Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Chemokines in the Pathogenesis of Visceral Leishmaniasis

Author(s): Ramesh Kumar*, Madhav Bhatia and Kalpana Pai

Volume 29, Issue 33, 2022

Published on: 06 July, 2022

Page: [5441 - 5461] Pages: 21

DOI: 10.2174/0929867329666220509171244

Price: $65

conference banner
Abstract

Visceral leishmaniasis (VL; also known as kala-azar), caused by the protozoan parasite Leishmania donovani, is characterized by the inability of the host to generate an effective immune response. The manifestations of the disease depend on the involvement of various immune components such as activation of macrophages, cell mediated immunity, secretion of cytokines and chemokines, etc. Macrophages are the final host cells for Leishmania parasites to multiply, and they are the key to a controlled or aggravated response that leads to clinical symptoms. The two most common macrophage phenotypes are M1 and M2. The pro-inflammatory microenvironment (mainly by IL-1β, IL-6, IL-12, IL-23, and TNF-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (mainly by IL-10, TGF-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). Moreover, on polarized Th cells, chemokine receptors are expressed differently. Typically, CXCR3 and CCR5 are preferentially expressed on polarized Th1 cells, whereas CCR3, CCR4, and CCR8 have been associated with the Th2 phenotype. Further, the ability of the host to produce a cell-mediated immune response capable of regulating and/or eliminating the parasite is critical in the fight against the disease. Here, we review the interactions between parasites and chemokines and chemokine receptors in the pathogenesis of VL.

Keywords: Visceral leishmaniasis, chemokines, Th1 & Th2 cells, CC, CXC, C, CX3C chemokines.

[1]
Perea, W.A.; Moren, A.; Ancelle, T.; Sondorp, E. Epidemic visceral leishmaniasis in southern Sudan. Lancet, 1989, 2(8673), 1222-1223.
[http://dx.doi.org/10.1016/S0140-6736(89)91834-5] [PMID: 2572936]
[2]
Mahajan, R.C.; Mohan, K.; Ozcel, M.A.; Alkan, M.Z. Epidemiology of visceral leishmaniasisand its control. In: Parasitology for the 21st Century; Cab International: Oxon, UK, 1996; pp. 41-49.
[3]
Sundar, S.; Singh, O.P.; Chakravarty, J. Visceral leishmaniasis elimination targets in India, strategies for preventing resurgence. Expert Rev. Anti Infect. Ther., 2018, 16(11), 805-812.
[http://dx.doi.org/10.1080/14787210.2018.1532790] [PMID: 30289007]
[4]
Priyamvada, K.; Bindroo, J.; Sharma, M.P.; Chapman, L.A.C.; Dubey, P.; Mahapatra, T.; Hightower, A.W.; Bern, C.; Srikantiah, S. Visceral leishmaniasis outbreaks in Bihar: community-level investigations in the context of elimination of kala-azar as a public health problem. Parasit. Vectors, 2021, 14(1), 52.
[http://dx.doi.org/10.1186/s13071-020-04551-y] [PMID: 33451361]
[5]
Volpedo, G.; Pacheco-Fernandez, T.; Bhattacharya, P.; Oljuskin, T.; Dey, R.; Gannavaram, S.; Satoskar, A.R.; Nakhasi, H.L. Determinants of innate immunity in visceral leishmaniasis and their implication in vaccine development. Front. Immunol., 2021, 12, 748325.
[http://dx.doi.org/10.3389/fimmu.2021.748325] [PMID: 34712235]
[6]
Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 1994, 76(2), 301-314.
[http://dx.doi.org/10.1016/0092-8674(94)90337-9] [PMID: 7507411]
[7]
Zlotnik, A.; Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12(2), 121-127.
[http://dx.doi.org/10.1016/S1074-7613(00)80165-X] [PMID: 10714678]
[8]
Locati, M.; Murphy, P.M. Chemokines and chemokine receptors: biology and clinical relevance in inflammation and AIDS. Annu. Rev. Med., 1999, 50(1), 425-440.
[http://dx.doi.org/10.1146/annurev.med.50.1.425] [PMID: 10073287]
[9]
Murdoch, C.; Finn, A. Chemokine receptors and their role in inflammation and infectious diseases. Blood, 2000, 95(10), 3032-3043.
[http://dx.doi.org/10.1182/blood.V95.10.3032] [PMID: 10807766]
[10]
de Araújo, F.F.; Costa-Silva, M.F.; Pereira, A.A.S.; Rêgo, F.D.; Pereira, V.H.S.; de Souza, J.P.; Fernandes, L.O.B.; Martins-Filho, O.A.; Gontijo, C.M.F.; Peruhype-Magalhães, V.; Teixeira-Carvalho, A. Chemokines in leishmaniasis: Map of cell movements highlights the landscape of infection and pathogenesis. Cytokine, 2021, 147, 155339.
[http://dx.doi.org/10.1016/j.cyto.2020.155339] [PMID: 33303311]
[11]
Ritter, U.; Körner, H. Divergent expression of inflammatory dermal chemokines in cutaneous leishmaniasis. Parasite Immunol., 2002, 24(6), 295-301.
[http://dx.doi.org/10.1046/j.1365-3024.2002.00467.x] [PMID: 12102714]
[12]
Luster, A.D. Chemokines--chemotactic cytokines that mediate inflammation. N. Engl. J. Med., 1998, 338(7), 436-445.
[http://dx.doi.org/10.1056/NEJM199802123380706] [PMID: 9459648]
[13]
Bonecchi, R.; Bianchi, G.; Bordignon, P.P.; D’Ambrosio, D.; Lang, R.; Borsatti, A.; Sozzani, S.; Allavena, P.; Gray, P.A.; Mantovani, A.; Sinigaglia, F. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med., 1998, 187(1), 129-134.
[http://dx.doi.org/10.1084/jem.187.1.129] [PMID: 9419219]
[14]
Bhattacharyya, S.; Ghosh, S.; Dasgupta, B.; Mazumder, D.; Roy, S.; Majumdar, S. Chemokine-induced leishmanicidal activity in murine macrophages via the generation of nitric oxide. J. Infect. Dis., 2002, 185(12), 1704-1708.
[http://dx.doi.org/10.1086/340820] [PMID: 12085314]
[15]
Chieppa, M.; Bianchi, G.; Doni, A.; Del Prete, A.; Sironi, M.; Laskarin, G.; Monti, P.; Piemonti, L.; Biondi, A.; Mantovani, A.; Introna, M.; Allavena, P. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol., 2003, 171(9), 4552-4560.
[http://dx.doi.org/10.4049/jimmunol.171.9.4552] [PMID: 14568928]
[16]
Proost, P.; Verpoest, S.; Van de Borne, K.; Schutyser, E.; Struyf, S.; Put, W.; Ronsse, I.; Grillet, B.; Opdenakker, G.; Van Damme, J. Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-γ in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. J. Leukoc. Biol., 2004, 75(5), 777-784.
[http://dx.doi.org/10.1189/jlb.1003524] [PMID: 14996826]
[17]
McLoughlin, R.M.; Hurst, S.M.; Nowell, M.A.; Harris, D.A.; Horiuchi, S.; Morgan, L.W.; Wilkinson, T.S.; Yamamoto, N.; Topley, N.; Jones, S.A. Differential regulation of neutrophil-activating chemokines by IL-6 and its soluble receptor isoforms. J. Immunol., 2004, 172(9), 5676-5683.
[http://dx.doi.org/10.4049/jimmunol.172.9.5676] [PMID: 15100312]
[18]
Cyster, J.G. Chemokines and cell migration in secondary lymphoid organs. Science, 1999, 286(5447), 2098-2102.
[http://dx.doi.org/10.1126/science.286.5447.2098] [PMID: 10617422]
[19]
Cyster, J.G. Lymphoid organ development and cell migration. Immunol. Rev., 2003, 195(1), 5-14.
[http://dx.doi.org/10.1034/j.1600-065X.2003.00075.x] [PMID: 12969306]
[20]
Cotterell, S.E.; Engwerda, C.R.; Kaye, P.M. Leishmania donovani infection initiates T cell-independent chemokine responses, which are subsequently amplified in a T cell-dependent manner. Eur. J. Immunol., 1999, 29(1), 203-214.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199901)29:01<203::AID-IMMU203>3.0.CO;2-B] [PMID: 9933102]
[21]
Teixeira, M.J.; Teixeira, C.R.; Andrade, B.B.; Barral-Netto, M.; Barral, A. Chemokines in host-parasite interactions in leishmaniasis. Trends Parasitol., 2006, 22(1), 32-40.
[http://dx.doi.org/10.1016/j.pt.2005.11.010] [PMID: 16310413]
[22]
Dufour, J.H.; Dziejman, M.; Liu, M.T.; Leung, J.H.; Lane, T.E.; Luster, A.D. IFN-γ-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol., 2002, 168(7), 3195-3204.
[http://dx.doi.org/10.4049/jimmunol.168.7.3195] [PMID: 11907072]
[23]
Qin, S.; Rottman, J.B.; Myers, P.; Kassam, N.; Weinblatt, M.; Loetscher, M.; Koch, A.E.; Moser, B.; Mackay, C.R. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest., 1998, 101(4), 746-754.
[http://dx.doi.org/10.1172/JCI1422] [PMID: 9466968]
[24]
Hailu, A.; van der Poll, T.; Berhe, N.; Kager, P.A. Elevated plasma levels of interferon (IFN)-gamma, IFN-gamma inducing cytokines, and IFN-gamma inducible CXC chemokines in visceral leishmaniasis. Am. J. Trop. Med. Hyg., 2004, 71(5), 561-567.
[http://dx.doi.org/10.4269/ajtmh.2004.71.561] [PMID: 15569785]
[25]
Barbi, J.; Oghumu, S.; Rosas, L.E.; Carlson, T.; Lu, B.; Gerard, C.; Lezama-Davila, C.M.; Satoskar, A.R. Lack of CXCR3 delays the development of hepatic inflammation but does not impair resistance to Leishmania donovani. J. Infect. Dis., 2007, 195(11), 1713-1717.
[http://dx.doi.org/10.1086/516787] [PMID: 17471442]
[26]
Daly, C.; Rollins, B.J. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation, 2003, 10(3-4), 247-257.
[http://dx.doi.org/10.1080/mic.10.3-4.247.257] [PMID: 12851642]
[27]
Mohan, K.; Cordeiro, E.; Vaci, M.; McMaster, C.; Issekutz, T.B. CXCR3 is required for migration to dermal inflammation by normal and in vivo activated T cells: differential requirements by CD4 and CD8 memory subsets. Eur. J. Immunol., 2005, 35(6), 1702-1711.
[http://dx.doi.org/10.1002/eji.200425885] [PMID: 15884054]
[28]
Vasquez, R.E.; Soong, L. CXCL10/gamma interferon-inducible protein 10-mediated protection against Leishmania amazonensis infection in mice. Infect. Immun., 2006, 74(12), 6769-6777.
[http://dx.doi.org/10.1128/IAI.01073-06] [PMID: 16982826]
[29]
Kalter, D.C.; Gendelman, H.E.; Meltzer, M.S. Monocytes, dendritic cells, and Langerhans cells in human immunodeficiency virus infection. Dermatol. Clin., 1991, 9(3), 415-428.
[http://dx.doi.org/10.1016/S0733-8635(18)30392-9] [PMID: 1873923]
[30]
Vester, B.; Müller, K.; Solbach, W.; Laskay, T. Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. Infect. Immun., 1999, 67(6), 3155-3159.
[http://dx.doi.org/10.1128/IAI.67.6.3155-3159.1999] [PMID: 10338536]
[31]
Gasperini, S.; Marchi, M.; Calzetti, F.; Laudanna, C.; Vicentini, L.; Olsen, H.; Murphy, M.; Liao, F.; Farber, J.; Cassatella, M.A. Gene expression and production of the monokine induced by IFN-γ (MIG), IFN-inducible T cell α chemoattractant (I-TAC), and IFN-γ-inducible protein-10 (IP-10) chemokines by human neutrophils. J. Immunol., 1999, 162(8), 4928-4937.
[PMID: 10202039]
[32]
Maghazachi, A.A.; Skålhegg, B.S.; Rolstad, B.; Al-Aoukaty, A. Interferon-inducible protein-10 and lymphotactin induce the chemotaxis and mobilization of intracellular calcium in natural killer cells through pertussis toxin-sensitive and -insensitive heterotrimeric G-proteins. FASEB J., 1997, 11(10), 765-774.
[http://dx.doi.org/10.1096/fasebj.11.10.9271361] [PMID: 9271361]
[33]
Murphy, M.L.; Cotterell, S.E.; Gorak, P.M.; Engwerda, C.R.; Kaye, P.M. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J. Immunol., 1998, 161(8), 4153-4160.
[PMID: 9780188]
[34]
K.; Zandbergen, G.; Hansen, B.; Laufs, H.; Jahnke, N.; Solbach, W.; Laskay, T. Chemokines, Natural killer cells and granulocytes in the early course of leishmania major infection in mice. Med. Microbiol. Immunol. (Berl.), 2001, 190(1), 73-76.
[35]
Wildbaum, G.; Netzer, N.; Karin, N. Plasmid DNA encoding IFN-gamma-inducible protein 10 redirects antigen-specific T cell polarization and suppresses experimental autoimmune encephalomyelitis. J. Immunol., 2002, 168(11), 5885-5892.
[http://dx.doi.org/10.4049/jimmunol.168.11.5885] [PMID: 12023393]
[36]
Vargas-Inchaustegui, D.A.; Hogg, A.E.; Tulliano, G.; Llanos-Cuentas, A.; Arevalo, J.; Endsley, J.J.; Soong, L. CXCL10 production by human monocytes in response to Leishmania braziliensis infection. Infect. Immun., 2010, 78(1), 301-308.
[http://dx.doi.org/10.1128/IAI.00959-09] [PMID: 19901067]
[37]
Singh, N.; Sundar, S. Inflammatory chemokines and their receptors in human visceral leishmaniasis: Gene expression profile in peripheral blood, splenic cellular sources and their impact on trafficking of inflammatory cells. Mol. Immunol., 2017, 85, 111-119.
[http://dx.doi.org/10.1016/j.molimm.2017.02.008] [PMID: 28222329]
[38]
Fakiola, M.; Singh, O.P.; Syn, G.; Singh, T.; Singh, B.; Chakravarty, J.; Sundar, S.; Blackwell, J.M. Transcriptional blood signatures for active and amphotericin B treated visceral leishmaniasis in India. PLoS Negl. Trop. Dis., 2019, 13(8), e0007673.
[http://dx.doi.org/10.1371/journal.pntd.0007673] [PMID: 31419223]
[39]
Gupta, G.; Bhattacharjee, S.; Bhattacharyya, S.; Bhattacharya, P.; Adhikari, A.; Mukherjee, A.; Bhattacharyya Majumdar, S.; Majumdar, S. CXC chemokine-mediated protection against visceral leishmaniasis: involvement of the proinflammatory response. J. Infect. Dis., 2009, 200(8), 1300-1310.
[http://dx.doi.org/10.1086/605895] [PMID: 19743920]
[40]
van Zandbergen, G.; Hermann, N.; Laufs, H.; Solbach, W.; Laskay, T. Leishmania promastigotes release a granulocyte chemotactic factor and induce interleukin-8 release but inhibit gamma interferon-inducible protein 10 production by neutrophil granulocytes. Infect. Immun., 2002, 70(8), 4177-4184.
[http://dx.doi.org/10.1128/IAI.70.8.4177-4184.2002] [PMID: 12117926]
[41]
Diefenbach, A.; Schindler, H.; Röllinghoff, M.; Yokoyama, W.M.; Bogdan, C. Requirement for type 2 NO synthase for IL-12 signaling in innate immunity. Science, 1999, 284(5416), 951-955.
[http://dx.doi.org/10.1126/science.284.5416.951] [PMID: 10320373]
[42]
Bhattacharyya, S.; Ghosh, S.; Jhonson, P.L.; Bhattacharya, S.K.; Majumdar, S. Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events. Infect. Immun., 2001, 69(3), 1499-1507.
[http://dx.doi.org/10.1128/IAI.69.3.1499-1507.2001] [PMID: 11179319]
[43]
Dey, R.; Sarkar, A.; Majumder, N.; Bhattacharyya Majumdar, S.; Roychoudhury, K.; Bhattacharyya, S.; Roy, S.; Majumdar, S. Regulation of impaired protein kinase C signaling by chemokines in murine macrophages during visceral leishmaniasis. Infect. Immun., 2005, 73(12), 8334-8344.
[http://dx.doi.org/10.1128/IAI.73.12.8334-8344.2005] [PMID: 16299331]
[44]
Eufrásio de Figueiredo, W.M.; Heredia, F.F.; Santos, A.S.; da Rocha Braga, R.; Marciano Fonseca, F.R.; Lúcia de Castro Rodrigues, N.; Abreu, T.M.; Maria de Lima Pompeu, M.; Barbosa, H.S.; Teixeira, M.J. CXCL10 treatment promotes reduction of IL-10+ regulatory T (Foxp3+ and Tr1) cells in the spleen of BALB/c mice infected by Leishmania infantum. Exp. Parasitol., 2019, 207, 107789.
[http://dx.doi.org/10.1016/j.exppara.2019.107789] [PMID: 31669169]
[45]
Gupta, G.; Majumdar, S.; Adhikari, A.; Bhattacharya, P.; Mukherjee, A.K.; Majumdar, S.B.; Majumdar, S. Treatment with IP-10 induces host-protective immune response by regulating the T regulatory cell functioning in Leishmania donovani-infected mice. Med. Microbiol. Immunol. (Berl.), 2011, 200(4), 241-253.
[http://dx.doi.org/10.1007/s00430-011-0197-y] [PMID: 21533785]
[46]
Akira, S.; Takeda, K.; Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol., 2001, 2(8), 675-680.
[http://dx.doi.org/10.1038/90609] [PMID: 11477402]
[47]
Doyle, S.; Vaidya, S.; O’Connell, R.; Dadgostar, H.; Dempsey, P.; Wu, T.; Rao, G.; Sun, R.; Haberland, M.; Modlin, R.; Cheng, G. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity, 2002, 17(3), 251-263.
[http://dx.doi.org/10.1016/S1074-7613(02)00390-4] [PMID: 12354379]
[48]
Re, F.; Strominger, J.L. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem., 2001, 276(40), 37692-37699.
[http://dx.doi.org/10.1074/jbc.M105927200] [PMID: 11477091]
[49]
Brown, W.C.; Corral, R.S. Stimulation of B lymphocytes, macrophages, and dendritic cells by protozoan DNA. Microbes Infect., 2002, 4(9), 969-974.
[http://dx.doi.org/10.1016/S1286-4579(02)01623-4] [PMID: 12106790]
[50]
Arase, H.; Arase, N.; Saito, T. Interferon gamma production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking. J. Exp. Med., 1996, 183(5), 2391-2396.
[http://dx.doi.org/10.1084/jem.183.5.2391] [PMID: 8642351]
[51]
Kobayashi, Y. The role of chemokines in neutrophil biology. Front. Biosci., 2008, 13(1), 2400-2407.
[http://dx.doi.org/10.2741/2853] [PMID: 17981721]
[52]
Bozic, C.R.; Kolakowski, L.F., Jr; Gerard, N.P.; Garcia-Rodriguez, C.; von Uexkull-Guldenband, C.; Conklyn, M.J.; Breslow, R.; Showell, H.J.; Gerard, C. Expression and biologic characterization of the murine chemokine KC. J. Immunol., 1995, 154(11), 6048-6057.
[PMID: 7751647]
[53]
Cacalano, G.; Lee, J.; Kikly, K.; Ryan, A.M.; Pitts-Meek, S.; Hultgren, B.; Wood, W.I.; Moore, M.W. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science, 1994, 265(5172), 682-684.
[http://dx.doi.org/10.1126/science.8036519] [PMID: 8036519]
[54]
Lu, B.; Rutledge, B.J.; Gu, L.; Fiorillo, J.; Lukacs, N.W.; Kunkel, S.L.; North, R.; Gerard, C.; Rollins, B.J. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med., 1998, 187(4), 601-608.
[http://dx.doi.org/10.1084/jem.187.4.601] [PMID: 9463410]
[55]
McFarlane, E.; Perez, C.; Charmoy, M.; Allenbach, C.; Carter, K.C.; Alexander, J.; Tacchini-Cottier, F. Neutrophils contribute to development of a protective immune response during onset of infection with Leishmania donovani. Infect. Immun., 2008, 76(2), 532-541.
[http://dx.doi.org/10.1128/IAI.01388-07] [PMID: 18056477]
[56]
Stillie, R.; Farooq, S.M.; Gordon, J.R., Jr; Stadnyk, A.W. The functional significance behind expressing two IL-8 receptor types on PMN. J. Leukoc. Biol., 2009, 86(3), 529-543.
[http://dx.doi.org/10.1189/jlb.0208125] [PMID: 19564575]
[57]
Peters, N.C.; Egen, J.G.; Secundino, N.; Debrabant, A.; Kimblin, N.; Kamhawi, S.; Lawyer, P.; Fay, M.P.; Germain, R.N.; Sacks, D. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science, 2008, 321(5891), 970-974.
[http://dx.doi.org/10.1126/science.1159194] [PMID: 18703742]
[58]
van Zandbergen, G.; Klinger, M.; Mueller, A.; Dannenberg, S.; Gebert, A.; Solbach, W.; Laskay, T. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J. Immunol., 2004, 173(11), 6521-6525.
[http://dx.doi.org/10.4049/jimmunol.173.11.6521] [PMID: 15557140]
[59]
Novais, F.O.; Santiago, R.C.; Báfica, A.; Khouri, R.; Afonso, L.; Borges, V.M.; Brodskyn, C.; Barral-Netto, M.; Barral, A.; de Oliveira, C.I. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J. Immunol., 2009, 183(12), 8088-8098.
[http://dx.doi.org/10.4049/jimmunol.0803720] [PMID: 19923470]
[60]
Anand, S.; Madhubala, R. Twin attributes of Tyrosyl-tRNA Synthetase of Leishmania donovani: A housekeeping protein translation enzyme and a mimic of host chemokine. J. Biol. Chem., 2016, 291(34), 17754-17771.
[http://dx.doi.org/10.1074/jbc.M116.727107] [PMID: 27382051]
[61]
Laufs, H.; Müller, K.; Fleischer, J.; Reiling, N.; Jahnke, N.; Jensenius, J.C.; Solbach, W.; Laskay, T. Intracellular survival of Leishmania major in neutrophil granulocytes after uptake in the absence of heat-labile serum factors. Infect. Immun., 2002, 70(2), 826-835.
[http://dx.doi.org/10.1128/IAI.70.2.826-835.2002] [PMID: 11796617]
[62]
Donnelly, S.C.; Strieter, R.M.; Kunkel, S.L.; Walz, A.; Robertson, C.R.; Carter, D.C.; Grant, I.S.; Pollok, A.J.; Haslett, C. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet, 1993, 341(8846), 643-647.
[http://dx.doi.org/10.1016/0140-6736(93)90416-E] [PMID: 8095568]
[63]
Aga, E.; Katschinski, D.M.; van Zandbergen, G.; Laufs, H.; Hansen, B.; Müller, K.; Solbach, W.; Laskay, T. Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. J. Immunol., 2002, 169(2), 898-905.
[http://dx.doi.org/10.4049/jimmunol.169.2.898] [PMID: 12097394]
[64]
Tacchini-Cottier, F.; Zweifel, C.; Belkaid, Y.; Mukankundiye, C.; Vasei, M.; Launois, P.; Milon, G.; Louis, J.A. An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J. Immunol., 2000, 165(5), 2628-2636.
[http://dx.doi.org/10.4049/jimmunol.165.5.2628] [PMID: 10946291]
[65]
Moore, K.J.; Matlashewski, G. Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J. Immunol., 1994, 152(6), 2930-2937.
[PMID: 8144893]
[66]
Roy, S.; Gupta, P.; Palit, S.; Basu, M.; Ukil, A.; Das, P.K. The role of PD-1 in regulation of macrophage apoptosis and its subversion by Leishmania donovani. Clin. Transl. Immunology, 2017, 6(5), e137.
[http://dx.doi.org/10.1038/cti.2017.12] [PMID: 28690843]
[67]
Araújo-Santos, T.; Andrade, B. B.; Gil-Santana, L.; Luz, N. F.; Dos Santos, P. L.; de Oliveira, F. A.; Almeida, M. L.; de Santana Campos, R. N.; Bozza, P. T.; Almeida, R. P.; Borges, V. M. Anti-parasite therapy drives changes in human visceral leishmaniasis-associated inflammatory balance. Scientific Reports, 2017, 7(1), 4334.
[http://dx.doi.org/10.1038/s41598-017-04595-8]
[68]
Kumar, V.; Bimal, S.; Singh, S.K.; Chaudhary, R.; Das, S.; Lal, C.; Pandey, K.; Das, V.R.; Das, P. Leishmania donovani: dynamics of L. donovani evasion of innate immune cell attack due to malnutrition in visceral leishmaniasis. Nutrition, 2014, 30(4), 449-458.
[http://dx.doi.org/10.1016/j.nut.2013.10.003] [PMID: 24607302]
[69]
Brandonisio, O.; Panaro, M.A.; Fumarola, I.; Sisto, M.; Leogrande, D.; Acquafredda, A.; Spinelli, R.; Mitolo, V. Macrophage chemotactic protein-1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages. Clin. Exp. Med., 2002, 2(3), 125-129.
[http://dx.doi.org/10.1007/s102380200017] [PMID: 12447609]
[70]
Svensson, M.; Zubairi, S.; Maroof, A.; Kazi, F.; Taniguchi, M.; Kaye, P.M. Invariant NKT cells are essential for the regulation of hepatic CXCL10 gene expression during Leishmania donovani infection. Infect. Immun., 2005, 73(11), 7541-7547.
[http://dx.doi.org/10.1128/IAI.73.11.7541-7547.2005] [PMID: 16239557]
[71]
Santodomingo-Garzon, T.; Han, J.; Le, T.; Yang, Y.; Swain, M.G. Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology, 2009, 49(4), 1267-1276.
[http://dx.doi.org/10.1002/hep.22761] [PMID: 19140218]
[72]
Kumar, R.; Nylén, S. Immunobiology of visceral leishmaniasis. Front. Immunol., 2012, 3, 251.
[http://dx.doi.org/10.3389/fimmu.2012.00251] [PMID: 22912637]
[73]
Chaparro, V.; Leroux, L.P.; Zimmermann, A.; Jardim, A.; Johnston, B.; Descoteaux, A.; Jaramillo, M. Leishmania donovani lipophosphoglycan increases macrophage-dependent chemotaxis of CXCR6-expressing cells via CXCL16 Induction. Infect. Immun., 2019, 87(5), 00064-19.
[http://dx.doi.org/10.1128/IAI.00064-19] [PMID: 30804103]
[74]
Dey, R.; Majumder, N.; Bhattacharyya Majumdar, S.; Bhattacharjee, S.; Banerjee, S.; Roy, S.; Majumdar, S. Induction of host protective Th1 immune response by chemokines in Leishmania donovani-infected BALB/c mice. Scand. J. Immunol., 2007, 66(6), 671-683.
[http://dx.doi.org/10.1111/j.1365-3083.2007.02025.x] [PMID: 18021365]
[75]
Villalta, F.; Zhang, Y.; Bibb, K.E.; Kappes, J.C.; Lima, M.F. The cysteine-cysteine family of chemokines RANTES, MIP-1alpha, and MIP-1beta induce trypanocidal activity in human macrophages via nitric oxide. Infect. Immun., 1998, 66(10), 4690-4695.
[http://dx.doi.org/10.1128/IAI.66.10.4690-4695.1998] [PMID: 9746565]
[76]
Giancarlo, B.; Silvano, S.; Albert, Z.; Mantovani, A.; Allavena, P. Migratory response of human natural killer cells to lymphotactin. Eur. J. Immunol., 1996, 26(12), 3238-3241.
[http://dx.doi.org/10.1002/eji.1830261260] [PMID: 8977329]
[77]
Murphy, P.M.; Baggiolini, M.; Charo, I.F.; Hébert, C.A.; Horuk, R.; Matsushima, K.; Miller, L.H.; Oppenheim, J.J.; Power, C.A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev., 2000, 52(1), 145-176.
[PMID: 10699158]
[78]
Hardison, J.L.; Kuziel, W.A.; Manning, J.E.; Lane, T.E.; Chemokine, C.C. Chemokine CC receptor 2 is important for acute control of cardiac parasitism but does not contribute to cardiac inflammation after infection with Trypanosoma cruzi. J. Infect. Dis., 2006, 193(11), 1584-1588.
[http://dx.doi.org/10.1086/503812] [PMID: 16652288]
[79]
Sato, N.; Ahuja, S.K.; Quinones, M.; Kostecki, V.; Reddick, R.L.; Melby, P.C.; Kuziel, W.A.; Ahuja, S.S. CC chemokine receptor (CCR)2 is required for langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, b cell outgrowth, and sustained neutrophilic inflammation. J. Exp. Med., 2000, 192(2), 205-218.
[http://dx.doi.org/10.1084/jem.192.2.205] [PMID: 10899907]
[80]
Mannheimer, S.B.; Hariprashad, J.; Stoeckle, M.Y.; Murray, H.W. Induction of macrophage antiprotozoal activity by monocyte chemotactic and activating factor. FEMS Immunol. Med. Microbiol., 1996, 14(1), 59-61.
[http://dx.doi.org/10.1111/j.1574-695X.1996.tb00268.x] [PMID: 8804977]
[81]
Ritter, U.; Moll, H. Monocyte chemotactic protein-1 stimulates the killing of leishmania major by human monocytes, acts synergistically with IFN-γ and is antagonized by IL-4. Eur. J. Immunol., 2000, 30(11), 3111-3120.
[http://dx.doi.org/10.1002/1521-4141(200011)30:11<3111::AID-IMMU3111>3.0.CO;2-O] [PMID: 11093125]
[82]
Matsushima, K.; Larsen, C.G.; DuBois, G.C.; Oppenheim, J.J. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med., 1989, 169(4), 1485-1490.
[http://dx.doi.org/10.1084/jem.169.4.1485] [PMID: 2926331]
[83]
Mohamadzadeh, M.; Poltorak, A.N.; Bergstressor, P.R.; Beutler, B.; Takashima, A. Dendritic cells produce macrophage inflammatory protein-1 gamma, a new member of the CC chemokine family. J. Immunol., 1996, 156(9), 3102-3106.
[PMID: 8617929]
[84]
Lean, J.M.; Murphy, C.; Fuller, K.; Chambers, T.J. CCL9/MIP-1γ and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J. Cell. Biochem., 2002, 87(4), 386-393.
[http://dx.doi.org/10.1002/jcb.10319] [PMID: 12397598]
[85]
Driscoll, K.E. Macrophage inflammatory proteins: Biology and role in pulmonary inflammation. Exp. Lung Res., 1994, 20(6), 473-490.
[http://dx.doi.org/10.3109/01902149409031733] [PMID: 7882902]
[86]
Lee, A.H.; Hong, J.H.; Seo, Y.S. Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors. Biochem. J., 2000, 350(Pt 1), 131-138.
[http://dx.doi.org/10.1042/bj3500131] [PMID: 10926836]
[87]
Allen, S.J.; Crown, S.E.; Handel, T.M. Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol., 2007, 25, 787-820.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090529] [PMID: 17291188]
[88]
Masocha, W.; Amin, D.N.; Kristensson, K.; Rottenberg, M.E. Differential invasion of Trypanosoma brucei and lymphocytes into the brain of C57BL/6 and 129Sv/Ev mice. Scand. J. Immunol., 2008, 68(5), 484-491.
[http://dx.doi.org/10.1111/j.1365-3083.2008.02170.x] [PMID: 18822108]
[89]
Helegbe, G.K.; Yanagi, T.; Senba, M.; Huy, N.T.; Shuaibu, M.N.; Yamazaki, A.; Kikuchi, M.; Yasunami, M.; Hirayama, K. Histopathological studies in two strains of semi-immune mice infected with Plasmodium berghei ANKA after chronic exposure. Parasitol. Res., 2011, 108(4), 807-814.
[http://dx.doi.org/10.1007/s00436-010-2121-6] [PMID: 20978790]
[90]
Braun, M.C.; Lahey, E.; Kelsall, B.L. Selective suppression of IL-12 production by chemoattractants. J. Immunol., 2000, 164(6), 3009-3017.
[http://dx.doi.org/10.4049/jimmunol.164.6.3009] [PMID: 10706689]
[91]
Racoosin, E.L.; Beverley, S.M. Leishmania major: promastigotes induce expression of a subset of chemokine genes in murine macrophages. Exp. Parasitol., 1997, 85(3), 283-295.
[http://dx.doi.org/10.1006/expr.1996.4139] [PMID: 9085925]
[92]
Mancianti, F.; Gramiccia, M.; Gradoni, L.; Pieri, S. Studies on canine leishmaniasis control. 1. Evolution of infection of different clinical forms of canine leishmaniasis following antimonial treatment. Trans. R. Soc. Trop. Med. Hyg., 1988, 82(4), 566-567.
[http://dx.doi.org/10.1016/0035-9203(88)90510-X] [PMID: 3076714]
[93]
Dieu, M.C.; Vanbervliet, B.; Vicari, A.; Bridon, J.M.; Oldham, E.; Aït-Yahia, S.; Brière, F.; Zlotnik, A.; Lebecque, S.; Caux, C. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med., 1998, 188(2), 373-386.
[http://dx.doi.org/10.1084/jem.188.2.373] [PMID: 9670049]
[94]
Allavena, P.; Bianchi, G.; Zhou, D.; van Damme, J.; Jílek, P.; Sozzani, S.; Mantovani, A. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur. J. Immunol., 1994, 24(12), 3233-3236.
[http://dx.doi.org/10.1002/eji.1830241249] [PMID: 7805752]
[95]
Reichel, C.A.; Rehberg, M.; Lerchenberger, M.; Berberich, N.; Bihari, P.; Khandoga, A.G.; Zahler, S.; Krombach, F. CCL2 and CCL3 mediate neutrophil recruitment via induction of protein synthesis and generation of lipid mediators. Arterioscler. Thromb. Vasc. Biol., 2009, 29(11), 1787-1793.
[http://dx.doi.org/10.1161/ATVBAHA.109.193268] [PMID: 19608967]
[96]
Schrum, S.; Probst, P.; Fleischer, B.; Zipfel, P.F. Synthesis of the CC-chemokines MIP-1alpha, MIP-1beta, and RANTES is associated with a type 1 immune response. J. Immunol., 1996, 157(8), 3598-3604.
[PMID: 8871660]
[97]
Gu, L.; Tseng, S.; Horner, R.M.; Tam, C.; Loda, M.; Rollins, B.J. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature, 2000, 404(6776), 407-411.
[http://dx.doi.org/10.1038/35006097] [PMID: 10746730]
[98]
Dorner, B.G.; Scheffold, A.; Rolph, M.S.; Hüser, M.B.; Kaufmann, S.H.; Radbruch, A.; Flesch, I.E.; Kroczek, R.A. MIP-1α, MIP-1β, RANTES, and ATAC/lymphotactin function together with IFN-γ as type 1 cytokines. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 6181-6186.
[http://dx.doi.org/10.1073/pnas.092141999] [PMID: 11972057]
[99]
Charmoy, M.; Brunner-Agten, S.; Aebischer, D.; Auderset, F.; Launois, P.; Milon, G.; Proudfoot, A.E.; Tacchini-Cottier, F. Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathog., 2010, 6(2), e1000755.
[http://dx.doi.org/10.1371/journal.ppat.1000755] [PMID: 20140197]
[100]
Salazar-Mather, T.P.; Orange, J.S.; Biron, C.A. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1α (MIP-1α)-dependent pathways. J. Exp. Med., 1998, 187(1), 1-14.
[http://dx.doi.org/10.1084/jem.187.1.1] [PMID: 9419206]
[101]
Sacks, D.; Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat. Rev. Immunol., 2002, 2(11), 845-858.
[http://dx.doi.org/10.1038/nri933] [PMID: 12415308]
[102]
Makino, Y.; Cook, D.N.; Smithies, O.; Hwang, O.Y.; Neilson, E.G.; Turka, L.A.; Sato, H.; Wells, A.D.; Danoff, T.M.; Impaired, T. Impaired T cell function in RANTES-deficient mice. Clin. Immunol., 2002, 102(3), 302-309.
[http://dx.doi.org/10.1006/clim.2001.5178] [PMID: 11890717]
[103]
Weber, C.; Weber, K.S.; Klier, C.; Gu, S.; Wank, R.; Horuk, R.; Nelson, P.J. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)1-like/CD45RO(+) T cells. Blood, 2001, 97(4), 1144-1146.
[http://dx.doi.org/10.1182/blood.V97.4.1144] [PMID: 11159551]
[104]
Rodriguez-Sosa, M.; Rosas, L.E.; Terrazas, L.I.; Lu, B.; Gerard, C.; Satoskar, A.R. CC chemokine receptor 1 enhances susceptibility to Leishmania major during early phase of infection. Immunol. Cell Biol., 2003, 81(2), 114-120.
[http://dx.doi.org/10.1046/j.0818-9641.2002.01132.x] [PMID: 12631234]
[105]
Santiago, H.C.; Oliveira, C.F.; Santiago, L.; Ferraz, F.O.; de Souza, D.G.; de-Freitas, L.A.; Afonso, L.C.; Teixeira, M.M.; Gazzinelli, R.T.; Vieira, L.Q. Involvement of the chemokine RANTES (CCL5) in resistance to experimental infection with Leishmania major. Infect. Immun., 2004, 72(8), 4918-4923.
[http://dx.doi.org/10.1128/IAI.72.8.4918-4923.2004] [PMID: 15271961]
[106]
Gerard, C.; Rollins, B.J. Chemokines and disease. Nat. Immunol., 2001, 2(2), 108-115.
[http://dx.doi.org/10.1038/84209] [PMID: 11175802]
[107]
Taub, D.D.; Sayers, T.J.; Carter, C.R.; Ortaldo, J.R. Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. J. Immunol., 1995, 155(8), 3877-3888.
[PMID: 7561094]
[108]
Siveke, J.T.; Hamann, A. T helper 1 and T helper 2 cells respond differentially to chemokines. J. Immunol., 1998, 160(2), 550-554.
[PMID: 9551886]
[109]
Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, 25(12), 677-686.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[110]
Ness, T.L.; Ewing, J.L.; Hogaboam, C.M.; Kunkel, S.L. CCR4 is a key modulator of innate immune responses. J. Immunol., 2006, 177(11), 7531-7539.
[http://dx.doi.org/10.4049/jimmunol.177.11.7531] [PMID: 17114422]
[111]
Marsland, B.J.; Bättig, P.; Bauer, M.; Ruedl, C.; Lässing, U.; Beerli, R.R.; Dietmeier, K.; Ivanova, L.; Pfister, T.; Vogt, L.; Nakano, H.; Nembrini, C.; Saudan, P.; Kopf, M.; Bachmann, M.F. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity, 2005, 22(4), 493-505.
[http://dx.doi.org/10.1016/j.immuni.2005.02.010] [PMID: 15845453]
[112]
Ato, M.; Nakano, H.; Kakiuchi, T.; Kaye, P.M. Localization of marginal zone macrophages is regulated by C-C chemokine ligands 21/19. J. Immunol., 2004, 173(8), 4815-4820.
[http://dx.doi.org/10.4049/jimmunol.173.8.4815] [PMID: 15470021]
[113]
Ato, M.; Maroof, A.; Zubairi, S.; Nakano, H.; Kakiuchi, T.; Kaye, P.M. Loss of dendritic cell migration and impaired resistance to Leishmania donovani infection in mice deficient in CCL19 and CCL21. J. Immunol., 2006, 176(9), 5486-5493.
[http://dx.doi.org/10.4049/jimmunol.176.9.5486] [PMID: 16622017]
[114]
Petkovic, V.; Moghini, C.; Paoletti, S.; Uguccioni, M.; Gerber, B. Eotaxin-3/CCL26 is a natural antagonist for CC chemokine receptors 1 and 5. A human chemokine with a regulatory role. J. Biol. Chem., 2004, 279(22), 23357-23363.
[http://dx.doi.org/10.1074/jbc.M309283200] [PMID: 15039444]
[115]
Pearson, R.D.; Uydess, I.L.; Chapman, S.W.; Steigbigel, R.T. Interaction of human eosinophils with Leishmania donovani. Ann. Trop. Med. Parasitol., 1987, 81(6), 735-739.
[http://dx.doi.org/10.1080/00034983.1987.11812179] [PMID: 3503650]
[116]
Watanabe, Y.; Hamaguchi-Tsuru, E.; Morimoto, N.; Nishio, Y.; Yagyu, K.; Konishi, Y.; Tominaga, M.; Miyazaki, J.; Furuya, M.; Tominaga, A. IL-5-induced eosinophils suppress the growth of leishmania amazonensis in vivo and kill promastigotes in vitro in response to either IL-4 or IFN-γ. DNA Cell Biol., 2004, 23(7), 412-418.
[http://dx.doi.org/10.1089/1044549041474805] [PMID: 15294090]
[117]
Förster, R.; Schubel, A.; Breitfeld, D.; Kremmer, E.; Renner-Müller, I.; Wolf, E.; Lipp, M. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell, 1999, 99(1), 23-33.
[http://dx.doi.org/10.1016/S0092-8674(00)80059-8] [PMID: 10520991]
[118]
Gunn, M.D.; Kyuwa, S.; Tam, C.; Kakiuchi, T.; Matsuzawa, A.; Williams, L.T.; Nakano, H. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med., 1999, 189(3), 451-460.
[http://dx.doi.org/10.1084/jem.189.3.451] [PMID: 9927507]
[119]
Bromley, S.K.; Thomas, S.Y.; Luster, A.D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol., 2005, 6(9), 895-901.
[http://dx.doi.org/10.1038/ni1240] [PMID: 16116469]
[120]
Yanagawa, Y.; Onoé, K. CCL19 induces rapid dendritic extension of murine dendritic cells. Blood, 2002, 100(6), 1948-1956.
[http://dx.doi.org/10.1182/blood-2002-01-0260] [PMID: 12200351]
[121]
Yanagawa, Y.; Onoé, K. CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomitant up-regulation of Cdc42 and Rac activities. Blood, 2003, 101(12), 4923-4929.
[http://dx.doi.org/10.1182/blood-2002-11-3474] [PMID: 12609829]
[122]
Sánchez-Sánchez, N.; Riol-Blanco, L.; de la Rosa, G.; Puig-Kröger, A.; García-Bordas, J.; Martín, D.; Longo, N.; Cuadrado, A.; Cabañas, C.; Corbí, A.L.; Sánchez-Mateos, P.; Rodríguez-Fernández, J.L. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood, 2004, 104(3), 619-625.
[http://dx.doi.org/10.1182/blood-2003-11-3943] [PMID: 15059845]
[123]
Yoshida, R.; Nagira, M.; Kitaura, M.; Imagawa, N.; Imai, T.; Yoshie, O. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J. Biol. Chem., 1998, 273(12), 7118-7122.
[http://dx.doi.org/10.1074/jbc.273.12.7118] [PMID: 9507024]
[124]
Gunn, M.D.; Tangemann, K.; Tam, C.; Cyster, J.G.; Rosen, S.D.; Williams, L.T. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 258-263.
[http://dx.doi.org/10.1073/pnas.95.1.258] [PMID: 9419363]
[125]
Luther, S.A.; Tang, H.L.; Hyman, P.L.; Farr, A.G.; Cyster, J.G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12694-12699.
[http://dx.doi.org/10.1073/pnas.97.23.12694] [PMID: 11070085]
[126]
Carlsen, H.S.; Haraldsen, G.; Brandtzaeg, P.; Baekkevold, E.S. Disparate lymphoid chemokine expression in mice and men: no evidence of CCL21 synthesis by human high endothelial venules. Blood, 2005, 106(2), 444-446.
[http://dx.doi.org/10.1182/blood-2004-11-4353] [PMID: 15863780]
[127]
Sironi, M.; Martinez, F.O.; D’Ambrosio, D.; Gattorno, M.; Polentarutti, N.; Locati, M.; Gregorio, A.; Iellem, A.; Cassatella, M.A.; Van Damme, J.; Sozzani, S.; Martini, A.; Sinigaglia, F.; Vecchi, A.; Mantovani, A. Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: Association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J. Leukoc. Biol., 2006, 80(2), 342-349.
[http://dx.doi.org/10.1189/jlb.1005586] [PMID: 16735693]
[128]
Rodriguez, N.E.; Chang, H.K.; Wilson, M.E. Novel program of macrophage gene expression induced by phagocytosis of Leishmania chagasi. Infect. Immun., 2004, 72(4), 2111-2122.
[http://dx.doi.org/10.1128/IAI.72.4.2111-2122.2004] [PMID: 15039333]
[129]
Kemp, K.; Kemp, M.; Kharazmi, A.; Ismail, A.; Kurtzhals, J.A.; Hviid, L.; Theander, T.G.; Leishmania-Specific, T. Leishmania-specific T cells expressing interferon-γ (IFN-γ) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis. Clin. Exp. Immunol., 1999, 116(3), 500-504.
[http://dx.doi.org/10.1046/j.1365-2249.1999.00918.x] [PMID: 10361241]
[130]
Musso, T.; Cappello, P.; Stornello, S.; Ravarino, D.; Caorsi, C.; Otero, K.; Novelli, F.; Badolato, R.; Giovarelli, M. IL-10 enhances CCL2 release and chemotaxis induced by CCL16 in human monocytes. Int. J. Immunopathol. Pharmacol., 2005, 18(2), 339-349.
[http://dx.doi.org/10.1177/039463200501800216] [PMID: 15888256]
[131]
Schutyser, E.; Struyf, S.; Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev., 2003, 14(5), 409-426.
[http://dx.doi.org/10.1016/S1359-6101(03)00049-2] [PMID: 12948524]
[132]
Karp, C.L.; el-Safi, S.H.; Wynn, T.A.; Satti, M.M.; Kordofani, A.M.; Hashim, F.A.; Hag-Ali, M.; Neva, F.A.; Nutman, T.B.; Sacks, D.L. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J. Clin. Invest., 1993, 91(4), 1644-1648.
[http://dx.doi.org/10.1172/JCI116372] [PMID: 8097208]
[133]
Geissmann, F.; Jung, S.; Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 2003, 19(1), 71-82.
[http://dx.doi.org/10.1016/S1074-7613(03)00174-2] [PMID: 12871640]
[134]
Serbina, N.V.; Salazar-Mather, T.P.; Biron, C.A.; Kuziel, W.A.; Pamer, E.G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity, 2003, 19(1), 59-70.
[http://dx.doi.org/10.1016/S1074-7613(03)00171-7] [PMID: 12871639]
[135]
Mordue, D.G.; Sibley, L.D. A novel population of Gr-1+-activated macrophages induced during acute toxoplasmosis. J. Leukoc. Biol., 2003, 74(6), 1015-1025.
[http://dx.doi.org/10.1189/jlb.0403164] [PMID: 12972511]
[136]
Boring, L.; Gosling, J.; Chensue, S.W.; Kunkel, S.L.; Farese, R.V., Jr; Broxmeyer, H.E.; Charo, I.F. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest., 1997, 100(10), 2552-2561.
[http://dx.doi.org/10.1172/JCI119798] [PMID: 9366570]
[137]
Zhou, Y.; Kurihara, T.; Ryseck, R.P.; Yang, Y.; Ryan, C.; Loy, J.; Warr, G.; Bravo, R. Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J. Immunol., 1998, 160(8), 4018-4025.
[PMID: 9558111]
[138]
Yoshida, T.; Imai, T.; Kakizaki, M.; Nishimura, M.; Takagi, S.; Yoshie, O. Identification of single C motif-1/lymphotactin receptor XCR1. J. Biol. Chem., 1998, 273(26), 16551-16554.
[http://dx.doi.org/10.1074/jbc.273.26.16551] [PMID: 9632725]
[139]
Kuloglu, E.S.; McCaslin, D.R.; Kitabwalla, M.; Pauza, C.D.; Markley, J.L.; Volkman, B.F. Monomeric solution structure of the prototypical ‘C’ chemokine lymphotactin. Biochemistry, 2001, 40(42), 12486-12496.
[http://dx.doi.org/10.1021/bi011106p] [PMID: 11601972]
[140]
Peterson, F.C.; Elgin, E.S.; Nelson, T.J.; Zhang, F.; Hoeger, T.J.; Linhardt, R.J.; Volkman, B.F. Identification and characterization of a glycosaminoglycan recognition element of the C chemokine lymphotactin. J. Biol. Chem., 2004, 279(13), 12598-12604.
[http://dx.doi.org/10.1074/jbc.M311633200] [PMID: 14707146]
[141]
Tuinstra, R.L.; Peterson, F.C.; Elgin, E.S.; Pelzek, A.J.; Volkman, B.F. An engineered second disulfide bond restricts lymphotactin/XCL1 to a chemokine-like conformation with XCR1 agonist activity. Biochemistry, 2007, 46(10), 2564-2573.
[http://dx.doi.org/10.1021/bi602365d] [PMID: 17302442]
[142]
Dorner, B.; Müller, S.; Entschladen, F.; Schröder, J.M.; Franke, P.; Kraft, R.; Friedl, P.; Clark-Lewis, I.; Kroczek, R.A. Purification, structural analysis, and function of natural ATAC, a cytokine secreted by CD8(+) T cells. J. Biol. Chem., 1997, 272(13), 8817-8823.
[http://dx.doi.org/10.1074/jbc.272.13.8817] [PMID: 9079718]
[143]
Bachem, A.; Güttler, S.; Hartung, E.; Ebstein, F.; Schaefer, M.; Tannert, A.; Salama, A.; Movassaghi, K.; Opitz, C.; Mages, H.W.; Henn, V.; Kloetzel, P.M.; Gurka, S.; Kroczek, R.A. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med., 2010, 207(6), 1273-1281.
[http://dx.doi.org/10.1084/jem.20100348] [PMID: 20479115]
[144]
Dorner, B.G.; Dorner, M.B.; Zhou, X.; Opitz, C.; Mora, A.; Güttler, S.; Hutloff, A.; Mages, H.W.; Ranke, K.; Schaefer, M.; Jack, R.S.; Henn, V.; Kroczek, R.A. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity, 2009, 31(5), 823-833.
[http://dx.doi.org/10.1016/j.immuni.2009.08.027] [PMID: 19913446]
[145]
Lei, Y.; Ripen, A.M.; Ishimaru, N.; Ohigashi, I.; Nagasawa, T.; Jeker, L.T.; Bösl, M.R.; Holländer, G.A.; Hayashi, Y.; Malefyt, Rde.W.; Nitta, T.; Takahama, Y. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J. Exp. Med., 2011, 208(2), 383-394.
[http://dx.doi.org/10.1084/jem.20102327] [PMID: 21300913]
[146]
Yoshida, T.; Imai, T.; Kakizaki, M.; Nishimura, M.; Yoshie, O. Molecular cloning of a novel C or gamma type chemokine, SCM-1. FEBS Lett., 1995, 360(2), 155-159.
[http://dx.doi.org/10.1016/0014-5793(95)00093-O] [PMID: 7875320]
[147]
Yoshida, T.; Imai, T.; Takagi, S.; Nishimura, M.; Ishikawa, I.; Yaoi, T.; Yoshie, O. Structure and expression of two highly related genes encoding SCM-1/human lymphotactin. FEBS Lett., 1996, 395(1), 82-88.
[http://dx.doi.org/10.1016/0014-5793(96)01004-6] [PMID: 8849694]
[148]
Yamazaki, C.; Miyamoto, R.; Hoshino, K.; Fukuda, Y.; Sasaki, I.; Saito, M.; Ishiguchi, H.; Yano, T.; Sugiyama, T.; Hemmi, H.; Tanaka, T.; Hamada, E.; Hirashima, T.; Amakawa, R.; Fukuhara, S.; Nomura, S.; Ito, T.; Kaisho, T. Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice. Biochem. Biophys. Res. Commun., 2010, 397(4), 756-761.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.029] [PMID: 20541533]
[149]
Wang, M.; Windgassen, D.; Papoutsakis, E.T. Comparative analysis of transcriptional profiling of CD3+, CD4+ and CD8+ T cells identifies novel immune response players in T-cell activation. BMC Genomics, 2008, 9(1), 225.
[http://dx.doi.org/10.1186/1471-2164-9-225] [PMID: 18485203]
[150]
Ontoria, E.; Hernández-Santana, Y.E.; González-García, A.C.; López, M.C.; Valladares, B.; Carmelo, E. Transcriptional profiling of immune-related genes in leishmania infantum-infected mice: identification of potential biomarkers of infection and progression of disease. Front. Cell. Infect. Microbiol., 2018, 8, 197.
[http://dx.doi.org/10.3389/fcimb.2018.00197] [PMID: 30013952]
[151]
Zimmerman, J.W.; Pennison, M.J.; Brezovich, I.; Yi, N.; Yang, C.T.; Ramaker, R.; Absher, D.; Myers, R.M.; Kuster, N.; Costa, F.P.; Barbault, A.; Pasche, B. Cancer cell proliferation is inhibited by specific modulation frequencies. Br. J. Cancer, 2012, 106(2), 307-313.
[http://dx.doi.org/10.1038/bjc.2011.523] [PMID: 22134506]
[152]
Kiaii, S.; Kokhaei, P.; Mozaffari, F.; Rossmann, E.; Pak, F.; Moshfegh, A.; Palma, M.; Hansson, L.; Mashayekhi, K.; Hojjat-Farsangi, M.; Österborg, A.; Choudhury, A.; Mellstedt, H. T cells from indolent CLL patients prevent apoptosis of leukemic B cells in vitro and have altered gene expression profile. Cancer Immunol. Immunother., 2013, 62(1), 51-63.
[http://dx.doi.org/10.1007/s00262-012-1300-y] [PMID: 22736254]
[153]
Cao, W.; Tang, S.; Yuan, H.; Wang, H.; Zhao, X.; Lu, H. Mycobacterium tuberculosis antigen Wag31 induces expression of C-chemokine XCL2 in macrophages. Curr. Microbiol., 2008, 57(3), 189-194.
[http://dx.doi.org/10.1007/s00284-008-9172-2] [PMID: 18618175]
[154]
Crump, M.P.; Gong, J.H.; Loetscher, P.; Rajarathnam, K.; Amara, A.; Arenzana-Seisdedos, F.; Virelizier, J.L.; Baggiolini, M.; Sykes, B.D.; Clark-Lewis, I. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J., 1997, 16(23), 6996-7007.
[http://dx.doi.org/10.1093/emboj/16.23.6996] [PMID: 9384579]
[155]
Umehara, H.; Bloom, E.T.; Okazaki, T.; Nagano, Y.; Yoshie, O.; Imai, T. Fractalkine in vascular biology: from basic research to clinical disease. Arterioscler. Thromb. Vasc. Biol., 2004, 24(1), 34-40.
[http://dx.doi.org/10.1161/01.ATV.0000095360.62479.1F] [PMID: 12969992]
[156]
Garton, K.J.; Gough, P.J.; Blobel, C.P.; Murphy, G.; Greaves, D.R.; Dempsey, P.J.; Raines, E.W. Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem., 2001, 276(41), 37993-38001.
[http://dx.doi.org/10.1074/jbc.M106434200] [PMID: 11495925]
[157]
Garcia, G.E.; Xia, Y.; Chen, S.; Wang, Y.; Ye, R.D.; Harrison, J.K.; Bacon, K.B.; Zerwes, H.G.; Feng, L. NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J. Leukoc. Biol., 2000, 67(4), 577-584.
[http://dx.doi.org/10.1002/jlb.67.4.577] [PMID: 10770292]
[158]
Ruth, J.H.; Volin, M.V.; Haines, G.K., III; Woodruff, D.C.; Katschke, K.J., Jr; Woods, J.M.; Park, C.C.; Morel, J.C.; Koch, A.E. Fractalkine, a novel chemokine in rheumatoid arthritis and in rat adjuvant-induced arthritis. Arthritis Rheum., 2001, 44(7), 1568-1581.
[http://dx.doi.org/10.1002/1529-0131(200107)44:7<1568::AID-ART280>3.0.CO;2-1] [PMID: 11465708]
[159]
Koch, A.E. Chemokines and their receptors in rheumatoid arthritis: future targets? Arthritis Rheum., 2005, 52(3), 710-721.
[http://dx.doi.org/10.1002/art.20932] [PMID: 15751074]
[160]
Foussat, A.; Bouchet-Delbos, L.; Berrebi, D.; Durand-Gasselin, I.; Coulomb-L’Hermine, A.; Krzysiek, R.; Galanaud, P.; Levy, Y.; Emilie, D. Deregulation of the expression of the fractalkine/fractalkine receptor complex in HIV-1-infected patients. Blood, 2001, 98(6), 1678-1686.
[http://dx.doi.org/10.1182/blood.V98.6.1678] [PMID: 11535497]
[161]
Vitale, S.; Cambien, B.; Karimdjee, B.F.; Barthel, R.; Staccini, P.; Luci, C.; Breittmayer, V.; Anjuère, F.; Schmid-Alliana, A.; Schmid-Antomarchi, H. Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut, 2007, 56(3), 365-372.
[http://dx.doi.org/10.1136/gut.2005.088989] [PMID: 16870716]
[162]
Lama, J.; and Planelles, V. Host factors influencing susceptibility to HIV infection and AIDS progression. Retrovirology 2007, 452. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1978541/
[http://dx.doi.org/10.1186%2F1742-4690-4-52,10.1186/1742-4690-4-52] [PMID: 17651505]
[163]
Lopez-Lopez, A.; Gamez, J.; Syriani, E.; Morales, M.; Salvado, M.; Rodríguez, M.J.; Mahy, N.; Vidal-Taboada, J.M. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One, 2014, 9(5), e96528.
[http://dx.doi.org/10.1371/journal.pone.0096528] [PMID: 24806473]
[164]
Feldman, G.J.; Parvizi, J.; Sawan, H.; Erickson, J.A.; Peters, C.L. Linkage mapping and whole exome sequencing identify a shared variant in CX3CR1 in a large multi-generation family. J. Arthroplasty, 2014, 29(9)(Suppl.), 238-241.
[http://dx.doi.org/10.1016/j.arth.2014.05.014] [PMID: 24998320]
[165]
Tomiotto-Pellissier, F.; Bortoleti, B.T.D.S.; Assolini, J.P.; Gonçalves, M.D.; Carloto, A.C.M.; Miranda-Sapla, M.M.; Conchon-Costa, I.; Bordignon, J.; Pavanelli, W.R. Macrophage polarization in leishmaniasis: Broadening horizons. Front. Immunol., 2018, 9, 2529.
[http://dx.doi.org/10.3389/fimmu.2018.02529] [PMID: 30429856]
[166]
Sato, N.; Kuziel, W.A.; Melby, P.C.; Reddick, R.L.; Kostecki, V.; Zhao, W.; Maeda, N.; Ahuja, S.K.; Ahuja, S.S. Defects in the generation of IFN-γ are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 α-, or CCR2-deficient mice. J. Immunol., 1999, 163(10), 5519-5525.
[PMID: 10553079]
[167]
Kong, F.; Saldarriaga, O.A.; Spratt, H.; Osorio, E.Y.; Travi, B.L.; Luxon, B.A.; Melby, P.C. Transcriptional profiling in experimental visceral leishmaniasis reveals a broad splenic inflammatory environment that conditions macrophages toward a disease-promoting phenotype. PLoS Pathog., 2017, 13(1), e1006165.
[http://dx.doi.org/10.1371/journal.ppat.1006165] [PMID: 28141856]
[168]
Nguyen Hoang, A.T.; Liu, H.; Juaréz, J.; Aziz, N.; Kaye, P.M.; Svensson, M. Stromal cell-derived CXCL12 and CCL8 cooperate to support increased development of regulatory dendritic cells following Leishmania infection. J. Immunol., 2010, 185(4), 2360-2371.
[http://dx.doi.org/10.4049/jimmunol.0903673] [PMID: 20624948]
[169]
Müller, K.; Ehlers, S.; Solbach, W.; Laskay, T. Novel multi-probe RNase protection assay (RPA) sets for the detection of murine chemokine gene expression. J. Immunol. Methods, 2001, 249(1-2), 155-165.
[http://dx.doi.org/10.1016/S0022-1759(00)00354-9] [PMID: 11226473]
[170]
Zimmermann, N.; Hershey, G.K.; Foster, P.S.; Rothenberg, M.E. Chemokines in asthma: cooperative interaction between chemokines and IL-13. J. Allergy Clin. Immunol., 2003, 111(2), 227-242.
[http://dx.doi.org/10.1067/mai.2003.139] [PMID: 12589338]
[171]
Verreck, F.A.; de Boer, T.; Langenberg, D.M.; Hoeve, M.A.; Kramer, M.; Vaisberg, E.; Kastelein, R.; Kolk, A.; de Waal-Malefyt, R.; Ottenhoff, T.H. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4560-4565.
[http://dx.doi.org/10.1073/pnas.0400983101] [PMID: 15070757]
[172]
Italiani, P.; Mazza, E.M.; Lucchesi, D.; Cifola, I.; Gemelli, C.; Grande, A.; Battaglia, C.; Bicciato, S.; Boraschi, D. Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro. PLoS One, 2014, 9(2), e87680.
[http://dx.doi.org/10.1371/journal.pone.0087680] [PMID: 24498352]
[173]
Campanelli, A.P.; Brodskyn, C.I.; Boaventura, V.; Silva, C.; Roselino, A.M.; Costa, J.; Saldanha, A.C.; de Freitas, L.A.; de Oliveira, C.I.; Barral-Netto, M.; Silva, J.S.; Barral, A. Chemokines and chemokine receptors coordinate the inflammatory immune response in human cutaneous leishmaniasis. Hum. Immunol., 2010, 71(12), 1220-1227.
[http://dx.doi.org/10.1016/j.humimm.2010.09.002] [PMID: 20854864]
[174]
Schreiber, T.; Ehlers, S.; Heitmann, L.; Rausch, A.; Mages, J.; Murray, P.J.; Lang, R.; Hölscher, C. Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J. Immunol., 2009, 183(2), 1301-1312.
[http://dx.doi.org/10.4049/jimmunol.0803567] [PMID: 19561100]
[175]
Navas, A.; Fernández, O.; Gallego-Marín, C.; Castro, M.D.M.; Rosales-Chilama, M.; Murillo, J.; Cossio, A.; McMahon-Pratt, D.; Saravia, N.G.; Gómez, M.A. Profiles of local and systemic inflammation in the outcome of treatment of human cutaneous leishmaniasis caused by leishmania (viannia). Infect. Immun., 2020, 88(3), e00764-e19.
[http://dx.doi.org/10.1128/IAI.00764-19] [PMID: 31818959]
[176]
Teixeira, C.; Gomes, R.; Oliveira, F.; Meneses, C.; Gilmore, D.C.; Elnaiem, D.E.; Valenzuela, J.G.; Kamhawi, S. Characterization of the early inflammatory infiltrate at the feeding site of infected sand flies in mice protected from vector-transmitted Leishmania major by exposure to uninfected bites. PLoS Negl. Trop. Dis., 2014, 8(4), e2781.
[http://dx.doi.org/10.1371/journal.pntd.0002781] [PMID: 24762408]
[177]
Söbirk, S.K.; Mörgelin, M.; Egesten, A.; Bates, P.; Shannon, O.; Collin, M. Human chemokines as antimicrobial peptides with direct parasiticidal effect on Leishmania mexicana in vitro. PLoS One, 2013, 8(3), e58129.
[http://dx.doi.org/10.1371/journal.pone.0058129] [PMID: 23533582]
[178]
Novais, F.O.; Carvalho, A.M.; Clark, M.L.; Carvalho, L.P.; Beiting, D.P.; Brodsky, I.E.; Carvalho, E.M.; Scott, P. CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1β production. PLoS Pathog., 2017, 13(2), e1006196.
[http://dx.doi.org/10.1371/journal.ppat.1006196] [PMID: 28192528]
[179]
Bhattacharya, P.; Ali, N. Involvement and interactions of different immune cells and their cytokines in human visceral leishmaniasis. Rev. Soc. Bras. Med. Trop., 2013, 46(2), 128-134.
[http://dx.doi.org/10.1590/0037-8682-0022-2012] [PMID: 23559342]
[180]
Kraus, J.; Börner, C.; Giannini, E.; Höllt, V. The role of nuclear factor kappaB in tumor necrosis factor-regulated transcription of the human μ-opioid receptor gene. Mol. Pharmacol., 2003, 64(4), 876-884.
[http://dx.doi.org/10.1124/mol.64.4.876] [PMID: 14500744]
[181]
Badolato, R.; Sacks, D.L.; Savoia, D.; Musso, T. Leishmania major: infection of human monocytes induces expression of IL-8 and MCAF. Exp. Parasitol., 1996, 82(1), 21-26.
[http://dx.doi.org/10.1006/expr.1996.0003] [PMID: 8617327]
[182]
Edgar, R.; Domrachev, M.; Lash, A.E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 2002, 30(1), 207-210.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[183]
Ramani, A.; Müller, L.; Ostermann, P. N.; Gabriel, E.; Abida-Islam, P.; Timm, C. K.; Schaal, H.; Gopalakrishnan, J. 2018.
[184]
Lee, W.Y.; Wang, C.J.; Lin, T.Y.; Hsiao, C.L.; Luo, C.W. CXCL17, an orphan chemokine, acts as a novel angiogenic and anti-inflammatory factor. Am. J. Physiol. Endocrinol. Metab., 2013, 304(1), E32-E40.
[http://dx.doi.org/10.1152/ajpendo.00083.2012] [PMID: 23115081]
[185]
Teixeira, M.J.; Fernandes, J.D.; Teixeira, C.R.; Andrade, B.B.; Pompeu, M.L.; Santana da Silva, J.; Brodskyn, C.I.; Barral-Netto, M.; Barral, A. Distinct leishmania braziliensis isolates induce different paces of chemokine expression patterns. Infect. Immun., 2005, 73(2), 1191-1195.
[http://dx.doi.org/10.1128/IAI.73.2.1191-1195.2005] [PMID: 15664963]
[186]
Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res., 2009, 29(6), 313-326.
[http://dx.doi.org/10.1089/jir.2008.0027] [PMID: 19441883]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy