Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Mini-Review Article

Role of Nanotechnology in Taste Masking: Recent Updates

Author(s): Vivekanand Vishvakarma, Malkiet Kaur, Manju Nagpal* and Sandeep Arora

Volume 15, Issue 1, 2023

Published on: 24 August, 2022

Page: [1 - 14] Pages: 14

DOI: 10.2174/2589977514666220526091259

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

One of the important parameters in the case of dosage form is taste. Most of the drugs available in oral dosage form have an unpleasant taste which leads to patient incompliance and affects the success ratio of products in the market. Geriatric and paediatric patients suffer more with the bitter taste of medicines. According to the studies reported, it is found that 50% of the population have the problem swallowing tablets, especially the pediatric and geriatric population. Masking the taste of bitter drugs has become necessary in the pharmaceutical field and increasing interest of researchers to develop various methods for masking the bitter taste of drugs. Five major tastes, felt by our tongue are salt, sour, sweet, bitter, and umami. When the drug dissolves with saliva, drug molecules interact with taste receptors present on the tongue and give taste sensations. Although, many solid oral dosage forms like pills, and tablets have an additional advantage of masking and encapsulation of bitter taste drugs; however, they might not be effective for children because they may or may not swallow pills or tablets. There are various other methods that mask the bitter taste of drugs such as the addition of sweeteners and flavouring agents, granulation, coating, inclusion complexes, extrusion method, ion-exchange resins, etc, discussed in the first section of the article. The second part of this article consists of various nanotechnology-based drug delivery systems that were fabricated by researchers to mask the bitter taste of drugs. A brief of recent literature on various nanocarriers that were fabricated or developed for taste masking has been discussed in this part. A better understanding of these methods will help researchers and pharmaceutical industries to develop novel drug delivery systems with improved taste masking properties.

Keywords: Bitter taste, nanotechnology, nanocarriers, taste masking, palatability, oral dosage.

Next »
Graphical Abstract
[1]
Ayenew Z, Puri V, Kumar L, Bansal AK. Trends in pharmaceutical taste masking technologies: a patent review. Recent Pat Drug Deliv Formul 2009; 3(1): 26-39.
[http://dx.doi.org/10.2174/187221109787158364] [PMID: 19149727]
[2]
Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature 2006; 444(7117): 288-94.
[http://dx.doi.org/10.1038/nature05401] [PMID: 17108952]
[3]
Meisel CT, Pagella P, Porcheri C, Mitsiadis TA. Three-dimensional imaging and gene expression analysis upon enzymatic isolation of the tongue epithelium. Front Physiol 2020; 11: 825.
[http://dx.doi.org/10.3389/fphys.2020.00825] [PMID: 32848819]
[4]
Mistretta CM, Kumari A. Tongue and taste organ biology and function: Homeostasis maintained by hedgehog signaling. Annu Rev Physiol 2017; 79(10): 335-56.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034202] [PMID: 28192057]
[5]
Bala R, Madaan R. Strategies practiced to perk up oral palatability and acceptance of bitter drugs. J Drug Deliv Sci Technol 2020; 56: 101580.
[http://dx.doi.org/10.1016/j.jddst.2020.101580]
[6]
Banerjee S, Joshi U, Singh A, Saharan VA. Lipids for Taste masking and Taste assessment in pharmaceutical formulations. Chem Phys Lipids 2021; 235(1): 105031.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.105031] [PMID: 33352198]
[7]
Choi H, Kim NA, Nam TS, Lee S, Jeong SH. Evaluation of taste-masking effects of pharmaceutical sweeteners with an electronic tongue system. Drug Dev Ind Pharm 2014; 40(3): 308-17.
[http://dx.doi.org/10.3109/03639045.2012.758636] [PMID: 23786206]
[8]
Coupland JN, Hayes JE. Physical approaches to masking bitter taste: lessons from food and pharmaceuticals. Pharm Res 2014; 31(11): 2921-39.
[http://dx.doi.org/10.1007/s11095-014-1480-6] [PMID: 25205460]
[9]
Amita N, Garg S. An update on taste masking technologies for oral pharmaceuticals. Indian J Pharm Sci 2002; 64(1): 10.
[10]
Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. Clin Ther 2013; 35(8): 1225-46.
[http://dx.doi.org/10.1016/j.clinthera.2013.06.007] [PMID: 23886820]
[11]
Karaman R. Prodrugs for masking the bitter taste of drugs. Appl Nanotechnol in Drug Deliv 2014; 25: 399-445.
[http://dx.doi.org/10.5772/58404]
[12]
Douroumis D. Practical approaches of taste masking technologies in oral solid forms. Expert Opin Drug Deliv 2007; 4(4): 417-26.
[http://dx.doi.org/10.1517/17425247.4.4.417] [PMID: 17683254]
[13]
Al-Kasmi B, Alsirawan MB, Bashimam M, El-Zein H. Mechanical microencapsulation: The best technique in taste masking for the manufacturing scale - Effect of polymer encapsulation on drug targeting. J Control Release 2017; 260: 134-41.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.002] [PMID: 28603029]
[14]
Das S. Ibuprofen API prices jump 30% in international market due to supply crunch. Available from: http://www.business-standard.com/article/companies/ibuprofen-api-prices-jump-30-in-international-market-due-to-supply-crunch-118082101320_1.html/
[15]
Bukavu Pharmakina. Pharmaceuticals active pharmaceutical ingredients. Available from: https://www.pharmakina.com/quinine-api-active-pharmaceutical-ingredients/
[16]
Alchem international Pvt Ltd. Quinine salts (BP/EP/IP/USP). Available from: http://alcheminternational.com/dev/product/quinine-sulphate/
[17]
Indiamart. Aarambh Life Science. [Cited: 02.10.2021]. Available from: http://www.indiamart.com/aarambh-lifescience/anti-malarial.html#quinine-hcl-bp/
[18]
Sai-Tech. Pharmaceuticls. [Cited: 03.10.2021]. Available from: http://saitechpharmaceuticals.com/products/
[19]
PharmaAdda. Pharma API Manufactures in India. Available from: https://www.pharmaadda.in/pharma-api-manufacturers-in-india/
[20]
[21]
Indiamart. Hetero drugs limited. [Cited: 03.10.2021]. Available from: https://www.indiamart.com/heterodrugslimited-4767937/
[23]
OrchidPharma. Infrastructure-API. Available from: http://www.orchidpharma.com/infra_api.html/
[24]
Evaluation of Potential Nitrosamine Impurities in Cetirizine Dihydrochloride Drug Substance. [Cited: 03.10.2021]. Available form: http://www.wavelengthpharma.com/wp-content/uploads/2020/03/Wavelength-Potential-Nitrosamine-Risk-Evaluation-in-Cetirizine-Dihydrochloride.pdf/
[25]
[27]
Wadhwa J, Puri S. Taste masking: A novel approach for bitter and obnoxious drugs. Int J BiopharmToxicol Res 2011; 1(1): 47-60.
[28]
Faisal W, Farag F, Abdellatif AAH, Abbas A. Taste masking approaches for medicines. Curr Drug Deliv 2018; 15(2): 167-85.
[http://dx.doi.org/10.2174/1567201814666171013145958] [PMID: 29034835]
[29]
Vummaneni V, Nagpal D. Taste masking technologies: an overview and recent updates. Int J Res Pharm Biomed Sci 2012; 3(2): 510-24.
[30]
Minde DS, Saudagar RB. A review on taste masking a novel approach of new trends for the abnovious drugs. World J Pharm Res 2016; 5(9): 410-28.
[31]
Wagh VD, Ghadlinge SV. Taste masking methods and techniques in oral pharmaceuticals: current perspectives. J Pharm Res 2009; 2(6): 1049-54.
[32]
Ekweremadu CS, Abdelhakim HE, Craig DQM, Barker SA. Development and evaluation of feline tailored amlodipine besylate mini-tablets using l-lysine as a candidate flavouring agent. Pharmaceutics 2020; 12(10): 917.
[http://dx.doi.org/10.3390/pharmaceutics12100917] [PMID: 32987962]
[33]
Wei Y, Nedley MP, Bhaduri SB, Bredzinski X, Boddu SH. Masking the bitter taste of injectable lidocaine HCl formulation for dental procedures. AAPS PharmSciTech 2015; 16(2): 455-65.
[http://dx.doi.org/10.1208/s12249-014-0239-z] [PMID: 25361901]
[34]
Mostafavi SA, Varshosaz J, Arabian S. Formulation development and evaluation of metformin chewing gum with bitter taste masking. Adv Biomed Res 2014; 3: 92.
[http://dx.doi.org/10.4103/2277-9175.129362] [PMID: 24800181]
[35]
Shah PP, Mashru RC. Development and evaluation of artemether taste masked rapid disintegrating tablets with improved dissolution using solid dispersion technique. AAPS PharmSciTech 2008; 9(2): 494-500.
[http://dx.doi.org/10.1208/s12249-008-9066-4] [PMID: 18431657]
[36]
Schwiebert E, Wang Y, Xi R, et al. Inhibition of Bitter Taste from Oral Tenofovir Alafenamide. Mol Pharmacol 2021; 99(5): 319-27.
[http://dx.doi.org/10.1124/molpharm.120.000071] [PMID: 33824185]
[37]
Edward J, Roche Susan M, Papile Eleanor M. Freeman. Rotogranulations and taste masking coatings for preparation of chewable pharmaceutical tablets. United States patent US5260072A, 1993.
[38]
Kulkarni M, Vishwakarma B, Sen S, Anupuram S, Date AA. Development and evaluation of taste masked dry syrup formulation of potassium chloride. AAPS Open 2019; 5(1): 1-0.
[http://dx.doi.org/10.1186/s41120-019-0030-z] [PMID: 30957011]
[39]
Alotaibi HF, Elsamaligy S, Mahrous GM, Bayomi MA, Mahmoud HA. Design of taste masked enteric orodispersible tablets of diclofenac sodium by applying fluid bed coating technology. Saudi Pharm J 2019; 27(3): 354-62.
[http://dx.doi.org/10.1016/j.jsps.2018.12.003] [PMID: 30976178]
[40]
Yıldız S, Aytekin E, Yavuz B, Bozdağ Pehlivan S, Vural İ Ünlü N. Development and evaluation of orally disintegrating tablets comprising taste-masked mirtazapine granules. Pharm Dev Technol 2018; 23(5): 488-95.
[http://dx.doi.org/10.1080/10837450.2017.1315670] [PMID: 28368673]
[41]
Drašković M, Medarević D, Aleksić I, Parojčić J. In vitro and in vivo investigation of taste-masking effectiveness of Eudragit E PO as drug particle coating agent in orally disintegrating tablets. Drug Dev Ind Pharm 2017; 43(5): 723-31.
[http://dx.doi.org/10.1080/03639045.2016.1220572] [PMID: 27494420]
[42]
Han X, Zhang DK, Zhang F, et al. A novel strategy for bitter taste masking of gankeshuangqing dispersible tablets based on particle coating technology. Pharmacogn Mag 2017; 13(51): 400-6.
[http://dx.doi.org/10.4103/pm.pm_240_16] [PMID: 28839363]
[43]
Stange U, Führling C, Gieseler H. Taste masking of naproxen sodium granules by fluid-bed coating. Pharm Dev Technol 2014; 19(2): 137-47.
[http://dx.doi.org/10.3109/10837450.2012.757784] [PMID: 23324020]
[44]
Sugiura T, Uchida S, Namiki N. Taste-masking effect of physical and organoleptic methods on peppermint-scented orally disintegrating tablet of famotidine based on suspension spray-coating method. Chem Pharm Bull (Tokyo) 2012; 60(3): 315-9.
[http://dx.doi.org/10.1248/cpb.60.315] [PMID: 22382410]
[45]
Jyothi NV, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 2010; 27(3): 187-97.
[http://dx.doi.org/10.3109/02652040903131301] [PMID: 20406093]
[46]
Toor R, Kumari B. New technologies in the formulation of oral dispersible tablets and taste masking: a review. Ind Res J Pharm & Sci 2018; 16(5): 1.
[http://dx.doi.org/10.21276/irjps.2018.5.1.7]
[47]
Muoka LC, Ross SA, Mithu MSH, Nandi U, Douroumis D. Comparative taste-masking evaluation of microencapsulated bitter drugs using Smartseal 30D and ReadyMix for paediatric dosage forms. AAPS PharmSciTech 2021; 22(4): 141.
[http://dx.doi.org/10.1208/s12249-021-02002-0] [PMID: 33884533]
[48]
Jain S, Jatav P, Rathore P, et al. Development of mouth dissolving tablet containing microencapsulated drug for taste masking by green synthesis. Int J App Chem Bio Sci 2021; 2(4): 1-11.
[49]
Alkhatib H, Mohamed F, Akkawi ME, et al. Microencapsulation of black seed oil in alginate beads for stability and taste masking. J Drug Deliv Sci Technol 2020; 60: 102030.
[http://dx.doi.org/10.1016/j.jddst.2020.102030]
[50]
Almurisi SH, Akkawi ME, Chatterjee B, et al. Taste masking of paracetamol encapsulated in chitosan-coated alginate beads. J Drug Deliv Sci Technol 2020; 56: 101520.
[http://dx.doi.org/10.1016/j.jddst.2020.101520]
[51]
Qin W, He Y, Guo Z, et al. Optimization of taste-masking on ibuprofen microspheres with selected structure features. Asian J Pharm Sci 2019; 14(2): 174-82.
[http://dx.doi.org/10.1016/j.ajps.2018.05.003] [PMID: 32104449]
[52]
Stagner WC, Iyer M, Rathod V, Meruva S, Staton S, Haware RV. Human volunteer, in vitro, and molecular level evaluation of an optimized taste-masked isoniazid-chitosan spray-dried microparticle matrix. Int J Pharm 2019; 572: 118774.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118774] [PMID: 31678392]
[53]
Amelian A, Wasilewska K. Wesoły M, Ciosek-Skibińska P, Winnicka K. Taste-masking assessment of orally disintegrating tablets and lyophilisates with cetirizine dihydrochloride microparticles. Saudi Pharm J 2017; 25(8): 1144-50.
[http://dx.doi.org/10.1016/j.jsps.2017.06.001] [PMID: 30166902]
[54]
Wesoły M, Zabadaj M, Amelian A, et al. Tasting cetirizine-based microspheres with an electronic tongue. Sens Actuators B Chem 2017; 238: 1190-8.
[http://dx.doi.org/10.1016/j.snb.2016.06.147]
[55]
Estevinho BN, Carlan I, Blaga A, et al. Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technol 2016; 289: 71-8.
[http://dx.doi.org/10.1016/j.powtec.2015.11.019]
[56]
El-Said IA, Aboelwafa AA, ElGazayerly ON. Optimization of taste-masked dapoxetine oral thin films using factorial design: in vitro and in vivo evaluation. Pharm Dev Technol 2021; 26(5): 522-38.
[http://dx.doi.org/10.1080/10837450.2021.1894445] [PMID: 33663316]
[57]
Doifode RA. Design and development of oral reconstituable system of dry syrup containing ciprofloxacin. Sch Acad J Pharm 2021; 2: 28-35.
[58]
Krosuri PK, Dakka G, Reddy YD. Formulation and evaluation of taste masking fexofenadine oral disintegrating tablets. Int J App Pharm 2021; 13(5): 99-108.
[59]
Han CS, Kim S, Oh DW, et al. Preparation, characterization, and stability evaluation of taste-maskingLacosamide microparticles. Mat 2019; 12(6): 1000.
[60]
Liu Y, Li P, Qian R, et al. A novel and discriminative method of in vitro disintegration time for preparation and optimization of taste-masked orally disintegrating tablets of carbinoxamine maleate. Drug Dev Ind Pharm 2018; 44(8): 1317-27.
[http://dx.doi.org/10.1080/03639045.2018.1449854] [PMID: 29521132]
[61]
Alayoubi A, Daihom B, Adhikari H, Mishra S, Helms R, Almoazen H. Development of a taste-masked oral suspension of clindamycin HCl using ion exchange resin Amberlite IRP 69 for use in pediatrics. Drug Dev Ind Pharm 2016; 42(10): 1579-89.
[http://dx.doi.org/10.3109/03639045.2016.1160102] [PMID: 26926148]
[62]
Zhao M, You D, Yin J, et al. Quaternary enteric solid dispersion prepared by hot-melt extrusion to mask the bitter taste and enhance drug stability. Int J Pharm 2021; 597: 120279.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120279] [PMID: 33540020]
[63]
Chivate A, Garkal A, Hariharan K, et al. Exploring novel carrier for improving bioavailability of Itraconazole: Solid dispersion through hot-melt extrusion. J Drug Deliv Sci Technol 2021; 63: 102541.
[http://dx.doi.org/10.1016/j.jddst.2021.102541]
[64]
Yan G, Liang Q, Wen X, et al. Preparation, characterization, and pharmacokinetics of tilmicosin taste-masked formulation via hot-melt extrusion technology. Colloids Surf B Biointerfaces 2020; 196: 111293.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111293] [PMID: 32818925]
[65]
Keating A. Formulation and assessment of taste masked combination therapies for the treatment of paediatric tuberculosis, (doctoral dissertation, UCL (University College London)), 2017.
[66]
Khor CM, Ng WK, Kanaujia P, Chan KP, Dong Y. Hot-melt extrusion microencapsulation of quercetin for taste-masking. J Microencapsul 2017; 34(1): 29-37.
[http://dx.doi.org/10.1080/02652048.2017.1280095] [PMID: 28067579]
[67]
Maniruzzaman M, Boateng JS, Bonnefille M, Aranyos A, Mitchell JC, Douroumis D. Taste masking of paracetamol by hot-melt extrusion: an in vitro and in vivo evaluation. Eur J Pharm Biopharm 2012; 80(2): 433-42.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.019] [PMID: 22108493]
[68]
Bhusnure OG, Shaikh FE, Sugave BK, et al. Formulation strategies for taste-masking of chewable tablets American J Pharm Res 2015; 5(12).
[69]
Alopaeus JF, Göbel A, Breitkreutz J, et al. Investigation of hydroxypropyl-β-cyclodextrin inclusion complexation of two poorly soluble model drugs and their taste-sensation-Effect of electrolytes, freeze-drying and incorporation into oral film formulations. J Drug Deliv Sci Technol 2021; 61: 102245.
[http://dx.doi.org/10.1016/j.jddst.2020.102245]
[70]
Li S, Zhang Y, Khan AR, et al. Quantitative prediction of the bitterness of atomoxetine hydrochloride and taste-masked using hydroxypropyl-β-cyclodextrin: A biosensor evaluation and interaction study. Asian J Pharm Sci 2020; 15(4): 492-505.
[http://dx.doi.org/10.1016/j.ajps.2019.11.001] [PMID: 32952672]
[71]
Yildiz ZI, Uyar T. Fast-dissolving electrospun nanofibrous films of paracetamol/cyclodextrin inclusion complexes. Appl Surf Sci 2019; 492: 626-33.
[http://dx.doi.org/10.1016/j.apsusc.2019.06.220]
[72]
Liu T, Wan X, Luo Z, et al. A donepezil/cyclodextrin complexation orodispersible film: Effect of cyclodextrin on taste-masking based on dynamic process and in vivo drug absorption. Asian J Pharm Sci 2019; 14(2): 183-92.
[http://dx.doi.org/10.1016/j.ajps.2018.05.001] [PMID: 32104450]
[73]
Malaquias LFB, Sá-Barreto LCL, Freire DO, et al. Taste masking and rheology improvement of drug complexed with beta-cyclodextrin and hydroxypropyl-β-cyclodextrin by hot-melt extrusion. Carbohydr Polym 2018; 185: 19-26.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.011] [PMID: 29421056]
[74]
Dong Q, Wang Y, Wen J, et al. Inclusion complex of neohesperidin dihydrochalcone and glucosyl-β-cyclodextrin: Synthesis, characterization, and bitter masking properties in aqueous solutions. J Mol Liq 2017; 241: 926-33.
[http://dx.doi.org/10.1016/j.molliq.2017.05.090]
[75]
Münster M, Mohamed-Ahmed AHA, Immohr LI, et al. Comparative in vitro and in vivo taste assessment of liquid praziquantel formulations. Int J Pharm 2017; 529(1-2): 310-8.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.084] [PMID: 28689966]
[76]
Kadota K, Terada H, Fujimoto A, Nogami S, Uchiyama H, Tozuka Y. Formulation and evaluation of bitter taste-masked orally disintegrating tablets of high memantine hydrochloride loaded granules coated with polymer via layering technique. Int J Pharm 2021; 604: 120725.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120725] [PMID: 34029663]
[77]
Simšič T, Nolimal B, Minova J, Baumgartner A, Planinšek O. A straw for paediatrics: How to administer highly dosed, bitter tasting paracetamol granules. Int J Pharm 2021; 602: 120615.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120615] [PMID: 33887392]
[78]
Okubo Y, Takeuchi Y, Mizuno H, et al. Statistical analyses for the preparation of taste-masking granules using a pH-dependent polymer. J Drug Deliv Sci Technol 2019; 53: 101124.
[http://dx.doi.org/10.1016/j.jddst.2019.101124]
[79]
Nishiyama T, Ogata T, Ozeki T. Preparation of bitter taste-masking granules of lafutidine for orally disintegrating tablets using water-insoluble/soluble polymer combinations. J Drug Deliv Sci Technol 2016; 32: 38-42.
[http://dx.doi.org/10.1016/j.jddst.2016.01.005]
[80]
Kaushik D, Dureja H. Recent patents and patented technology platforms for pharmaceutical taste masking. Recent Pat Drug Deliv Formul 2014; 8(1): 37-45.
[http://dx.doi.org/10.2174/1872211308666140206150840] [PMID: 24499438]
[81]
Amin F, Khan S, Shah SMH, et al. A new strategy for taste masking of azithromycin antibiotic: development, characterization, and evaluation of azithromycin titanium nanohybrid for masking of bitter taste using physisorption and panel testing studies. Drug Des Devel Ther 2018; 12: 3855-66.
[http://dx.doi.org/10.2147/DDDT.S183534] [PMID: 30510401]
[82]
Hassan N, Latif S, Afzal H, et al. Taste masking of levofloxacin by microparticulate system using emulsion solvent evaporation technique. Indian J Pharm Sci 2019; 81(5): 843-50.
[83]
Pandey MS. Development of Multiple Emulsion of Andrographolide for Taste Masking. Asian J Pharm 2019; 12(04)
[84]
Huang R, Wang T, Yang X, et al. Characterization of taste-masking dry emulsion of azithromycin by in vitro and in vivo evaluation. Yao Xue Xue Bao 2017; 795-801.
[85]
Bayrami A. Preparation of erythromycin microparticles with Eudragit S100 polymer using emulsion method for taste masking (Doctoral dissertation, Tabriz University of Medical Sciences, Faculty of Pharmacy) 2017.
[86]
Kojima H, Haraguchi T, Ikegami S, et al. Preparation and evaluation of poly-γ-glutamic acid hydrogel mixtures with amlodipine besylate: Effect on ease of swallowing and taste masking. Chem Pharm Bull (Tokyo) 2019; 67(12): 1284-92.
[http://dx.doi.org/10.1248/cpb.c19-00548] [PMID: 31787655]
[87]
Muhindo D, Ashour EA, Almutairi M, Joshi PH, Repka MA. Continuous production of raloxifene hydrochloride loaded nanostructured lipid carriers using hot-melt extrusion technology. J Drug Deliv Sci Technol 2021; 65: 102673.
[http://dx.doi.org/10.1016/j.jddst.2021.102673] [PMID: 34306183]
[88]
Forster SP, Lebo DB. Continuous melt granulation for taste-masking of ibuprofen. Pharmaceutics 2021; 13(6): 863.
[http://dx.doi.org/10.3390/pharmaceutics13060863] [PMID: 34208288]
[89]
Khaled A, Abdel-Hamid S, Nasr M, Sammour OA. Fabrication of extended-dissolution divalproex tablets: a green solvent-free granulation technique. Drug Dev Ind Pharm 2020; 46(6): 975-87.
[http://dx.doi.org/10.1080/03639045.2020.1764023] [PMID: 32362159]
[90]
Fan Y, Chen H, Huang Z, et al. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int J Pharm 2020; 575: 118875.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118875] [PMID: 31765781]
[91]
Ouyang H, Ang CY, Heng PWS, Chan LW. Effects of drug particle size and lipid additives on drug release from paraffin wax formulations prepared by spray congealing technique. AAPS PharmSciTech 2019; 20(7): 303.
[http://dx.doi.org/10.1208/s12249-019-1519-4] [PMID: 31501994]
[92]
Petrovick GF, Kleinebudde P, Breitkreutz J. Orodispersible tablets containing taste-masked solid lipid pellets with metformin hydrochloride: Influence of process parameters on tablet properties. Eur J Pharm Biopharm 2018; 122: 137-45.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.018] [PMID: 29106946]
[93]
Münster M, Schoch C, Schmidt C, Breitkreutz J. Multiparticulate system combining taste masking and immediate release properties for the aversive compound praziquantel. Eur J Pharm Sci 2017; 109: 446-54.
[http://dx.doi.org/10.1016/j.ejps.2017.08.034] [PMID: 28887230]
[94]
Lopes DG, Koutsamanis I, Becker K, et al. Microphase separation in solid lipid dosage forms as the cause of drug release instability. Int J Pharm 2017; 517(1-2): 403-12.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.040] [PMID: 28007547]
[95]
Petrovick GF, Breitkreutz J, Pein-Hackelbusch M. Taste-masking properties of solid lipid based micropellets obtained by cold extrusion-spheronization. Int J Pharm 2016; 506(1-2): 361-70.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.058] [PMID: 27132502]
[96]
Nagpal M, Kaur M. Nanomaterials for skin antifungal therapy: An updated review. J App Pharm Sci 2021; 11: 015-25.
[97]
Dandagi PM, Rath SP, Gadad AP, et al. Taste masked quinine sulphate loaded solid lipid nanoparticles for flexible pediatric dosing. Indian J Pharm Educ Res 2014; 48: 93-9.
[http://dx.doi.org/10.5530/ijper.48.4s.12]
[98]
Tzanova MM, Hagesaether E, Tho I. Solid lipid nanoparticle-loaded mucoadhesive buccal films - Critical quality attributes and in vitro safety & efficacy. Int J Pharm 2021; 592: 120100.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120100] [PMID: 33227374]
[99]
Farsani PA, Mahjub R, Mohammadi M, et al. Development of perphenazine- loaded solid lipid nanoparticles: Statistical optimization and cytotoxicity studies. BioMed Res Int 2021; 2021.
[100]
Krieser K, Emanuelli J, Daudt RM, et al. Taste-masked nanoparticles containing Saquinavir for pediatric oral administration. Mater Sci Eng C 2020; 117: 111315.
[http://dx.doi.org/10.1016/j.msec.2020.111315] [PMID: 32919675]
[101]
Deng Y, Shen L, Yang Y, Shen J. Development of nanoparticle-based orodispersible palatable pediatric formulations. Int J Pharm 2021; 596: 120206.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120206] [PMID: 33493595]
[102]
Naik J, Rajput R, Singh MK. Development and evaluation of ibuprofen loaded hydrophilic biocompatible polymeric nanoparticles for the taste masking and solubility enhancement. Bionanoscience 2021; 11(1): 21-31.
[http://dx.doi.org/10.1007/s12668-020-00798-y]
[103]
Bianchin MD, Prebianca G, Immich MF, et al. Monoolein-based nanoparticles containing indinavir: a taste-masked drug delivery system. Drug Dev Ind Pharm 2021; 47(1): 83-91.
[http://dx.doi.org/10.1080/03639045.2020.1862167] [PMID: 33289591]
[104]
Giaretta M, Bianchin MD, Kanis LA, et al. Development of innovative polymer-based matricial nanostructures for ritonavir oral administration. J Nanomater 2019; 2019.
[105]
Bao GM, Lin Z, Hong CT, et al. Preparation and in vitro controlled release of mequindox taste-masked nanopro-drug. Chin J Prev Vet Med 2019; 39: 11184-90.
[106]
Bao GM, Wang L, Yuan HQ, et al. Taste masking of a drug by pH-responsive coordination polymer-coated mesoporous silica nanoparticles. RSC Advances 2016; 6(111): 109453-9.
[http://dx.doi.org/10.1039/C6RA19789B]
[107]
Pham K, Li D, Guo S, Penzak S, Dong X. Development and in vivo evaluation of child-friendly lopinavir/ritonavir pediatric granules utilizing novel in situ self-assembly nanoparticles. J Control Release 2016; 226: 88-97.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.001] [PMID: 26849919]
[108]
Prebianca G, Marques MS, Bianchin MD, Contri RV, Külkamp-Guerreiro IC. Improved sensory properties of a nanostructured ritonavir suspension with a pediatric administration perspective. Pharm Dev Technol 2020; 25(10): 1188-91.
[http://dx.doi.org/10.1080/10837450.2020.1805762] [PMID: 32746682]
[109]
Gonzalez MA, Ramírez Rigo MV, Gonzalez Vidal NL. Orphan formulations in pediatric schistosomiasis treatment: Development and characterization of praziquantel nanoparticle—loaded powders for reconstitution. AAPS PharmSciTech 2019; 20(8): 318.
[http://dx.doi.org/10.1208/s12249-019-1548-z] [PMID: 31620905]
[110]
Omar SM, Ibrahim F, Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm J 2020; 28(3): 349-61.
[http://dx.doi.org/10.1016/j.jsps.2020.01.016] [PMID: 32194337]
[111]
Verma U, Mujumdar A, Naik J. Preparation of Efavirenz resinate by spray drying using response surface methodology and its physicochemical characterization for taste masking. Saudi Pharm J 2019; 38(5-6): 793-805.
[112]
Iswandana R, Fauzi F. Strategy to mask the bitter taste of Momordicacharantia extract using alginate–gelatin beads. Int J Appl 2018; 10(1): 381-3.
[113]
Georgieva Y, Kassarova M, Kokova V, Apostolova E, Pilicheva B. Taste masking of enalapril maleate by microencapsulation in Eudragit EPO® microparticles. Pharmazie 2020; 75(2): 61-9.
[PMID: 32213236]
[114]
Wasilewska K. Ciosek-Skibińska P, Lenik J, Srčič S, Basa A, Winnicka K. Utilization of ethylcellulose microparticles with rupatadine fumarate in designing orodispersible minitablets with taste masking effect. Materials (Basel) 2020; 13(12): 2715.
[http://dx.doi.org/10.3390/ma13122715] [PMID: 32549213]
[115]
Kola-Mustapha AT, Armitage D, Abioye AO. Development of aqueous ternary nanomatrix films: A novel ‘green’ strategy for the delivery of poorly soluble drugs. Int J Pharm 2016; 515(1-2): 616-31.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.017] [PMID: 27825861]
[116]
Jiang H, Zhang D, He J, et al. A novel method to mask the bitter taste of berberine hydrochloride: powder surface modification. Pharmacogn Mag 2018; 14(54): 253-60.
[http://dx.doi.org/10.4103/pm.pm_114_17] [PMID: 29720841]
[117]
Taki M, Tagami T, Ozeki T. Preparation of polymer-blended quinine nanocomposite particles by spray drying and assessment of their instrumental bitterness-masking effect using a taste sensor. Drug Dev Ind Pharm 2017; 43(5): 715-22.
[http://dx.doi.org/10.1080/03639045.2016.1200070] [PMID: 27401130]
[118]
Dashevskiy A, Mohylyuk V, Ahmed AR, Kolter K, Guth F, Bodmeier R. Micropellets coated with Kollicoat® Smartseal 30D for taste masking in liquid oral dosage forms. Drug Dev Ind Pharm 2017; 43(9): 1548-56.
[http://dx.doi.org/10.1080/03639045.2017.1323910] [PMID: 28478689]
[119]
Tang WL, Tang WH, Chen WC, Diako C, Ross CF, Li SD. Development of a rapidly dissolvable oral pediatric formulation for mefloquine using liposomes. Mol Pharm 2017; 14(6): 1969-79.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00077] [PMID: 28460165]
[120]
Zhu Y, You X, Huang K, et al. Effect of taste masking technology on fast dissolving oral film: dissolution rate and bioavailability. Nanotechnology 2018; 29(30): 304001.
[http://dx.doi.org/10.1088/1361-6528/aac010] [PMID: 29694333]
[121]
Andrews D, Salunke S, Cram A, et al. Bitter-blockers as a taste masking strategy: A systematic review towards their utility in pharmaceuticals. Eur J Pharm Biopharm 2021; 158: 35-51.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.017] [PMID: 33130339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy