Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Antimicrobial Benefits of Flavonoids and their Nanoformulations

Author(s): Sara Salatin*, Ahad Bazmani, Shahriar Shahi*, Behrooz Naghili, Mohammad Yousef Memar and Solmaz Maleki Dizaj

Volume 28, Issue 17, 2022

Published on: 10 June, 2022

Page: [1419 - 1432] Pages: 14

DOI: 10.2174/1381612828666220509151407

Price: $65

conference banner
Abstract

Nowadays, there is an urgent need to discover and develop long-term and effective antimicrobial and biofilm-inhibiting compounds. Employing combination therapies using novel drug delivery systems and also natural antimicrobial substances is a promising strategy in this field. Nanoparticles (NPs)-based materials have become well appreciated in recent times due to their function as antimicrobial agents or carriers for promoting the bioavailability and effectiveness of antibiotics. Flavonoids belong to the promising groups of bioactive compounds abundantly found in fruits, vegetables, spices, and medicinal plants with strong antimicrobial features. Flavonoids and NPs have the potential to work as alternatives to the conventional antimicrobial agents, when used alone as well as in combination. Different classes of flavonoid NPs may be particularly advantageous in treating microbial infections. The most important antimicrobial mechanisms of flavonoid NPs include oxidative stress induction, non-oxidative mechanisms, and metal ion release. However, the efficacy of flavonoid NPs against pathogens and drug-resistant pathogens changes according to their physicochemical characteristics as well as the particular structure of microbial cell wall and enzymatic composition. In this review, we provide an outlook on the antimicrobial mechanism of flavonoid-based NPs and the crucial factors involved in it.

Keywords: Flavonoids, nanoparticles, antimicrobial, antibacterial, infection, multidrug-resistant bacteria, pathogens.

[1]
Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020; 12(12): 3313.
[http://dx.doi.org/10.3390/w12123313]
[2]
León-Buitimea A, Garza-Cárdenas CR, Garza-Cervantes JA, Lerma-Escalera JA, Morones-Ramírez JR. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front Microbiol 2020; 11: 1669.
[http://dx.doi.org/10.3389/fmicb.2020.01669] [PMID: 32793156]
[3]
Lagadinou M, Onisor MO, Rigas A, et al. Antimicrobial properties on non-antibiotic drugs in the era of increased bacterial resistance. Antibiotics (Basel) 2020; 9(3): 1-12.
[http://dx.doi.org/10.3390/antibiotics9030107] [PMID: 32131427]
[4]
Shah ST, Yehye WA, Chowdhury ZZ, Simarani K. Magnetically directed antioxidant and antimicrobial agent: Synthesis and surface functionalization of magnetite with quercetin. PeerJ 2019; 7: e7651.
[http://dx.doi.org/10.7717/peerj.7651] [PMID: 31768301]
[5]
Salatin S, Lotfipour F, Jelvehgari M. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin Drug Deliv 2019; 16(12): 1313-31.
[http://dx.doi.org/10.1080/17425247.2020.1693998] [PMID: 31738622]
[6]
Sharifi S, Samani A, Ahmadian E, et al. Oral delivery of proteins and peptides by mucoadhesive nanoparticles. Biointerface Res Appl Chem 2019; 9(2): 3849-52.
[http://dx.doi.org/10.33263/BRIAC92.849852]
[7]
Yuan G, Zhang X, Tang W, Sun H. Effect of chitosan coating combined with green tea extract on the melanosis and quality of Pacific white shrimp during storage in ice. CYTA J Food 2016; 14(1): 35-40.
[http://dx.doi.org/10.1080/19476337.2015.1040459]
[8]
Eftekhari A, Ahmadian E, Salatin S, et al. Current analytical approaches in diagnosis of melanoma. Trends Analyt Chem 2019; 116: 122-35.
[http://dx.doi.org/10.1016/j.trac.2019.05.004]
[9]
Dizaj SM, Rad AA, Safaei N, et al. The application of nanomaterials in cardiovascular diseases: A review on drugs and devices. J Pharm Pharm Sci 2019; 22: 501-15.
[http://dx.doi.org/10.18433/jpps30456]
[10]
Salatin S. Nanoparticles as potential tools for improved antioxidant enzyme delivery. J Adv Chem Pharml Mater 2018; 1(3): 65-6.
[11]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. An alternative approach for improved entrapment efficiency of hydrophilic drug substance in PLGA nanoparticles by interfacial polymer deposition following solvent displacement. Jundishapur J Nat Pharm Prod 2018; 13(4): e12873.
[http://dx.doi.org/10.5812/jjnpp.12873]
[12]
Lotfipour F, Alami-Milani M, Salatin S, Hadavi A, Jelvehgari M. Freeze-thaw-induced cross-linked PVA/chitosan for oxytetracycline-loaded wound dressing: The experimental design and optimization. Res Pharm Sci 2019; 14(2): 175-89.
[http://dx.doi.org/10.4103/1735-5362.253365] [PMID: 31620194]
[13]
Maghsoodi M, Rahmani M, Ghavimi H, et al. Fast dissolving sublingual films containing sumatriptan alone and combined with methoclopramide: Evaluation in vitro drug release and mucosal permeation. Pharm Sci 2016; 22(3): 153-63.
[http://dx.doi.org/10.15171/PS.2016.25]
[14]
Salatin S, Alami-Milani M, Daneshgar R, Jelvehgari M. Box-Behnken experimental design for preparation and optimization of the intranasal gels of selegiline hydrochloride. Drug Dev Ind Pharm 2018; 44(10): 1613-21.
[http://dx.doi.org/10.1080/03639045.2018.1483387] [PMID: 29932793]
[15]
Salatin S, Jelvehgari M. Desirability function approach for development of a thermosensitive and bioadhesive nanotransfersome-hydrogel hybrid system for enhanced skin bioavailability and antibacterial activity of cephalexin. Drug Dev Ind Pharm 2020; 46(8): 1318-33.
[http://dx.doi.org/10.1080/03639045.2020.1788068] [PMID: 32598186]
[16]
Chen KTJ, Anantha M, Leung AWY, et al. Characterization of a liposomal copper(II)-quercetin formulation suitable for parenteral use. Drug Deliv Transl Res 2020; 10(1): 202-15.
[http://dx.doi.org/10.1007/s13346-019-00674-7] [PMID: 31482519]
[17]
Pivetta TP, Silva LB, Kawakami CM, et al. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J Drug Deliv Sci Technol 2019; 53: 101148.
[http://dx.doi.org/10.1016/j.jddst.2019.101148]
[18]
De Gaetano F, Cristiano MC, Venuti V, et al. Rutin-loaded solid lipid nanoparticles: Characterization and in vitro evaluation. Molecules 2021; 26(4): 1039-45.
[http://dx.doi.org/10.3390/molecules26041039] [PMID: 33669321]
[19]
Dhas TS, Sowmiya P, Kumar VG, et al. Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi. Biocatal Agric Biotechnol 2020; 26: 101627.
[http://dx.doi.org/10.1016/j.bcab.2020.101627]
[20]
Villa-García LD, Márquez-Preciado R, Ortiz-Magdaleno M, et al. Antimicrobial effect of gold nanoparticles in the formation of the Staphylococcus aureus biofilm on a polyethylene surface. Braz J Microbiol 2021; 52(2): 619-25.
[http://dx.doi.org/10.1007/s42770-021-00455-w] [PMID: 33619696]
[21]
Momeni M, Asadi S, Shanbedi M. Antimicrobial effect of silver nanoparticles synthesized with bougainvillea Glabra extract on Staphylococcus aureus and Escherichia coli. Iran J Chem Chem Eng 2021; 40(2): 395-405.
[22]
Lee B, Lee MJ, Yun SJ, Kim K, Choi I-H, Park S. Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae. Int J Nanomedicine 2019; 14: 4801-16.
[http://dx.doi.org/10.2147/IJN.S205736] [PMID: 31308659]
[23]
Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater 2008; 9(3): 035004.
[http://dx.doi.org/10.1088/1468-6996/9/3/035004] [PMID: 27878001]
[24]
Ansari SAMK, Ficiarà E, Ruffinatti FA, et al. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel) 2019; 12(3): 465-73.
[http://dx.doi.org/10.3390/ma12030465] [PMID: 30717431]
[25]
Vieira APM, Arias LS, de Souza Neto FN, et al. Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids Surf B Biointerfaces 2019; 174: 224-31.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.023] [PMID: 30465997]
[26]
Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 2017; 15(1): 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[27]
Wu M, Guo H, Liu L, Liu Y, Xie L. Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int J Nanomedicine 2019; 14: 4247-59.
[http://dx.doi.org/10.2147/IJN.S201107] [PMID: 31239678]
[28]
Alami-Milani M, Zakeri-Milani P, Valizadeh H, Sattari S, Salatin S, Jelvehgari M. Evaluation of anti-inflammatory impact of dexame-thasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits. Pharm Dev Technol 2019; 24(6): 680-8.
[http://dx.doi.org/10.1080/10837450.2019.1578370] [PMID: 30892119]
[29]
Inphonlek S, Pimpha N, Sunintaboon P. Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property. Colloids Surf B Biointerfaces 2010; 77(2): 219-26.
[http://dx.doi.org/10.1016/j.colsurfb.2010.01.029] [PMID: 20189779]
[30]
Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 2012; 12(8): 4271-5.
[http://dx.doi.org/10.1021/nl301934w] [PMID: 22765771]
[31]
El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 2011; 45(1): 283-7.
[http://dx.doi.org/10.1021/es1034188] [PMID: 21133412]
[32]
Sohm B, Immel F, Bauda P, Pagnout C. Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics 2015; 15(1): 98-113.
[http://dx.doi.org/10.1002/pmic.201400101] [PMID: 25346333]
[33]
Inam M, Foster JC, Gao J, et al. Size and shape affects the antimicrobial activity of quaternized nanoparticles. J Polym Sci A Polym Chem 2019; 57(3): 255-9.
[http://dx.doi.org/10.1002/pola.29195]
[34]
Slomberg DL, Lu Y, Broadnax AD, Hunter RA, Carpenter AW, Schoenfisch MH. Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces 2013; 5(19): 9322-9.
[http://dx.doi.org/10.1021/am402618w] [PMID: 24006838]
[35]
Wang L, He H, Yu Y, et al. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem 2014; 135: 45-53.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.02.016] [PMID: 24662462]
[36]
Shao XR, Wei XQ, Song X, et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif 2015; 48(4): 465-74.
[http://dx.doi.org/10.1111/cpr.12192] [PMID: 26017818]
[37]
Tantra R, Schulze P, Quincey P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 2010; 8(3): 279-85.
[http://dx.doi.org/10.1016/j.partic.2010.01.003]
[38]
Salatin S, Lotfipour F, Jelvehgari M. Preparation and characterization of a novel thermosensitive and bioadhesive cephalexin nanohydro-gel: A promising platform for topical antibacterial delivery. Expert Opin Drug Deliv 2020; 17(6): 881-93.
[http://dx.doi.org/10.1080/17425247.2020.1764530] [PMID: 32441175]
[39]
Wingett D, Louka P, Anders CB, Zhang J, Punnoose A. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity. Nanotechnol Sci Appl 2016; 9: 29-45.
[http://dx.doi.org/10.2147/NSA.S99747] [PMID: 27486313]
[40]
Yoon S, Lee B, Kim C, et al. Surface polarity-insensitive organosilicasome-based clustering of nanoparticles with intragap distance tunability. Chem Mater 2021; 33(13): 5257-67.
[http://dx.doi.org/10.1021/acs.chemmater.1c01339]
[41]
Gyulai G, Ouanzi F, Bertóti I, et al. Chemical structure and in vitro cellular uptake of luminescent carbon quantum dots prepared by solvothermal and microwave assisted techniques. J Colloid Interface Sci 2019; 549: 150-61.
[http://dx.doi.org/10.1016/j.jcis.2019.04.058] [PMID: 31029843]
[42]
Leung YH, Chan CM, Ng AM, et al. Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology 2012; 23(47): 475703.
[http://dx.doi.org/10.1088/0957-4484/23/47/475703] [PMID: 23103840]
[43]
Li Y, Xu W, Zhang G. Eds. Effect of coupling agent on nano-ZnO modification and antibacterial activity of ZnO/HDPE nanocomposite films. Mater Sci Eng 2015; 87: 12054.
[http://dx.doi.org/10.1088/1757-899X/87/1/012054]
[44]
Nymark P, Catalán J, Suhonen S, et al. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology 2013; 313(1): 38-48.
[http://dx.doi.org/10.1016/j.tox.2012.09.014] [PMID: 23142790]
[45]
Lin S, Cheng Y, Liu J, Wiesner MR. Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 2012; 28(9): 4178-86.
[http://dx.doi.org/10.1021/la202884f] [PMID: 22242766]
[46]
Micek A, Godos J, Del Rio D, Galvano F, Grosso G. Dietary flavonoids and cardiovascular disease: A comprehensive dose-response meta-analysis. Mol Nutr Food Res 2021; 65(6): e2001019.
[http://dx.doi.org/10.1002/mnfr.202001019] [PMID: 33559970]
[47]
Grzybowski A, Pietrzak K. Albert Szent-Györgyi (1893-1986): The scientist who discovered vitamin C. Clin Dermatol 2013; 31(3): 327-31.
[http://dx.doi.org/10.1016/j.clindermatol.2012.08.001] [PMID: 23738385]
[48]
Tagousop CN, Tamokou JD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 2018; 18(1): 252-60.
[http://dx.doi.org/10.1186/s12906-018-2321-7] [PMID: 30219066]
[49]
Kim H-G, Jang D, Jung YS, et al. Anti-inflammatory effect of flavonoids from Brugmansia arborea L. flowers. J Microbiol Biotechnol 2020; 30(2): 163-71.
[http://dx.doi.org/10.4014/jmb.1907.07058] [PMID: 31986558]
[50]
Jo B-G, Bong S-K, Jegal J, Kim S-N, Yang MH. Antiallergic effects of phenolic compounds isolated from Stellera chamaejasme on RBL-2H3 cells. Nat Prod Commun 2020; 15(7): 1-7.
[http://dx.doi.org/10.1177/1934578X20942352]
[51]
Chen L, Wei Y, Zhao S, et al. Antitumor and immunomodulatory activities of total flavonoids extract from persimmon leaves in H22 liver tumor-bearing mice. Sci Rep 2018; 8(1): 10523.
[http://dx.doi.org/10.1038/s41598-018-28440-8] [PMID: 30002398]
[52]
Cho I, Song HO, Cho JH. Flavonoids mitigate neurodegeneration in aged Caenorhabditis elegans by mitochondrial uncoupling. Food Sci Nutr 2020; 8(12): 6633-42.
[http://dx.doi.org/10.1002/fsn3.1956] [PMID: 33312547]
[53]
Monori-Kiss A, Monos E, Nádasy GL. Quantitative analysis of vasodilatory action of quercetin on intramural coronary resistance arter-ies of the rat in vitro. PLoS One 2014; 9(8): e105587.
[http://dx.doi.org/10.1371/journal.pone.0105587] [PMID: 25144688]
[54]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[55]
Vasudevan MU, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41: 107550.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107550] [PMID: 32360984]
[56]
Ali F. Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review. Int J Food Prop 2017; 20(6): 1197-238.
[http://dx.doi.org/10.1080/10942912.2016.1207188]
[57]
El-Abyad MS, Morsi NM, Zaki DA, Shaaban MT. Preliminary screening of some Egyptian weeds for antimicrobial activity. Microbios 1990; 62(250): 47-57.
[PMID: 2336037]
[58]
Dall’Agnol R, Ferraz A, Bernardi AP, et al. Antimicrobial activity of some Hypericum species. Phytomedicine 2003; 10(6-7): 511-6.
[http://dx.doi.org/10.1078/094471103322331476] [PMID: 13678236]
[59]
Gopal J, Muthu M, Paul D, Kim D-H, Chun S. Bactericidal activity of green tea extracts: The importance of catechin containing nano particles. Sci Rep 2016; 6(1): 19710.
[http://dx.doi.org/10.1038/srep19710] [PMID: 26818408]
[60]
Dong W, Wei X, Zhang F, et al. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways. Sci Rep 2014; 4(1): 7237.
[http://dx.doi.org/10.1038/srep07237] [PMID: 25429875]
[61]
Abdal Dayem A, Choi HY, Kim YB, Cho S-G. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One 2015; 10(3): e0121610.
[http://dx.doi.org/10.1371/journal.pone.0121610] [PMID: 25806943]
[62]
Alhadrami HA, Hamed AA, Hassan HM, Belbahri L, Rateb ME, Sayed AM. Flavonoids as potential anti-MRSA agents through modula-tion of PBP2a: A computational and experimental study. Antibiotics (Basel) 2020; 9(9): 562-72.
[http://dx.doi.org/10.3390/antibiotics9090562] [PMID: 32878266]
[63]
Amin MU, Khurram M, Khattak B, Khan J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement Altern Med 2015; 15(1): 59.
[http://dx.doi.org/10.1186/s12906-015-0580-0] [PMID: 25879586]
[64]
Kyaw BM, Arora S, Win KN, Daniel LCS. Prevention of emergence of fusidic acid and rifampicin resistance in Staphylococcus aureus using phytochemicals. Afr J Microbiol Res 2011; 5(22): 3684-92.
[65]
Usman Amin M, Khurram M, Khan TA, et al. Effects of luteolin and quercetin in combination with some conventional antibiotics against methicillin-resistant Staphylococcus aureus. Int J Mol Sci 2016; 17(11): 1947-57.
[http://dx.doi.org/10.3390/ijms17111947] [PMID: 27879665]
[66]
Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharm Anal 2020; 10(4): 277-90.
[http://dx.doi.org/10.1016/j.jpha.2019.11.002] [PMID: 32923005]
[67]
Mittal AK, Kumar S, Banerjee UC. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 2014; 431: 194-9.
[http://dx.doi.org/10.1016/j.jcis.2014.06.030] [PMID: 25000181]
[68]
Liu B, Wang Y, Yu Q, Li D, Li F. Synthesis, characterization of catechin-loaded folate-conjugated chitosan nanoparticles and their anti-proliferative effect. CYTA J Food 2018; 16(1): 868-76.
[http://dx.doi.org/10.1080/19476337.2018.1491625]
[69]
Yoon BI, Ha U-S, Sohn DW, et al. Anti-inflammatory and antimicrobial effects of nanocatechin in a chronic bacterial prostatitis rat model. J Infect Chemother 2011; 17(2): 189-94.
[http://dx.doi.org/10.1007/s10156-010-0098-9] [PMID: 20694569]
[70]
Wu J, Guan R, Cao G, et al. Antioxidant and antimicrobial effects of catechin liposomes on Chinese dried pork. J Food Prot 2018; 81(5): 827-34.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-452] [PMID: 29648930]
[71]
Zhang H, Jung J, Zhao Y. Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydr Polym 2016; 137: 82-91.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.036] [PMID: 26686108]
[72]
Li H, Chen Q, Zhao J, Urmila K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep 2015; 5(1): 11033.
[http://dx.doi.org/10.1038/srep11033] [PMID: 26046938]
[73]
Atinderpal K, Kapoor N, Gupta S, et al. Development and characterization of green tea catechins and ciprofloxacin-loaded nanoemulsion for intravaginal delivery to treat urinary tract infection. Indian J Pharm Sci 2018; 80(3): 442-52.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000377]
[74]
Yoda Y, Hu Z-Q, Zhao WH, Shimamura T. Different susceptibilities of Staphylococcus and gram-negative rods to epigallocatechin gallate. J Infect Chemother 2004; 10(1): 55-8.
[http://dx.doi.org/10.1007/s10156-003-0284-0] [PMID: 14991521]
[75]
Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol 2003; 77(19): 10288-94.
[http://dx.doi.org/10.1128/JVI.77.19.10288-10294.2003] [PMID: 12970413]
[76]
Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW. Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents 2004; 23(5): 462-7.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.09.027] [PMID: 15120724]
[77]
Ikigai H, Nakae T, Hara Y, Shimamura T. Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta 1993; 1147(1): 132-6.
[http://dx.doi.org/10.1016/0005-2736(93)90323-R] [PMID: 8466924]
[78]
Zhao W-H, Hu Z-Q, Okubo S, Hara Y, Shimamura T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001; 45(6): 1737-42.
[http://dx.doi.org/10.1128/AAC.45.6.1737-1742.2001] [PMID: 11353619]
[79]
Cui Y, Oh YJ, Lim J, et al. AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiol 2012; 29(1): 80-7.
[http://dx.doi.org/10.1016/j.fm.2011.08.019] [PMID: 22029921]
[80]
Zhao W, Liu Z, Liang X, et al. Preparation and characterization of epigallocatechin-3-gallate loaded melanin nanocomposite (EGCG @MNPs) for improved thermal stability, antioxidant and antibacterial activity. Lebensm Wiss Technol 2022; 154: 112599.
[http://dx.doi.org/10.1016/j.lwt.2021.112599]
[81]
Gharib A, Faezizadeh Z, Godarzee M. Therapeutic efficacy of epigallocatechin gallate-loaded nanoliposomes against burn wound infection by methicillin-resistant Staphylococcus aureus. Skin Pharmacol Physiol 2013; 26(2): 68-75.
[http://dx.doi.org/10.1159/000345761] [PMID: 23296023]
[82]
Yee YK, Koo MWL. Anti-Helicobacter pylori activity of Chinese tea: In vitro study. Aliment Pharmacol Ther 2000; 14(5): 635-8.
[http://dx.doi.org/10.1046/j.1365-2036.2000.00747.x] [PMID: 10792128]
[83]
Lin Y-H, Feng C-L, Lai C-H, Lin J-H, Chen H-Y. Preparation of epigallocatechin gallate-loaded nanoparticles and characterization of their inhibitory effects on Helicobacter pylori growth in vitro and in vivo. Sci Technol Adv Mater 2014; 15(4): 045006.
[http://dx.doi.org/10.1088/1468-6996/15/4/045006] [PMID: 27877707]
[84]
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 2016; 7: 1831-9.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[85]
Kar AK, Singh A, Dhiman N, et al. Polymer-assisted in situ synthesis of silver nanoparticles with epigallocatechin gallate (EGCG) impregnated wound patch potentiate controlled inflammatory responses for brisk wound healing. Int J Nanomedicine 2019; 14: 9837-54.
[http://dx.doi.org/10.2147/IJN.S228462] [PMID: 31849472]
[86]
Wu H, He L, Gao M, Gao S, Liao X, Shi B. One-step in situ assembly of size-controlled silver nanoparticles on polyphenol-grafted collagen fiber with enhanced antibacterial properties. New J Chem 2011; 35(12): 2902-9.
[http://dx.doi.org/10.1039/c1nj20674e]
[87]
Manea A-M, Vasile BS, Meghea A. Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. C R Chim 2014; 17(4): 331-41.
[http://dx.doi.org/10.1016/j.crci.2013.07.015]
[88]
Velázquez-Lam E, Imperial J, Ponz F. Polyphenol-functionalized plant viral-derived nanoparticles exhibit strong antimicrobial and antibiofilm formation activities. ACS Appl Bio Mater 2020; 3(4): 2040-7.
[http://dx.doi.org/10.1021/acsabm.9b01161] [PMID: 35025325]
[89]
Yang D, Wang T, Long M, Li P. Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev 2020; 2020: 8825387.
[http://dx.doi.org/10.1155/2020/8825387] [PMID: 33488935]
[90]
Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients 2016; 8(3): 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[91]
Qin X, Zhang M, Gao X, Lin Y, Li M, Si-Yi H. Study on the antibacterial activity of quercetin. Chem Bioeng 2009; 26(4): 55-7.
[92]
Wang S, Yao J, Zhou B, et al. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot 2018; 81(1): 68-78.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-214] [PMID: 29271686]
[93]
El-Sayed HS, Selim AO, Azab DM, Tawfik WA. Evaluation the antibacterial effect of quercetin nanoparticles (QUENPS) on drug-resistant E. coli strains in rabbits. Egypt J Agric Res 2021; 99(1): 94-107.
[94]
Shu Y, Liu Y, Li L, et al. Antibacterial activity of quercetin on oral infectious pathogens. Afr J Microbiol Res 2011; 5(30): 5358-61.
[95]
Arasoğlu T. Preparation, characterization, and enhanced antimicrobial activity: Quercetin-loaded PLGA nanoparticles against foodborne pathogens. Turk J Biol 2017; 41(1): 127-40.
[96]
Li F, Jin H, Xiao J, et al. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res Int 2018; 111: 351-60.
[http://dx.doi.org/10.1016/j.foodres.2018.05.038] [PMID: 30007696]
[97]
Sun D, Li N, Zhang W, et al. Quercetin-loaded PLGA nanoparticles: A highly effective antibacterial agent in vitro and anti-infection application in vivo. J Nanopart Res 2016; 18(1): 1-10.
[http://dx.doi.org/10.1007/s11051-015-3310-0]
[98]
Milanezi FG, Meireles LM, de Christo Scherer MM, et al. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm J 2019; 27(7): 968-74.
[http://dx.doi.org/10.1016/j.jsps.2019.07.005] [PMID: 31997903]
[99]
Sun D, Zhang W, Li N, et al. Silver nanoparticles-quercetin conjugation to siRNA against drug-resistant Bacillus subtilis for effective gene silencing: In vitro and in vivo. Mater Sci Eng C 2016; 63: 522-34.
[http://dx.doi.org/10.1016/j.msec.2016.03.024] [PMID: 27040247]
[100]
Saha C, Das A, Das P, Chakraborty A. Effect of Quercetin loaded Silver nanoparticles on gram negative and gram positive bacteria. Indian J Exp Biol 2021; 59(02): 132-40.
[101]
Lee KH, Kim BS, Keum KS, et al. Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation. J Food Sci 2011; 76(9): H226-30.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02427.x] [PMID: 22416707]
[102]
Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 2015; 10(3): e0121313.
[http://dx.doi.org/10.1371/journal.pone.0121313] [PMID: 25811596]
[103]
Morão LG, Polaquini CR, Kopacz M, et al. A simplified curcumin targets the membrane of Bacillus subtilis. MicrobiologyOpen 2019; 8(4): e00683.
[http://dx.doi.org/10.1002/mbo3.683] [PMID: 30051597]
[104]
Perera W, Dissanayake RK, Ranatunga U, et al. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anti-cancer applications. RSC Advances 2020; 10(51): 30785-95.
[http://dx.doi.org/10.1039/D0RA05755J]
[105]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[106]
No DS, Algburi A, Huynh P, et al. Antimicrobial efficacy of curcumin nanoparticles against Listeria monocytogenes is mediated by surface charge. J Food Saf 2017; 37(4): e12353.
[http://dx.doi.org/10.1111/jfs.12353]
[107]
Mofazzal Jahromi MA, Rajayi H, Al-Musawi S, et al. Evaluation of antibacterial effect of curcumin loaded chitosan nanoparticles. J Fasa Univ Med Sci 2015; 5(1): 134-41.
[108]
Mofazzal JMA, Al Musawi S, Pirestani M, et al. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotechnol 2014; 12(3): 1-8.
[109]
Jourghanian P, Ghaffari S, Ardjmand M, Haghighat S, Mohammadnejad M. Sustained release curcumin loaded solid lipid nanoparticles. Adv Pharm Bull 2016; 6(1): 17-21.
[http://dx.doi.org/10.15171/apb.2016.04] [PMID: 27123413]
[110]
Pourhajibagher M, Pourakbari B, Bahador A. Contribution of antimicrobial photo-sonodynamic therapy in wound healing: An in vivo effect of curcumin-nisin-based poly (L-lactic acid) nanoparticle on Acinetobacter baumannii biofilms. BMC Microbiol 2022; 22(1): 28.
[http://dx.doi.org/10.1186/s12866-022-02438-9] [PMID: 35039005]
[111]
Barros CHN, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. J Nanobiotechnology 2021; 19(1): 104-10.
[http://dx.doi.org/10.1186/s12951-021-00851-2] [PMID: 33849570]
[112]
Gao M, Long X, Du J, et al. Enhanced curcumin solubility and antibacterial activity by encapsulation in PLGA oily core nanocapsules. Food Funct 2020; 11(1): 448-55.
[http://dx.doi.org/10.1039/C9FO00901A] [PMID: 31829367]
[113]
Shajari M, Zamani M, Ahmadi N, Rostamizadeh K, Shapouri R. Improving the antibacterial activity of curcumin loaded nanoparticles in wastewater treatment by enhancing permeability and sustained release. J Polym Environ 2022; 1-10.
[http://dx.doi.org/10.1007/s10924-021-02338-5]
[114]
Abdellah AM, Sliem MA, Bakr M, Amin RM. Green synthesis and biological activity of silver-curcumin nanoconjugates. Future Med Chem 2018; 10(22): 2577-88.
[http://dx.doi.org/10.4155/fmc-2018-0152] [PMID: 30526035]
[115]
Gao P, Guyton ME, Huang T, Bauer JM, Stefanski KJ, Lu Q. Enhanced oral bioavailability of a poorly water soluble drug PNU-91325 by supersaturatable formulations. Drug Dev Ind Pharm 2004; 30(2): 221-9.
[http://dx.doi.org/10.1081/DDC-120028718] [PMID: 15089057]
[116]
Patil AG, Jobanputra AH. Rutin-chitosan nanoparticles: Fabrication, characterization and application in dental disorders. Polym Plast Technol Eng 2015; 54(2): 202-8.
[http://dx.doi.org/10.1080/03602559.2014.935425]
[117]
Deepika MS, Thangam R, Sundarraj S, et al. Co-delivery of diverse therapeutic compounds using PEG–PLGA nanoparticle cargo against drug-resistant bacteria: An improved anti-biofilm strategy. ACS Appl Bio Mater 2020; 3(1): 385-99.
[http://dx.doi.org/10.1021/acsabm.9b00850] [PMID: 35019455]
[118]
Zhou Y, Tang R-C. Facile and eco-friendly fabrication of colored and bioactive silk materials using silver nanoparticles synthesized by two flavonoids. Polymers (Basel) 2018; 10(4): 404-11.
[http://dx.doi.org/10.3390/polym10040404] [PMID: 30966439]
[119]
Essawy E, Abdelfattah MS, El-Matbouli M, Saleh M. Synergistic effect of biosynthesized silver nanoparticles and natural phenolic compounds against drug-resistant fish pathogens and their cytotoxicity: An in vitro study. Mar Drugs 2021; 19(1): 22-30.
[http://dx.doi.org/10.3390/md19010022] [PMID: 33429926]
[120]
Khan S, Matas M, Zhang J, Anwar J. Matas Md, Zhang J, Anwar J. Nanocrystal preparation: Low-energy precipitation method revisited. Cryst Growth Des 2013; 13(7): 2766-77.
[http://dx.doi.org/10.1021/cg4000473]
[121]
Sahibzada MUK, Sadiq A, Khan S, et al. Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: An attempt to enhance its oral bioavailability. Drug Des Devel Ther 2017; 11: 1453-64.
[http://dx.doi.org/10.2147/DDDT.S133806] [PMID: 28553075]
[122]
Bayrami A, Mohammadi Arvanagh F, Zahri S, Bayrami M. Characterization and evaluation of antimicrobial effects of ZnO/Ag nanoparticles synthesized by milk thistle seed extract (Silybum marianum): a short report. J Rafsanjan Univ Med Sci 2020; 19(5): 539-48.
[http://dx.doi.org/10.29252/jrums.19.5.539]
[123]
Liu C-H, Lin C-C, Hsu W-C, et al. Highly bioavailable silibinin nanoparticles inhibit HCV infection. Gut 2017; 66(10): 1853-61.
[http://dx.doi.org/10.1136/gutjnl-2016-312019] [PMID: 27436270]
[124]
Balakrishnan K, Casimeer SC, Ghidan AY, Al Antary TM, Singaravelu A. Exploration of antioxidant, antibacterial activities of green synthesized hesperidin loaded plga nanoparticles. Biointerface Res Appl Chem 2021; 11(6): 14520.
[http://dx.doi.org/10.33263/BRIAC116.1452014528]
[125]
Masri A, Khan NA, Zoqratt MZHM, et al. Transcriptome analysis of Escherichia coli K1 after therapy with hesperidin conjugated with silver nanoparticles. BMC Microbiol 2021; 21(1): 51.
[http://dx.doi.org/10.1186/s12866-021-02097-2] [PMID: 33596837]
[126]
Anwar A, Masri A, Rao K, et al. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep 2019; 9(1): 3122.
[http://dx.doi.org/10.1038/s41598-019-39528-0] [PMID: 30816269]
[127]
Attia GH, Moemen YS, Youns M, Ibrahim AM, Abdou R, El Raey MA. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf B Biointerfaces 2021; 203: 111724.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111724] [PMID: 33838582]
[128]
Kumar RP, Abraham A. PVP- coated naringenin nanoparticles for biomedical applications - In vivo toxicological evaluations. Chem Biol Interact 2016; 257: 110-8.
[http://dx.doi.org/10.1016/j.cbi.2016.07.012] [PMID: 27417253]
[129]
Rao K, Imran M, Jabri T, et al. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM. Carbohydr Polym 2017; 174: 243-52.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.071] [PMID: 28821064]
[130]
Shanmuganathan R, Sathishkumar G, Brindhadevi K, Pugazhendhi A. Fabrication of naringenin functionalized-Ag/RGO nanocomposites for potential bactericidal effects. J Mater Res Technol 2020; 9(4): 7013-9.
[http://dx.doi.org/10.1016/j.jmrt.2020.03.118]
[131]
Koo H, Schobel B, Scott-Anne K, et al. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J Dent Res 2005; 84(11): 1016-20.
[http://dx.doi.org/10.1177/154405910508401109] [PMID: 16246933]
[132]
Karpiński T, Adamczak A, Ożarowski M. Antibacterial activity of apigenin, luteolin, and their C-glucosides. Proceedings of the 5th International Electronic Conference on Medicinal Chemistry 2019.
[http://dx.doi.org/10.3390/ECMC2019-06321]
[133]
Zarei M, Karimi E, Oskoueian E, Es-Haghi A, Yazdi MET. Comparative study on the biological effects of sodium citrate-based and apigenin-based synthesized silver nanoparticles. Nutr Cancer 2021; 73(8): 1511-9.
[http://dx.doi.org/10.1080/01635581.2020.1801780] [PMID: 32757805]
[134]
Deng S-P, Zhang J-Y, Ma Z-W, Wen S, Tan S, Cai J-Y. Facile synthesis of long-term stable silver nanoparticles by kaempferol and their enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus. J Inorg Organomet Polym Mater 2021; 31(7): 1-13.
[http://dx.doi.org/10.1007/s10904-020-01874-2]
[135]
Seabra AB, Manosalva N, de Araujo Lima B. Antibacterial activity of nitric oxide releasing silver nanoparticles. J Phys Conf Ser 2017; 838: 12031.
[136]
Oliver S, Wagh H, Liang Y, Yang S, Boyer C. Enhancing the antimicrobial and antibiofilm effectiveness of silver nanoparticles prepared by green synthesis. J Mater Chem B Mater Biol Med 2018; 6(24): 4124-38.
[http://dx.doi.org/10.1039/C8TB00907D] [PMID: 32255155]
[137]
Nguyen TH, Goycoolea FM. Chitosan/Cyclodextrin/TPP nanoparticles loaded with quercetin as novel bacterial quorum sensing inhibitors. Molecules 2017; 22(11): 1975-83.
[http://dx.doi.org/10.3390/molecules22111975] [PMID: 29140285]
[138]
Abbasi BH, Shah M, Hashmi SS, et al. Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum). Nanomaterials (Basel) 2019; 9(8): 1171-80.
[http://dx.doi.org/10.3390/nano9081171] [PMID: 31426328]
[139]
de Barros CHN, Cruz GCF, Mayrink W, Tasic L. Bio-based synthesis of silver nanoparticles from orange waste: Effects of distinct bio-molecule coatings on size, morphology, and antimicrobial activity. Nanotechnol Sci Appl 2018; 11: 1-14.
[http://dx.doi.org/10.2147/NSA.S156115] [PMID: 29618924]
[140]
Duranoğlu D, Uzunoglu D, Mansuroglu B, Arasoglu T, Derman S. Synthesis of hesperetin-loaded PLGA nanoparticles by two different experimental design methods and biological evaluation of optimized nanoparticles. Nanotechnology 2018; 29(39): 395603.
[http://dx.doi.org/10.1088/1361-6528/aad111] [PMID: 29972381]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy