127]
Faergemann, J. Treatment of pityriasis versicolor with a single dose of fluconazole. Acta Derm. Venereol., 1992, 72(1), 74-75.
[PMID: 1350156]
[128]
Scaparro, E.; Quadri, G.; Virno, G.; Orifici, C.; Milani, M. Evaluation of the efficacy and tolerability of oral terbinafine (Daskil) in pa-tients with seborrhoeic dermatitis. A multicentre, randomized, investigator-blinded, placebo-controlled trial. Br. J. Dermatol., 2001, 144(4), 854-857.
[http://dx.doi.org/10.1046/j.1365-2133.2001.04144.x] [PMID: 11298548]
[129]
Vena, G.A.; Micali, G.; Santoianni, P.; Cassano, N.; Peruzzi, E. Oral terbinafine in the treatment of multi-site seborrhoic dermatitis: A multicenter, double-blind placebo-controlled study. Int. J. Immunopathol. Pharmacol., 2005, 18(4), 745-753.
[http://dx.doi.org/10.1177/039463200501800418] [PMID: 16388724]
[130]
Odds, F.; Ausma, J.; Van Gerven, F.; Woestenborghs, F.; Meerpoel, L.; Heeres, J.; Vanden Bossche, H.; Borgers, M. In vitro and in vivo activities of the novel azole antifungal agent r126638. Antimicrob. Agents Chemother., 2004, 48(2), 388-391.
[http://dx.doi.org/10.1128/AAC.48.2.388-391.2004] [PMID: 14742185]
[131]
Donders, G.; Ausma, J.; Wouters, L.; Cauwenbergh, G.; Borgers, M.; Janssens, D. Efficacy of a single oral dose of 200 mg pramicona-zole in vulvovaginal yeast infections: An exploratory phase IIa trial. Acta Derm. Venereol., 2008, 88(5), 462-466.
[http://dx.doi.org/10.2340/00015555-0494] [PMID: 18779883]
[132]
Kircik, L.H. Treatment of scalp and facial seborrheic dermatitis with desonide hydrogel 0.05%. J. Clin. Aesthet. Dermatol., 2009, 2(2), 32-36.
[PMID: 20967179]
[133]
Van den Bossche, H.; Willemsens, G.; Cools, W.; Cornelissen, F.; Lauwers, W.F.; van Cutsem, J.M. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob. Agents Chemother., 1980, 17(6), 922-928.
[http://dx.doi.org/10.1128/AAC.17.6.922] [PMID: 6250469]
[134]
Dreno, B.; Moyse, D. Lithium gluconate in the treatment of seborrhoeic dermatitis: A multicenter, randomised, double-blind study versus placebo. Eur. J. Dermatol., 2002, 12(6), 549-552.
[PMID: 12459525]
[135]
Mueller, R.S. Topical dermatological therapy. Small Anim. Clin. Pharmacol., 2008, 546-556.
[http://dx.doi.org/10.1016/B978-070202858-8.50026-9]
[136]
Weatherly, L.M.; Gosse, J.A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(8), 447-469.
[http://dx.doi.org/10.1080/10937404.2017.1399306] [PMID: 29182464]
[137]
Löfmark, S.; Edlund, C.; Nord, C.E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis., 2010, 50(s1)(Suppl. 1), S16-S23.
[http://dx.doi.org/10.1086/647939] [PMID: 20067388]
[138]
Lodén, M.; Wessman, C. The antidandruff efficacy of a shampoo containing piroctone olamine and salicylic acid in comparison to that of a zinc pyrithione shampoo. Int. J. Cosmet. Sci., 2000, 22(4), 285-289.
[http://dx.doi.org/10.1046/j.1467-2494.2000.00024.x] [PMID: 18503415]
[139]
Squire, R.A.; Goode, K. A randomised, single-blind, single-centre clinical trial to evaluate comparative clinical efficacy of shampoos containing ciclopirox olamine (1.5%) and salicylic acid (3%), or ketoconazole (2%, Nizoral) for the treatment of dandruff/seborrhoeic dermatitis. J. Dermatolog. Treat., 2002, 13(2), 51-60.
[http://dx.doi.org/10.1080/095466302317584395] [PMID: 12060502]
[140]
Faergemann, J. Pityrosporum species as a cause of allergy and infection. Allergy, 1999, 54(5), 413-419.
[http://dx.doi.org/10.1034/j.1398-9995.1999.00089.x] [PMID: 10380771]
[141]
Collins, L.Z.; Baines, F.L.; Matheson, J.R.; Turner, G.A.; Diao, Y.; Li, Y.; Pi, Y. Sex-related differences in response to zinc pyrithione shampoo vs. non-anti-dandruff shampoo. Int. J. Cosmet. Sci., 2018, 40(6), 583-588.
[http://dx.doi.org/10.1111/ics.12501] [PMID: 30447108]
[142]
Yasokawa, D.; Murata, S.; Iwahashi, Y.; Kitagawa, E.; Kishi, K.; Okumura, Y.; Iwahashi, H. DNA microarray analysis suggests that zinc pyrithione causes iron starvation to the yeast Saccharomyces cerevisiae. J. Biosci. Bioeng., 2010, 109(5), 479-486.
[http://dx.doi.org/10.1016/j.jbiosc.2009.10.025] [PMID: 20347771]
[143]
Danby, F.W.; Maddin, W.S.; Margesson, L.J.; Rosenthal, D. A randomized, double-blind, placebo-controlled trial of ketoconazole 2% shampoo versus selenium sulfide 2.5% shampoo in the treatment of moderate to severe dandruff. J. Am. Acad. Dermatol., 1993, 29(6), 1008-1012.
[http://dx.doi.org/10.1016/0190-9622(93)70282-X] [PMID: 8245236]
[144]
Hald, M.; Arendrup, M.C.; Svejgaard, E.L.; Lindskov, R.; Foged, E.K.; Saunte, D.M. Evidence-based Danish guidelines for the treatment of Malassezia-related skin diseases. Acta Derm. Venereol., 2015, 95(1), 12-19.
[http://dx.doi.org/10.2340/00015555-1825] [PMID: 24556907]
[145]
Gilbertson, K.; Jarrett, R.; Bayliss, S.J.; Berk, D.R. Scalp discoloration from selenium sulfide shampoo: A case series and review of the literature. Pediatr. Dermatol., 2012, 29(1), 84-88.
[http://dx.doi.org/10.1111/j.1525-1470.2011.01410.x] [PMID: 21453309]
[146]
Loose, D.S.; Kan, P.B.; Hirst, M.A.; Marcus, R.A.; Feldman, D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J. Clin. Invest., 1983, 71(5), 1495-1499.
[http://dx.doi.org/10.1172/JCI110903] [PMID: 6304148]
[147]
Rojas, F.D.; Córdoba, S.B.; de Los Ángeles Sosa, M.; Zalazar, L.C.; Fernández, M.S.; Cattana, M.E.; Alegre, L.R.; Carrillo-Muñoz, A.J.; Giusiano, G.E. Antifungal susceptibility testing of Malassezia yeast: Comparison of two different methodologies. Mycoses, 2017, 60(2), 104-111.
[http://dx.doi.org/10.1111/myc.12556] [PMID: 27625339]
[148]
Youngchim, S.; Nosanchuk, J.D.; Chongkae, S.; Vanittanokom, N. Ketoconazole inhibits Malassezia furfur morphogenesis in vitro under filamentation optimized conditions. Arch. Dermatol. Res., 2017, 309(1), 47-53.
[http://dx.doi.org/10.1007/s00403-016-1701-4] [PMID: 27885419]
[149]
Vanden Bossche, H.; Ausma, J.; Bohets, H.; Vermuyten, K.; Willemsens, G.; Marichal, P.; Meerpoel, L.; Odds, F.; Borgers, M. The novel azole R126638 is a selective inhibitor of ergosterol synthesis in Candida albicans, Trichophyton spp., and Microsporum canis. Antimicrob. Agents Chemother., 2004, 48(9), 3272-3278.
[http://dx.doi.org/10.1128/AAC.48.9.3272-3278.2004] [PMID: 15328084]
[150]
Joly, V.; Bolard, J.; Yeni, P. In vitro models for studying toxicity of antifungal agents. Antimicrob. Agents Chemother., 1992, 36(9), 1799-1804.
[http://dx.doi.org/10.1128/AAC.36.9.1799] [PMID: 1416870]
[151]
Youn, H.J.; Kim, S.Y.; Park, M.; Jung, W.H.; Lee, Y.W.; Choe, Y.B.; Ahn, K.J. Efficacy and safety of cream containing climba-zole/piroctone olamine for facial seborrheic dermatitis: A single-center, open-label split-face clinical study. Ann. Dermatol., 2016, 28(6), 733-739.
[http://dx.doi.org/10.5021/ad.2016.28.6.733] [PMID: 27904273]
[152]
Prabhamanju, M.; Shankar, S.G.; Babu, K. Herbal vs. chemical actives as antidandruff ingredients-which are more effective in the man-agement of dandruff?-an overview. Ethnobotanical Leaflets., 2009, 2009(11), 5.
[153]
Miranda, K.C.; de Araujo, C.R.; Costa, C.R.; Passos, X.S.; de Fátima Lisboa Fernandes, O.; do Rosário Rodrigues Silva, M. Antifungal activities of azole agents against the Malassezia species. Int. J. Antimicrob. Agents, 2007, 29(3), 281-284.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.09.016] [PMID: 17223320]
[154]
Hoing, M.; De Dier, A.; Schuermann, V.; Cauwenbergh, G. Ketoconazole shampoo in the treatment of dandruff and/or seborrheic derma-titis: A combined analysis of 10 clinical trials on 518 patients; Janssen Pharmaceutica: Beerse, Belgium, 1987.
[155]
Thulliez, M.; Schiettekatte, L. Comparison of four concentrations of ketoconazole shampoo with placebo shampoo in dandruff or sebor-rheic dermatitis; Janssen Pharmaceutica: Beerse, Belgium, 1987.
[156]
Van Derheyden, D.; Cauwenberg, G.; Thulliez, M. Ketoconazole shampoo in the treatment of dandruff and/or seborrheic dermatitis: A randomized, double-blind, placebo-controlled comparison of different concentrations; Janssen Pharmaceutica: Beerse, Belgium, 1987.
[157]
Gupte, T.E.; Gaikwad, U.V.; Naik, S.R. Experimental studies (in vitro) on polyene macrolide antibiotics with special reference to hamy-cin against Malassezia ovale. Comp. Immunol. Microbiol. Infect. Dis., 1999, 22(2), 93-102.
[http://dx.doi.org/10.1016/S0147-9571(98)00024-1] [PMID: 10051180]
[158]
Arif, T. Salicylic acid as a peeling agent: A comprehensive review. Clin. Cosmet. Investig. Dermatol., 2015, 8, 455-461.
[http://dx.doi.org/10.2147/CCID.S84765] [PMID: 26347269]
[159]
Berenblum, I. Liquor picis carbonis (BP). BMJ, 1948, 2(4577), 601.
[http://dx.doi.org/10.1136/bmj.2.4577.601] [PMID: 18882998]
[160]
Hornbostel, C. Construction materials: Types, uses and applications; John Wiley & Sons, 1991.
[161]
Vallee, Y. Gas phase reactions in organic synthesis; CRC Press, 1998.
[162]
Hamilton, RJ Tarascon pocket pharmacopoeia 2017 deluxe labcoat edition. Jones & Bartlett Learning,, 2016.
[163]
Roberts, L. Coal tar. In: Encyclopedia of Toxicology, 3rd ed; Elsevier, 2014, pp. 993-995.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00012-9]
[164]
Culp, S.J.; Gaylor, D.W.; Sheldon, W.G.; Goldstein, L.S.; Beland, F.A. A comparison of the tumors induced by coal tar and ben-zo[a]pyrene in a 2-year bioassay. Carcinogenesis, 1998, 19(1), 117-124.
[http://dx.doi.org/10.1093/carcin/19.1.117] [PMID: 9472702]
[165]
Wallcave, L.; Garcia, H.; Feldman, R.; Lijinsky, W.; Shubik, P. Skin tumorigenesis in mice by petroleum asphalts and coal-tar pitches of known polynuclear aromatic hydrocarbon content. Toxicol. Appl. Pharmacol., 1971, 18(1), 41-52.
[http://dx.doi.org/10.1016/0041-008X(71)90313-9] [PMID: 5542832]
[166]
Cardin, C. Isolated dandruff. In: Textbook of Cosmetic Dermatology; Blackwell Science: Malden, MA, 1998, pp. 193-200.
[167]
Hickman, J.G.; Wang, X.; King, B.; Cardin, C.W. Dandruff part I: Scalp disease prevalence in Caucasians, African-Americans and Chi-nese and the effects of shampoo frequency on scalp health. Poster presented at the American Academy of Dermatology Meeting, 2002.
[168]
Arora, P.; Nanda, A.; Karan, M. Shampoos based on synthetic ingredients vis-a-vis shampoos based on herbal ingredients: A review. Int. J. Pharm. Sci. Rev. Res., 2011, 7(1), 42-46.
[169]
Mahmoud, D.A.; Hassanein, N.M.; Youssef, K.A.; Abou Zeid, M.A. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens. Braz. J. Microbiol., 2011, 42(3), 1007-1016.
[http://dx.doi.org/10.1590/S1517-83822011000300021] [PMID: 24031718]
[170]
Deviha, M.S.; Pavithram, K.S. Antifungal activity by ethanolic extracts of medicinal plants against Malasseziafurfur: A potential applica-tion in the treatment of Dandruff. Int. J. Pharm. Tech. Res., 2015, 8(3), 440-444.
[171]
Pingili, M.; Vanga, S.; Raparla, R.; Raparla, R.K. Antifungal activity of plant extracts against dandruff causing organism Malassezia furfur. Int. J. Bioassays, 2016, 5(11), 5047-5049.
[http://dx.doi.org/10.21746/ijbio.2016.11.0010]
[172]
Nenoff, P.; Haustein, U.F.; Brandt, W. Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro. Skin Pharmacol., 1996, 9(6), 388-394.
[http://dx.doi.org/10.1159/000211450] [PMID: 9055360]
[173]
Hammer, K.A.; Carson, C.F.; Riley, T.V. In vitro susceptibility of Malassezia furfur to the essential oil of Melaleuca alternifolia. J. Med. Vet. Mycol., 1997, 35(5), 375-377.
[http://dx.doi.org/10.1080/02681219780001451] [PMID: 9402533]
[174]
Hammer, K.A.; Carson, C.F.; Riley, T.V. In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamen-tous fungi. J. Antimicrob. Chemother., 2002, 50(2), 195-199.
[http://dx.doi.org/10.1093/jac/dkf112] [PMID: 12161399]
[175]
Satchell, A.C.; Saurajen, A.; Bell, C.; Barnetson, R.S. Treatment of dandruff with 5% tea tree oil shampoo. J. Am. Acad. Dermatol., 2002, 47(6), 852-855.
[http://dx.doi.org/10.1067/mjd.2002.122734] [PMID: 12451368]
[176]
Zorofchian Moghadamtousi, S.; Abdul Kadir, H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, 2014, 186864.
[http://dx.doi.org/10.1155/2014/186864]
[177]
Gul, P.; Bakht, J. Antimicrobial activity of turmeric extract and its potential use in food industry. J. Food Sci. Technol., 2015, 52(4), 2272-2279.
[http://dx.doi.org/10.1007/s13197-013-1195-4] [PMID: 25829609]
[178]
Gupta, A.; Mahajan, S.; Sharma, R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aure-us. Biotechnol. Rep. (Amst.), 2015, 6, 51-55.
[http://dx.doi.org/10.1016/j.btre.2015.02.001] [PMID: 28626697]
[179]
Murugesh, J.; Annigeri, R.G.; Mangala, G.K.; Mythily, P.H.; Chandrakala, J. Evaluation of the antifungal efficacy of different concentra-tions of Curcuma longa on Candida albicans: An in vitro study. J. Oral Maxillofac. Pathol., 2019, 23(2), 305.
[http://dx.doi.org/10.4103/jomfp.JOMFP_200_18] [PMID: 31516248]
[180]
Athiban, P.P.; Borthakur, B.J.; Ganesan, S.; Swathika, B. Evaluation of antimicrobial efficacy of Aloe vera and its effectiveness in decon-taminating gutta percha cones. J. Conserv. Dent., 2012, 15(3), 246-248.
[http://dx.doi.org/10.4103/0972-0707.97949] [PMID: 22876011]
[181]
Fozouni, L; Taghizadeh, F; Kiaei, E Anti-microbial effect of aloevera extract on clotrimazole-resistant Malassezia furfur strains isolated from patients with seborrheic dermatitis in the city of sari. 2018, 16, 2.
[182]
Jain, S.; Mujoo, S.; Daga, M.; Kalra, S.; Nagi, R.; Laheji, A. Comparison of antifungal effect of aloevera gel and triphala: An in vitro study. J. Indian Acad. Oral Med. Radiol., 2017, 29(2), 90.
[http://dx.doi.org/10.4103/jiaomr.JIAOMR_167_16]
[183]
Joseph, B.; Raj, S.J. Pharmacognostic and phytochemical properties of Aloe vera linn an overview. Int. J. Pharm. Sci. Rev. Res., 2010, 4(2), 106-110.
[184]
Qadir, M.I. Medicinal and cosmetological importance of Aloe vera. Int. J. Nat. Ther., 2009, 2, 21-26.
[185]
Berenji, F; Rakhshandeh, H; Ebrahimipour, H In vitro study of the effects of henna extracts (Lawsonia inermis) on Malassezia species. 2010, 125-128.
[186]
Gozubuyuk, G.S.; Aktas, E.; Yigit, N. An ancient plant Lawsonia inermis (henna): Determination of in vitro antifungal activity against dermatophytes species. J. Mycol. Med., 2014, 24(4), 313-318.
[http://dx.doi.org/10.1016/j.mycmed.2014.07.002] [PMID: 25442917]
[187]
Pekamwar, S.S.; Kalyankar, T.M.; Jadhav, A.C. Hibiscus rosa-sinensis: A review on ornamental plant. World J. Pharm. Pharm. Sci., 2013, 2(6), 4719-4727.
[188]
Zuhaira, S.; Naz, S.; Ridzuan, P.M. The efficacy of hibiscus rosa-sinensis leaf extracts against candida SPP, causing candidiasis. J. Sci. Mathe. Lett., 2020, 8(1), 1-5.
[http://dx.doi.org/10.37134/jsml.vol8.1.1.2020]
[189]
Sharma, R.; Sharma, M. Anti-Malassezia furfur activity of essential oils against causal agent of Pityriasis versicolor disease. Afr. J. Pharm. Pharmacol., 2012, 6(13), 979-983.
[http://dx.doi.org/10.5897/AJPP12.097]
[190]
Mohanapriya, M.; Ramaswamy, L.; Rajendran, R. Health and medicinal properties of lemon (Citrus limonum). Int. J. Ayurved. Herbal Med., 2013, 3(1), 1095-0.
[191]
Oliveira, S.A.; Zambrana, J.R.; Iorio, F.B.; Pereira, C.A.; Jorge, A.O. The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms. Braz. Oral Res., 2014, 28(1), 22-27.
[http://dx.doi.org/10.1590/S1806-83242013005000024] [PMID: 25000605]
[192]
Okeke, M.I.; Okoli, A.S.; Eze, E.N.; Ekwume, G.C.; Okosa, E.U.; Iroegbu, C.U. Antibacterial activity of Citrus limonum fruit juice ex-tract. Pak. J. Pharm. Sci., 2015, 28(5), 1567-1571.
[PMID: 26408878]
[193]
Khan, A.; Ahmad, A.; Manzoor, N.; Khan, L.A. Antifungal activities of Ocimum sanctum essential oil and its lead molecules. Nat. Prod. Commun., 2010, 5(2), 345-349.
[http://dx.doi.org/10.1177/1934578X1000500235] [PMID: 20334156]
[194]
Yamani, H.A.; Pang, E.C.; Mantri, N.; Deighton, M.A. Antimicrobial activity of Tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria. Front. Microbiol., 2016, 7, 681.
[http://dx.doi.org/10.3389/fmicb.2016.00681] [PMID: 27242708]
[195]
Punyoyai, C.; Sirilun, S.; Chantawannakul, P.; Chaiyana, W. Development of antidandruff shampoo from the fermented product of Oci-mum sanctum Linn. Cosmetics, 2018, 5(3), 43.
[http://dx.doi.org/10.3390/cosmetics5030043]
[196]
Halith, S.M.; Abirami, A.; Jayaprakash, S.; Karthikeyini, C.; Pillai, K.K.; Firthouse, P.M. Effect of Ocimum sanctum and Azadiracta indi-ca on the formulation of antidandruff herbal shampoo powder. Pharm. Lett., 2009, 1(2), 68-76.
[197]
Jantan, I.B.; Karim Moharam, B.A.; Santhanam, J.; Jamal, J.A. Correlation between chemical composition and antifungal activity of the essential oils of eight cinnamomum. Species. Pharm. Biol., 2008, 46(6), 406-412.
[http://dx.doi.org/10.1080/13880200802055859]
[198]
Peng, W.L.; Zhong, S.; Yan, Y.; Jiang, M. Study on the antimicrobial activity of essential oils from Cinnamomum Camphora wood. International Conference on Biomedical Engineering and Biotechnology, 28-30 May 2012, Macau, Macao, pp. 1742-1744.
[http://dx.doi.org/10.1109/iCBEB.2012.380]
[199]
Zhou, H.; Ren, J.; Li, Z. Antibacterial activity and mechanism of pinoresinol from Cinnamomum Camphora leaves against food-related bacteria. Food Control, 2017, 79, 192-199.
[http://dx.doi.org/10.1016/j.foodcont.2017.03.041]
[200]
Samuel, J.K.; Viola, V.R.; Sumathi, V.H.; Srividhya, B. Antidandruff activity of the aqueous bulb extract of Allium sativum against malassezia furfur isolated from human scalp scrappings. Asian J. Microbiol. Biotechnol. Environ. Sci., 2005, 7(4), 699.
[201]
Diba, A.; Alizadeh, F. In vitro and in vivo antifungal activity of Allium hirtifolium and Allium sativum. Avicenna J. Phytomed., 2018, 8(5), 465-474.
[PMID: 30345234]
[202]
Petropoulos, S.; Fernandes, Â.; Barros, L.; Ciric, A.; Sokovic, M.; Ferreira, I.C.F.R. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chem., 2018, 245, 7-12.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.078] [PMID: 29287429]
[203]
Aghazadeh, M.; Zahedi Bialvaei, A.; Aghazadeh, M.; Kabiri, F.; Saliani, N.; Yousefi, M.; Eslami, H.; Samadi Kafil, H. Survey of the anti-biofilm and antimicrobial effects of Zingiber officinale (in vitro study). Jundishapur J. Microbiol., 2016, 9(2), e30167.
[http://dx.doi.org/10.5812/jjm.30167] [PMID: 27127591]
[204]
Njobdi, S.; Gambo, M.; Ishaku, G.A. Antibacterial activity of Zingiber officinale on Escherichia coli and Staphylococcus aureus. J. Adv. Biol. Biotechnol., 2018, 19(1), 1-8.
[http://dx.doi.org/10.9734/JABB/2018/43534]
[205]
Jarrar, N.; Abu-Hijleh, A.; Adwan, K. Antibacterial activity of Rosmarinus officinalis L. alone and in combination with cefuroxime against methicillin-resistant Staphylococcus aureus. Asian Pac. J. Trop. Med., 2010, 3(2), 121-123.
[http://dx.doi.org/10.1016/S1995-7645(10)60049-1]
[206]
Ksouri, S.; Djebir, S.; Bentorki, A.A.; Gouri, A.; Hadef, Y.; Benakhla, A. Antifungal activity of essential oils extract from Origa-num floribundum Munby, Rosmarinus officinalis L. and Thymus ciliatus Desf. against Candida albicans isolated from bovine clinical mastitis. J. Mycol. Med., 2017, 27(2), 245-249.
[http://dx.doi.org/10.1016/j.mycmed.2017.03.004] [PMID: 28454927]
[207]
Mahendra, C; Gowda, DV; Vijayakumar, M; Babu, UV Anti-dandruff activity of supercritical fluid extracts of Rosemarinus officinalis and Gmelina asiatica. 2015, 5(4), 1463-1467.
[208]
Miraj, S. An evidence-based review on herbal remedies of Rosmarinus officinalis. Pharm. Lett., 2016, 8, 426-436.
[209]
Naeini, A.; Nazeri, M.; Shokri, H. Inhibitory effect of plant essential oils on Malassezia strains from Iranian dermatitis patients. J. Herb-med Pharmacol., 2018, 7(1), 18-21.
[http://dx.doi.org/10.15171/jhp.2018.04]
[210]
Tavakoli, H.R.; Mashak, Z.; Moradi, B.; Sodagari, H.R. Antimicrobial activities of the combined use of Cuminum cyminum L. essential oil, nisin and storage temperature against Salmonella typhimurium and Staphylococcus aureus in vitro. Jundishapur J. Microbiol., 2015, 8(4), e24838.
[http://dx.doi.org/10.5812/jjm.8(4)2015.24838] [PMID: 26034554]
[211]
Minooeianhaghighi, M.H.; Sepehrian, L.; Shokri, H. Antifungal effects of Lavandula binaludensis and Cuminum cyminum essential oils against Candida albicans strains isolated from patients with recurrent vulvovaginal candidiasis. J. Mycol. Med., 2017, 27(1), 65-71.
[http://dx.doi.org/10.1016/j.mycmed.2016.09.002] [PMID: 27751723]
[212]
Ponnusamy, K.; Petchiammal, C.; Mohankumar, R.; Hopper, W. In vitro antifungal activity of indirubin isolated from a South Indian ethnomedicinal plant Wrightia tinctoria R. Br. J. Ethnopharmacol., 2010, 132(1), 349-354.
[http://dx.doi.org/10.1016/j.jep.2010.07.050] [PMID: 20691774]
[213]
Damodaran, S.; Venkataraman, S. A study on the therapeutic efficacy of Cassia alata, Linn. leaf extract against Pityriasis versicolor. J. Ethnopharmacol., 1994, 42(1), 19-23.
[http://dx.doi.org/10.1016/0378-8741(94)90018-3] [PMID: 8046939]
[214]
Somchit, M.N.; Reezal, I.; Nur, I.E.; Mutalib, A.R. In vitro antimicrobial activity of ethanol and water extracts of Cassia alata. J. Ethnopharmacol., 2003, 84(1), 1-4.
[http://dx.doi.org/10.1016/S0378-8741(02)00146-0] [PMID: 12499068]
[215]
Saito, S.T.; Trentin, D.D.; Macedo, A.J.; Pungartnik, C.; Gosmann, G.; Silveira, J.D.; Guecheva, T.N.; Henriques, J.A.; Brendel, M. Bi-oguided fractionation shows Cassia alata extract to inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa growth and biofilm formation. Evid.-. Based Complement. Altern. Med., 2012, 2012, 867103.
[216]
Rosanti, A.; Yunus, R. Inhibition of sabandara leaves (Cassia alata) against malassezia fungi furfur. Int. Conf. Health Polytech. Kupang, 2018, 2018, pp. 582-591.
[217]
Habibipour, R.; Rajabi, M. Antibacterial effects of Arctium lappa and Artemesia absinthium extracts in laboratory conditions. J. Herbmed Pharmacol., 2015, 7, 4.
[218]
Pereira, J.V.; Bergamo, D.C.; Pereira, J.O.; França, S.C.; Pietro, R.C.; Silva-Sousa, Y.T. Antimicrobial activity of Arctium lappa constitu-ents against microorganisms commonly found in endodontic infections. Braz. Dent. J., 2005, 16(3), 192-196.
[http://dx.doi.org/10.1590/S0103-64402005000300004] [PMID: 16429183]
[219]
Mehdi, N.; Roya, A.B.; Mohsen, T.; Rezvan, T.; Mohaddese, M. Antifungal activity of herbal extracts against Malassezia species. Iran. J. Dermatol., 2015, 18(1), 10-15.
[220]
Hosseini Chaleshtori, S.A.; Ataie Kachoie, M.; Hashemi Jazi, S.M. Antibacterial effects of the methanolic extract of Glycine Max (Soy-bean). Microbiol. Res. (Pavia), 2017, 8(2), 7319.
[http://dx.doi.org/10.4081/mr.2017.7319]
[221]
Koohsari, H.; Ghaemi, E.A.; Sadegh Sheshpoli, M.; Jahedi, M.; Zahiri, M. The investigation of antibacterial activity of selected native plants from North of Iran. J. Med. Life, 2015, 8(2), 38-42.
[PMID: 28255395]
[222]
Sharma, H.; Yunus, G.Y.; Agrawal, R.; Kalra, M.; Verma, S.; Bhattar, S. Antifungal efficacy of three medicinal plants Glycyrrhiza glabra, Ficus religiosa, and Plantago major against oral Candida albicans: A comparative analysis. Indian J. Dent. Res., 2016, 27(4), 433-436.
[http://dx.doi.org/10.4103/0970-9290.191895] [PMID: 27723643]
[223]
Kulandhaivel, M. Comparative study of antifungal activity of Camellia sinensis and acacia sinuate merr against dandruff causing pity-rosporum ovale. 2011, 2(4), 1249-1252.
[224]
Akroum, S. Antifungal activity of Camellia sinensis crude extracts against four species of Candida and Microsporum persicolor. J. Mycol. Med., 2018, 28(3), 424-427.
[http://dx.doi.org/10.1016/j.mycmed.2018.06.003] [PMID: 29960870]
[225]
Badiee, P.; Nasirzadeh, A.R.; Motaffaf, M. Comparison of Salvia officinalis L. essential oil and antifungal agents against candida species. J. Pharm. Technol. Drug Res., 2012, 1(7), 1-5.
[http://dx.doi.org/10.7243/2050-120X-1-7]
[226]
Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-bdour, T.H.; Salgueiro, L. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory po-tential. BioMed Res. Int., 2013, 2013, 538940.
[http://dx.doi.org/10.1155/2013/538940] [PMID: 24224168]
[227]
Sookto, T.; Srithavaj, T.; Thaweboon, S.; Thaweboon, B.; Shrestha, B. In vitro effects of Salvia officinalis L. essential oil on Candida albicans. Asian Pac. J. Trop. Biomed., 2013, 3(5), 376-380.
[http://dx.doi.org/10.1016/S2221-1691(13)60080-5] [PMID: 23646301]
[228]
McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 2006, 20(7), 519-530.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[229]
Shrivastava, A. A review on peppermint oil. Asian J. Pharm. Clin. Res., 2009, 2(2), 27-33.
[230]
Saharkhiz, M.J.; Motamedi, M.; Zomorodian, K.; Pakshir, K.; Miri, R.; Hemyari, K. Chemical composition, antifungal and antibiofilm activi-ties of the essential oil of Mentha piperita L. Int. Scholar Res. Notices, 2012, 2012, 1-6.
[231]
Bohmova, E.; Conkova, E.; Harcarova, M.; Sihelska, Z. Interactions between Clotrimazole and selected essential oils against Malassezia pachydermatis clinical isolates. Pol. J. Vet. Sci., 2019, 22(1), 173-175.
[PMID: 30997781]
[232]
Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giusiano, G.; Angiolella, L. Chemical characterization and antifungal activity of Origanum vul-gare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res., 2019, 33(22), 3273-3277.
[http://dx.doi.org/10.1080/14786419.2018.1468325] [PMID: 29726703]
[233]
Han, S.H.; Hur, M.S.; Kim, M.J.; Jung, W.H.; Park, M.; Kim, J.H.; Shin, H.J.; Choe, Y.B.; Ahn, K.J.; Lee, Y.W. In vitro anti-Malassezia activity of Castanea crenata shell and oil-soluble glycyrrhiza extracts. Ann. Dermatol., 2017, 29(3), 321-326.
[http://dx.doi.org/10.5021/ad.2017.29.3.321] [PMID: 28566909]
[234]
Irani, M.; Sarmadi, M.; Bernard, F.; Ebrahimi Pour, G.H.; Shaker Bazarnov, H. Leaves antimicrobial activity of Glycyrrhiza glabra L. Iran. J. Pharm. Res., 2010, 9(4), 425-428.
[PMID: 24381608]
[235]
Selvakumar, P. naveena, B.E.; prakash, S.D. Studies on the antidandruff activity of the essential oil of Coleus amboinicus and Eucalyp-tus globulus. Asian Pac. J. Trop. Dis., 2012, 2, S715-S719.
[http://dx.doi.org/10.1016/S2222-1808(12)60250-3]
[236]
Bokaeian, M.; Nakhaee, A.; Moodi, B.; Ali Khazaei, H. Eucalyptus globulus (eucalyptus) treatment of candidiasis in normal and diabetic rats. Iran. Biomed. J., 2010, 14(3), 121-126.
[PMID: 21079663]
[237]
Hati, D.; Bhatnagar, S.P.; Sethi, K.K. Development and evaluation of polyherbal antidandruff hair oil. Pharmacogn. J., 2010, 2(10), 328-334.
[http://dx.doi.org/10.1016/S0975-3575(10)80104-X]
[238]
Diehl, C.; Reznichenko, N.; Casero, R.; Faenza, L.; Cuffini, C.; Palacios, S. Novel antibacterial, antifungal and antiparasitic activities of Quassia amara wood extract. Int J Pharmacol Phytochem Ethnomed., 2016, 2, 62-71.
[http://dx.doi.org/10.18052/www.scipress.com/IJPPE.2.62]
[239]
Diehl, C.; Ferrari, A. Efficacy of topical 4% Quassia amara gel in facial seborrheic dermatitis: A randomized, double-blind, comparative study. J. Drugs Dermatol., 2013, 12(3), 312-315.
[PMID: 23545914]
[240]
Bismarck, D.; Dusold, A.; Heusinger, A.; Müller, E. Antifungal in vitro activity of essential oils against clinical isolates of Malassezia pachydermatis from canine ears: A report from a practice laboratory. Complement. Med. Res., 2020, 27(3), 143-154.
[http://dx.doi.org/10.1159/000504316] [PMID: 31775141]
[241]
Lodhia, M.H.; Bhatt, K.R.; Thaker, V.S. Antibacterial activity of essential oils from palmarosa, evening primrose, lavender and tuberose. Indian J. Pharm. Sci., 2009, 71(2), 134-136.
[http://dx.doi.org/10.4103/0250-474X.54278] [PMID: 20336210]
[242]
Lozoya, X.; Navarro, V.; García, M.; Zurita, M. Solanum chrysotrichum (Schldl.) a plant used in Mexico for the treatment of skin myco-sis. J. Ethnopharmacol., 1992, 36(2), 127-132.
[http://dx.doi.org/10.1016/0378-8741(92)90011-F] [PMID: 1608268]
[243]
Herrera-Arellano, A.; Martínez-Rivera, M.L.; Hernández-Cruz, M.; López-Villegas, E.O.; Rodríguez-Tovar, A.V.; Alvarez, L.; Marquina-Bahena, S.; Navarro-García, V.M.; Tortoriello, J. Mycological and electron microscopic study of Solanum chrysotrichum saponin SC-2 antifungal activity on Candida species of medical significance. Planta Med., 2007, 73(15), 1568-1573.
[http://dx.doi.org/10.1055/s-2007-993744] [PMID: 18058612]
[244]
Herrera-Arellano, A.; Jiménez-Ferrer, E.; Vega-Pimentel, A.M.; Martínez-Rivera, M.L.; Hernández-Hernández, M.; Zamilpa, A.; Torto-riello, J. Clinical and mycological evaluation of therapeutic effectiveness of Solanum chrysotrichum standardized extract on patients with Pityriasis capitis (dandruff). A double blind and randomized clinical trial controlled with ketoconazole. Planta Med., 2004, 70(6), 483-488.
[http://dx.doi.org/10.1055/s-2004-827145] [PMID: 15241887]
[245]
Herrera-Arellano, A.; López-Villegas, E.O.; Rodríguez-Tovar, A.V.; Zamilpa, A.; Jiménez-Ferrer, E.; Tortoriello, J.; Martínez-Rivera, M.A. Use of antifungal saponin SC-2 of Solanum chrysotrichum for the treatment of vulvovaginal candidiasis: In vitro studies and clini-cal experiences. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(3), 410-417.
[http://dx.doi.org/10.4314/ajtcam.v10i3.4] [PMID: 24146467]
[246]
Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In vitro antifungal activity of hydroxy-chavicol isolated from Piper betle L. Ann. Clin. Microbiol. Antimicrob., 2010, 9(1), 7.
[http://dx.doi.org/10.1186/1476-0711-9-7] [PMID: 20128889]
[247]
Kaveti, B.; Tan, L.; Sarnnia, K.T.; Baig, M. Antibacterial activity of Piper betle leaves. Int. J. Pharm. Teach. Pract., 2011, 2(3), 129-132.
[248]
Soni, P.; Siddiqui, A.A.; Dwivedi, J.; Soni, V. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview. Asian Pac. J. Trop. Biomed., 2012, 2(12), 1002-1008.
[http://dx.doi.org/10.1016/S2221-1691(13)60014-3] [PMID: 23593583]
[249]
Kumar, R.S.; Bharathi, R.A.; Lakshmipriya, R.; Devi, C.S.; Sivaranjani, A.; Banumathi, T. Formulation of antimalassezic shampoo from datura metel and Prosopis juliflora. Indo American J. Pharmaceut. Res., 2017, 7(11), 905-908.
[250]
Parvez, G.M. Pharmacological activities of mango (Mangifera Indica): A review. J. Pharmacogn. Phytochem., 2016, 5(3), 1-7.
[251]
Agrawal, J.; Pal, A. Nyctanthes arbor-tristis Linn--a critical ethnopharmacological review. J. Ethnopharmacol., 2013, 146(3), 645-658.
[http://dx.doi.org/10.1016/j.jep.2013.01.024] [PMID: 23376280]
[252]
Mishra, R.K.; Mishra, V.; Pandey, A.; Tiwari, A.K.; Pandey, H.; Sharma, S.; Pandey, A.C.; Dikshit, A. Exploration of anti-Malassezia potential of Nyctanthes arbor-tristis L. and their application to combat the infection caused by Mala s1 a novel allergen. BMC Complement. Altern. Med., 2016, 16(1), 114.
[http://dx.doi.org/10.1186/s12906-016-1092-2] [PMID: 27036961]
[253]
Devi, P.R.; Kokilavani, R.; Poongothai, S.G. Anti microbial activity of the various leaf extracts of Vitex negundo Linn. Anc. Sci. Life, 2008, 27(4), 22-27.
[PMID: 22557282]
[254]
Anbalagan, S.; Sankareswaran, M.; Moorthy, M.; Elakkia, B.; Fahamitha, E. Phytochemical analysis and antifungal activity of Vitex negundo leaf extracts against clinically isolated fungal pathogens. Indian J. Appl. Microbiol., 2017, 20(2), 119-125.
[http://dx.doi.org/10.46798/ijam.2017.v20i02.011]
[255]
Venkatesan, S.; Ravi, R. Antifungal activity of Eclipta alba. Indian J. Pharm. Sci., 2004, 66(1), 97-98.
[256]
Jadhav, V.M.; Thorat, R.M.; Kadam, V.J.; Sathe, N.S. Eclipta alba Linn-“kesharaja”: A review. J. Pharm. Res., 2009, 2(8), 1236-1241.
[257]
Regupathi, T.; Chitra, K. Antidandruff activity of Eclipta alba (L.) Hassk. and Lippia nodiflora Linn. Int. J. Res. Pharm. Sci., 2015, 6(2), 185-188.
[258]
Patil, U.K.; Muskan, K.; Mokashe, N. In vitro comparison of the inhibitory effects of various plant extracts on the growth of Malassezia furfur. Inven. Impact Cosmeceuticals, 2010, 1(1), 1-4.
[259]
Balakrishnan, K.P.; Narayanaswamy, N.; Mathews, S.; Gurung, K. Evaluation of some medicinal plants for their dandruff control prop-erties. Int. J. Pharma Bio Sci., 2011, 2(4), 38-45.
[260]
Sarika, K.M.; Aparajita, V.; Bindu, R.S.; Soosamma, M. Herbal extracts and their antifungal activity against Malassezia furfur. Int. J. Pharm. Biol. Sci., 2013, 4(3), 969-974.
[261]
Rathod, T.; Padalia, H.; Chanda, S. Synergistic anticandidal activity of two terminalia species with polyene and azole group of antibiotics against multidrug-resistant clinical isolates of candida. Asian J. Pharm. Clin. Res., 2018, 11(1), 138-142.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.21664]
[262]
Gautami, R.; Iyer, P. Antimicrobial and anticancer activity of green gram (Vigna radiata) and callus of green gram. Int. J. Curr. Res. Biosci. Plant Biol., 2018, 5(1), 60-66.
[http://dx.doi.org/10.20546/ijcrbp.2018.501.008]
[263]
Abdollahzadeh, Sh.; Mashouf, R.; Mortazavi, H.; Moghaddam, M.; Roozbahani, N.; Vahedi, M. Antibacterial and antifungal activities of Punica granatum peel extracts against oral pathogens. J. Dent. (Tehran), 2011, 8(1), 1-6.
[PMID: 21998800]
[264]
Prabha Manju, M.; Gokul Shankar, S.; Navin Kumar Sharma, B.K. Chiranjeevi, A Antifungal activity of selected plant extracts against Malassezia globosa. Int. J. Sci. Tech. Res., 2012, 5(2), 162-168.
[265]
Lavaee, F.; Motaghi, D.; Jassbi, A.R.; Jafarian, H.; Ghasemi, F.; Badiee, P. Antifungal effect of the bark and root extracts of Punica gran-atum on oral Candida isolates. Curr. Med. Mycol., 2018, 4(4), 20-24.
[PMID: 30815613]
[266]
Uma, B.; Prabhakar, K.; Rajendran, S. Anticandidal activity of Asparagus racemosus. Indian J. Pharm. Sci., 2009, 71(3), 342-343.
[http://dx.doi.org/10.4103/0250-474X.56017] [PMID: 20490311]
[267]
Onlom, C.; Khanthawong, S.; Waranuch, N.; Ingkaninan, K. In vitro anti-Malassezia activity and potential use in anti-dandruff formula-tion of Asparagus racemosus. Int. J. Cosmet. Sci., 2014, 36(1), 74-78.
[http://dx.doi.org/10.1111/ics.12098] [PMID: 24117781]
[268]
Wuthi-Udomlert, M.; Chotipatoomwan, P.; Panyadee, S.; Gritsanapan, W. Inhibitory effect of formulated lemongrass shampoo on Malas-sezia furfur: A yeast associated with dandruff. Southeast Asian J. Trop. Med. Public Health, 2011, 42(2), 363-369.
[PMID: 21710859]
[269]
Chaisripipat, W.; Lourith, N.; Kanlayavattanakul, M. Anti-dandruff hair tonic containing lemongrass (Cymbopogon flexuosus) oil. Forsch. Komplement. Med., 2015, 22(4), 226-229.
[PMID: 26566122]
[270]
Hashemi, S.A.; Madani, S.A.; Abediankenari, S. The review on properties of Aloe vera in healing of cutaneous wounds. BioMed Res. Int., 2015, 2015, 714216.
[http://dx.doi.org/10.1155/2015/714216]
[271]
Rosca-Casian, O.; Parvu, M.; Vlase, L.; Tamas, M. Antifungal activity of Aloe vera leaves. Fitoterapia, 2007, 78(3), 219-222.
[http://dx.doi.org/10.1016/j.fitote.2006.11.008] [PMID: 17336466]
[272]
Arora, D.S.; Kaur, J. Antimicrobial activity of spices. Int. J. Antimicrob. Agents, 1999, 12(3), 257-262.
[http://dx.doi.org/10.1016/S0924-8579(99)00074-6] [PMID: 10461845]
[273]
Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res., 2007, 21(10), 989-994.
[http://dx.doi.org/10.1002/ptr.2179] [PMID: 17562569]
[274]
Botelho, M.A.; Nogueira, N.A.; Bastos, G.M.; Fonseca, S.G.; Lemos, T.L.; Matos, F.J.; Montenegro, D.; Heukelbach, J.; Rao, V.S.; Brito, G.A. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res., 2007, 40(3), 349-356.
[http://dx.doi.org/10.1590/S0100-879X2007000300010] [PMID: 17334532]
[275]
Jirovetz, L.; Wlcek, K.; Buchbauer, G.; Gochev, V.; Girova, T.; Stoyanova, A.; Schmidt, E.; Geissler, M. Antifungal activities of essential oils of Salvia lavandulifolia, Salvia officinalis and Salvia sclarea against various pathogenic Candida species. J. Essent. Oil-Bear. Plants, 2007, 10(5), 430-439.
[http://dx.doi.org/10.1080/0972060X.2007.10643576]
[276]
Lawal, O.A.; Ogunwande, I.A.; Omikorede, O.E.; Owolabi, M.S.; Olorunsola, F.F.; Sanni, A.A.; Amisu, K.O.; Opoku, A.R. Chemical composition and antimicrobial activity of essential oil of Ocimum kilimandscharicum (R. Br.) Guerke: A new chemotype. Am. J. Essen-tial Oils Nat. Products, 2014, 2(1), 41-46.
[277]
Begnami, A.F.; Duarte, M.C.; Furletti, V.; Rehder, V.L. Antimicrobial potential of Coriandrum sativum L. against different Candida spe-cies in vitro. Food Chem., 2010, 118(1), 74-77.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.089]
[278]
Runyoro, D.; Ngassapa, O.; Vagionas, K.; Aligiannis, N.; Graikou, K.; Chinou, I. Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem., 2010, 119(1), 311-316.
[http://dx.doi.org/10.1016/j.foodchem.2009.06.028]
[279]
Wang, G.S.; Deng, J.H.; Ma, Y.H.; Shi, M.; Li, B. Mechanisms, clinically curative effects, and antifungal activities of cinnamon oil and pogostemon oil complex against three species of Candida. J. Tradit. Chin. Med., 2012, 32(1), 19-24.
[http://dx.doi.org/10.1016/S0254-6272(12)60026-0] [PMID: 22594097]
[280]
Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour Fragrance J., 2016, 31(4), 302-309.
[http://dx.doi.org/10.1002/ffj.3318]
[281]
Conner, DE Naturally occuring compounds. Antimicrob. Foods, 1993, 1, 441-468.
[282]
Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res., 2007, 21(6), 501-506.
[http://dx.doi.org/10.1002/ptr.2124] [PMID: 17380552]
[283]
Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry, 2008, 69(8), 1732-1738.
[http://dx.doi.org/10.1016/j.phytochem.2008.02.014] [PMID: 18417176]
[284]
Imelouane, B.; Amhamdi, H.; Wathelet, J.P.; Ankit, M.; Khedid, K.; El Bachiri, A. Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from Eastern Morocco. Int. J. Agric. Biol., 2009, 11(2), 205-208.
[285]
Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; van Griensven, L.J. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules, 2009, 14(1), 238-249.
[http://dx.doi.org/10.3390/molecules14010238] [PMID: 19136911]
[286]
Unlu, M.; Ergene, E.; Unlu, G.V.; Zeytinoglu, H.S.; Vural, N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem. Toxicol., 2010, 48(11), 3274-3280.
[http://dx.doi.org/10.1016/j.fct.2010.09.001] [PMID: 20828600]
[287]
Zanetti, S.; Cannas, S.; Molicotti, P.; Bua, A.; Cubeddu, M.; Porcedda, S.; Marongiu, B.; Sechi, L.A. Evaluation of the antimicrobial prop-erties of the essential oil of Myrtus communis L. against clinical strains of mycobacterium spp. Interdiscip. Perspect. Infect. Dis., 2010, 2010, 931530.
[288]
Aleksic, V.; Knezevic, P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res., 2014, 169(4), 240-254.
[http://dx.doi.org/10.1016/j.micres.2013.10.003] [PMID: 24291016]
[289]
Braca, A.; Siciliano, T.; D’Arrigo, M.; Germanò, M.P. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia, 2008, 79(2), 123-125.
[http://dx.doi.org/10.1016/j.fitote.2007.11.002] [PMID: 18164872]
[290]
Ait-Ouazzou, A.; Lorán, S.; Arakrak, A.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Evaluation of the chemical compo-sition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res. Int., 2012, 45(1), 313-319.
[http://dx.doi.org/10.1016/j.foodres.2011.09.004]
[291]
Khoury, M.; El Beyrouthy, M.; Ouaini, N.; Iriti, M.; Eparvier, V.; Stien, D. Chemical composition and antimicrobial activity of the essen-tial oil of Juniperus excelsa M.Bieb. growing wild in Lebanon. Chem. Biodivers., 2014, 11(5), 825-830.
[http://dx.doi.org/10.1002/cbdv.201300354] [PMID: 24827694]
[292]
Yang, X.; Zhang, X.; Yang, S.P.; Liu, W.Q. Evaluation of the antibacterial activity of patchouli oil. Iran. J. Pharm. Res., 2013, 12(3), 307-316.
[PMID: 24250637]
[293]
Bilcu, M.; Grumezescu, A.M.; Oprea, A.E.; Popescu, R.C. Mogoșanu, G.D.; Hristu, R.; Stanciu, G.A.; Mihailescu, D.F.; Lazar, V.; Be-zirtzoglou, E.; Chifiriuc, M.C. Efficiency of vanilla, patchouli and ylang ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains. Molecules, 2014, 19(11), 17943-17956.
[http://dx.doi.org/10.3390/molecules191117943] [PMID: 25375335]
[294]
Karimi, A. Characterization and antimicrobial activity of patchouli essential oil extracted from Pogostemon cablin [Blanco] Benth. Adv. Environ. Biol., 2014, 2301-2310.
[295]
Pullagummi, C.; Rao, N.B.; Singh, B.C.; Bheemagani, A.J.; Kumar, P.; Venkatesh, K.; Rani, A.R. Comparitive studies on antibacterial activity of Patchouli [Pogostemon cablin (Blanco) Benth] and Geranium (Pelargonium graveolens) aromatic medicinal. Afr. J. Biotechnol., 2014, 13(23)
[296]
Swamy, M.K.; Sinniah, U.R. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance. Molecules, 2015, 20(5), 8521-8547.
[http://dx.doi.org/10.3390/molecules20058521] [PMID: 25985355]
[297]
Hassanshahian, M.; Bayat, Z.; Saeidi, S.; Shiri, Y. Antimicrobial activity of Trachyspermum ammi essential oil against human bacterial. Int. J. Adv. Biol. Biomed. Res., 2014, 2, 18-24.
[298]
Kulkarni, M.; Hastak, V.; Jadhav, V.; Date, A.A. Fenugreek leaf extract and its gel formulation show activity against Malassezia furfur. Assay Drug Dev. Technol., 2020, 18(1), 45-55.
[http://dx.doi.org/10.1089/adt.2019.918] [PMID: 31524496]
[299]
Novy, P.; Davidova, H.; Serrano-Rojero, C.S.; Rondevaldova, J.; Pulkrabek, J.; Kokoska, L. Composition and antimicrobial activity of Euphrasia rostkoviana Hayne essential oil. Evid.-. Based Complement. Altern. Med., 2015, 2015, 734101.
[300]
Da, X.; Nishiyama, Y.; Tie, D.; Hein, K.Z.; Yamamoto, O.; Morita, E. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Sci. Rep., 2019, 9(1), 1683.
[http://dx.doi.org/10.1038/s41598-019-38916-w] [PMID: 30737463]
[301]
Hashem, M.; Alamri, S.A.; Alrumman, S.A.; Moustafa, M.F. Suppression of phytopathogenic fungi by plant extract of some weeds and the possible mode of action. Br. Microbiol. Res. J., 2016, 1-3(3), 15.
[http://dx.doi.org/10.9734/BMRJ/2016/26629]
[302]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils--a review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[303]
Miron, D.; Battisti, F.; Silva, F.K.; Lana, A.D.; Pippi, B.; Casanova, B.; Gnoatto, S.; Fuentefria, A.; Mayorga, P.; Schapoval, E.E. Antifun-gal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Rev. Bras. Farmacogn., 2014, 24(6), 660-667.
[http://dx.doi.org/10.1016/j.bjp.2014.10.014]
[304]
Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial effects and mode of action of selected essential oils com-ponents against Escherichia coli and Staphylococcus aureus. Evid.-. Based Complement. Altern. Med., 2015, 2015, 795435.
[305]
Essid, R.; Hammami, M.; Gharbi, D.; Karkouch, I.; Hamouda, T.B.; Elkahoui, S.; Limam, F.; Tabbene, O. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains. Appl. Microbiol. Biotechnol., 2017, 101(18), 6993-7006.
[http://dx.doi.org/10.1007/s00253-017-8442-y] [PMID: 28766033]
[306]
Sharma, A.; Singh, S.; Tewari, R.; Bhatt, V.P.; Sharma, J.; Maurya, I.K. Phytochemical analysis and mode of action against Candida gla-brata of Paeonia emodi extracts. J. Mycol. Med., 2018, 28(3), 443-451.
[http://dx.doi.org/10.1016/j.mycmed.2018.04.008] [PMID: 29803699]
[307]
Oussalah, M.; Caillet, S.; Lacroix, M. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J. Food Prot., 2006, 69(5), 1046-1055.
[http://dx.doi.org/10.4315/0362-028X-69.5.1046] [PMID: 16715803]
[308]
Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel), 2013, 6(12), 1451-1474.
[http://dx.doi.org/10.3390/ph6121451] [PMID: 24287491]
[309]
Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod., 2014, 62, 250-264.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.055]
[310]
Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragrance J., 2013, 28(5), 269-279.
[http://dx.doi.org/10.1002/ffj.3165]
[311]
Turina, A.V.; Nolan, M.V.; Zygadlo, J.A.; Perillo, M.A. Natural terpenes: Self-assembly and membrane partitioning. Biophys. Chem., 2006, 122(2), 101-113.
[http://dx.doi.org/10.1016/j.bpc.2006.02.007] [PMID: 16563603]
[312]
Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother., 2002, 46(6), 1914-1920.
[http://dx.doi.org/10.1128/AAC.46.6.1914-1920.2002] [PMID: 12019108]
[313]
Cox, S.D.; Gustafson, J.E.; Mann, C.M.; Markham, J.L.; Liew, Y.C.; Hartland, R.P.; Bell, H.C.; Warmington, J.R.; Wyllie, S.G. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Lett. Appl. Microbiol., 1998, 26(5), 355-358.
[http://dx.doi.org/10.1046/j.1472-765X.1998.00348.x] [PMID: 9674165]
[314]
Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol., 2000, 88(1), 170-175.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00943.x] [PMID: 10735256]
[315]
Longbottom, C.J.; Carson, C.F.; Hammer, K.A.; Mee, B.J.; Riley, T.V. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J. Antimicrob. Chemother., 2004, 54(2), 386-392.
[http://dx.doi.org/10.1093/jac/dkh359] [PMID: 15254026]
[316]
Burt, S. Essential oils: Their antibacterial properties and potential applications in foods--a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[317]
Trüeb, R.M. Shampoos: Ingredients, efficacy and adverse effects. J. Dtsch. Dermatol. Ges., 2007, 5(5), 356-365.
[http://dx.doi.org/10.1111/j.1610-0387.2007.06304.x] [PMID: 17451380]
[318]
D’Souza, P.; Rathi, S.K. Shampoo and conditioners: What a dermatologist should know? Indian J. Dermatol., 2015, 60(3), 248-254.
[http://dx.doi.org/10.4103/0019-5154.156355] [PMID: 26120149]
[319]
Azizullah, A.; Shakir, S.K.; Shoaib, S.; Bangash, H.; Taimur, N.; Murad, W.; Daud, M.K. Ecotoxicological evaluation of two anti-dandruff hair shampoos using Lemna minor. Environ. Monit. Assess., 2018, 190(5), 268.
[http://dx.doi.org/10.1007/s10661-018-6636-0] [PMID: 29619567]
[320]
Draelos, Z.D. Essentials of hair care often neglected: Hair cleansing. Int. J. Trichology, 2010, 2(1), 24-29.
[http://dx.doi.org/10.4103/0974-7753.66909] [PMID: 21188020]
[321]
Patni, P; Varghese, D; Balekar, N; Jain, DK Formulation and evaluation of herbal hair oil for alopecia management. Planta indica, 2006, 2(3), 27-30.
[322]
Purwal, L.; Gupta, S.P.; Pande, S.M. Development and evaluation of herbal formulations for hair growth. E-J. Chem., 2008, 5(1), 34-38.
[http://dx.doi.org/10.1155/2008/674598]
[323]
Grace, X.F.; Raj, S.R.; Shanmughanathan, S.; Chamundeeshwari, D. Preparation and evaluation of polyherbal hair oil. Int. Pharm. Chem. Anal., 2014, 1(1), 1-5.
[324]
Adhirajan, N.; Ravi Kumar, T.; Shanmugasundaram, N.; Babu, M. In vivo and in vitro evaluation of hair growth potential of Hibiscus rosa-sinensis Linn. J. Ethnopharmacol., 2003, 88(2-3), 235-239.
[http://dx.doi.org/10.1016/S0378-8741(03)00231-9] [PMID: 12963149]
[325]
Anjum, F.; Bukhari, S.A.; Shahid, M.; Bokhari, T.H.; Talpur, M.M. Exploration of nutraceutical potential of herbal oil formulated from parasitic plant. Afr. J. Tradit. Complement. Altern. Med., 2013, 11(1), 78-86.
[http://dx.doi.org/10.4314/ajtcam.v11i1.11] [PMID: 24653557]
[326]
Revansiddappa, M.; Sharadha, R.; Abbulu, K. Formulation and evaluation of herbal Anti-dandruff shampoo. J. Pharmacogn. Phytochem., 2018, 7(4), 764-767.
[327]
Nenoff, P.; Haustein, U.F.; Fiedler, A. The antifungal activity of a coal tar gel on Malassezia furfur in vitro. Dermatology, 1995, 191(4), 311-314.
[http://dx.doi.org/10.1159/000246582] [PMID: 8573928]
[328]
Harding, C.R.; Matheson, J.R.; Hoptroff, M.; Jones, D.A.; Luo, Y.; Baines, F.L.; Luo, S. A high glycerol-containing leave-on scalp care treatment to improve dandruff. Skinmed, 2014, 12(3), 155-161.
[PMID: 25134312]
[329]
Bhatia, A.; Raza, K.; Singh, B.; Katare, O.P. Phospholipid-based formulation with improved attributes of coal tar. J. Cosmet. Dermatol., 2009, 8(4), 282-288.
[http://dx.doi.org/10.1111/j.1473-2165.2009.00468.x] [PMID: 19958432]
[330]
Bhatia, A.; Singh, B.; Amarji, B.; Negi, P.; Shukla, A.; Katare, O.P. Novel stain-free lecithinized coal tar formulation for psoriasis. Int. J. Dermatol., 2011, 50(10), 1246-1248.
[http://dx.doi.org/10.1111/j.1365-4632.2011.04913.x] [PMID: 21671911]
[331]
Shirsand, S.; Para, M.; Nagendrakumar, D.; Kanani, K.; Keerthy, D. Formulation and evaluation of Ketoconazole niosomal gel drug de-livery system. Int. J. Pharm. Investig., 2012, 2(4), 201-207.
[http://dx.doi.org/10.4103/2230-973X.107002] [PMID: 23580936]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy