Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Therapeutic Potential of Targeting Key Signaling Pathways as a Novel Approach to Ameliorating Post-Surgical Adhesions

Author(s): Behzad Ensan, Parsa Bathaei, Mohammadreza Nassiri, Majid Khazaei, Seyed Mahdi Hassanian, Abbas Abdollahi, Hamid Reza Ghorbani, Mohsen Aliakbarian, Gordon A. Ferns and Amir Avan*

Volume 28, Issue 45, 2022

Published on: 28 June, 2022

Page: [3592 - 3617] Pages: 26

DOI: 10.2174/1381612828666220422090238

Price: $65

conference banner
Abstract

Background: Peritoneal adhesions (PA) are a common complication of abdominal operations. A growing body of evidence shows that inhibition of inflammation and fibrosis at sites of peritoneal damaging could prevent the development of intra-abdominal adhesions.

Methods: A search of PubMed, Medline, CINAHL and Embase databases was performed using the keywords ‘postsurgical adhesion’, ‘post-operative adhesion’, ‘peritoneal adhesion’, ‘surgery-induced adhesion’ and ‘abdominal adhesion’. Studies detailing the use of pharmacological and non-pharmacological agents for peritoneal adhesion prevention were identified, and their bibliographies were thoroughly reviewed to identify further related articles.

Results: Several signaling pathways, such as tumor necrosis factor-alpha, tissue plasminogen activator, and type 1 plasminogen activator inhibitor, macrophages, fibroblasts, and mesothelial cells play a key part in the development of plasminogen activator. Several therapeutic approaches based on anti-PA drug barriers and traditional herbal medicines have been developed to prevent and treat adhesion formation. In recent years, the most promising method to prevent PA is treatment using biomaterial-based barriers.

Conclusion: In this review, we provide an overview of the pathophysiology of adhesion formation and various agents targeting different pathways, including chemical agents, herbal agents, physical barriers, and clinical trials concerning this matter.

Keywords: Signaling pathways, novel therapeutic approach, post-surgical adhesions, peritoneal adhesions, surgical trauma, infertility.

[1]
Penzias A, Bendikson K, Falcone T, et al. Postoperative adhesions in gynecologic surgery: a committee opinion. Fertil Steril 2019; 112(3): 458-63.
[http://dx.doi.org/10.1016/j.fertnstert.2019.06.027] [PMID: 31446904]
[2]
Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Recent advances in prevention and management. Dig Surg 2001; 18(4): 260-73.
[http://dx.doi.org/10.1159/000050149] [PMID: 11528133]
[3]
Al-Took S, Platt R, Tulandi T. Adhesion-related small-bowel obstruction after gynecologic operations. Am J Obstet Gynecol 1999; 180(2): 313-5.
[http://dx.doi.org/10.1016/S0002-9378(99)70205-X] [PMID: 9988792]
[4]
Miller G, Boman J, Shrier I, Gordon PH. Etiology of small bowel obstruction. Am J Surg 2000; 180(1): 33-6.
[http://dx.doi.org/10.1016/S0002-9610(00)00407-4] [PMID: 11036136]
[5]
Marana R, Rizzi M, Muzii L, Catalano GF, Caruana P, Mancuso S. Correlation between the american fertility society classifications of adnexal adhesions and distal tubal occlusion, salpingoscopy, and reproductive outcome in tubal surgery. Fertil Steril 1995; 64(5): 924-9.
[http://dx.doi.org/10.1016/S0015-0282(16)57903-5] [PMID: 7589635]
[6]
Kligman I, Drachenberg C, Papadimitriou J, Katz E. Immunohistochemical demonstration of nerve fibers in pelvic adhesions. Obstet Gynecol 1993; 82(4 Pt 1): 566-8.
[7]
Kresch AJ, Seifer DB, Sachs LB, Barrese I. Laparoscopy in 100 women with chronic pelvic pain. Obstet Gynecol 1984; 64(5): 672-4.
[PMID: 6238250]
[8]
Duffy DM, diZerega GS. Adhesion controversies: pelvic pain as a cause of adhesions, crystalloids in preventing them. J Reprod Med 1996; 41(1): 19-26.
[PMID: 8855072]
[9]
Ray N, Denton WG, Thamer M, Henderson SC, Perry S. Abdominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J Am Coll Surg 1998; 186(1): 1-9.
[http://dx.doi.org/10.1016/S1072-7515(97)00127-0] [PMID: 9449594]
[10]
Bagheri A, Talei S, Hassanzadeh N, et al. The neuroprotective effects of flaxseed oil supplementation on functional motor recovery in a model of ischemic brain stroke: upregulation of BDNF and GDNF. Acta Med Iran 2017; 55(12): 785-92.
[PMID: 29373886]
[11]
Ghorbani R, Mokhtari T, Khazaei M, Salahshoor MR, Jalili C, Bakhtiari M. The effect of walnut on the weight, blood glucose and sex hormones of diabetic male rats. Int J Morphol 2014; 32(3): 833-8.
[http://dx.doi.org/10.4067/S0717-95022014000300015]
[12]
Khazaei M, Nematollahi-Mahani SN, Mokhtari T, Sheikhbahaei F. Review on Teucrium polium biological activities and medical characteristics against different pathologic situations. Journal of Contemporary Medical Sciences 2018; 4(1)
[13]
Michailova KN, Usunoff KG. Serosal membranes (pleura, pericardium, peritoneum): Normal structure, development and experimental pathology. Adv Anat Embryl Cell Biol 2006.
[14]
Hoffman R, Benz EJ Jr, Silberstein LE, Heslop H, Anastasi J. Weitz J Hematology: basic principles and practice. Elsevier Health Sciences 2013.
[15]
Beyene RT, Kavalukas SL, Barbul A. Intra-abdominal adhesions: Anatomy, physiology, pathophysiology, and treatment. Curr Probl Surg 2015; 52(7): 271-319.
[http://dx.doi.org/10.1067/j.cpsurg.2015.05.001] [PMID: 26258583]
[16]
Tang J, Xiang Z, Bernards MT, Chen S. Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater 2020; 116: 84-104.
[http://dx.doi.org/10.1016/j.actbio.2020.08.036] [PMID: 32871282]
[17]
Tsai JM, Shoham M, Fernhoff NB, et al. Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation. Blood Adv 2019; 3(18): 2713-21.
[http://dx.doi.org/10.1182/bloodadvances.2018024026] [PMID: 31519647]
[18]
Chegini N, Zhao Y, Kotseos K, et al. Differential expression of matrix metalloproteinase and tissue inhibitor of MMP in serosal tissue of intraperitoneal organs and adhesions. BJOG 2002; 109(9): 1041-9.
[http://dx.doi.org/10.1111/j.1471-0528.2002.01334.x] [PMID: 12269680]
[19]
Xu XF, Liu F, Xin JQ, et al. Respective roles of the mitogen-activated protein kinase (MAPK) family members in pancreatic stellate cell activation induced by transforming growth factor-β1 (TGF-β1). Biochem Biophys Res Commun 2018; 501(2): 365-73.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.176] [PMID: 29705706]
[20]
Saed GM, Fletcher NM, Diamond MP. The creation of a model for ex vivo development of postoperative adhesions. Reprod Sci 2016; 23(5): 610-2.
[http://dx.doi.org/10.1177/1933719115607997] [PMID: 26408397]
[21]
Attard J-AP, MacLean AR. Adhesive small bowel obstruction: epidemiology, biology and prevention. Can J Surg 2007; 50(4): 291-300.
[PMID: 17897517]
[22]
Saed GM, Diamond MP. Hypoxia-induced irreversible up-regulation of type I collagen and transforming growth factor-β1 in human peritoneal fibroblasts. Fertil Steril 2002; 78(1): 144-7.
[http://dx.doi.org/10.1016/S0015-0282(02)03146-1] [PMID: 12095504]
[23]
Saed GM, Zhang W, Chegini N, Holmdahl L, Diamond MP. Alteration of type I and III collagen expression in human peritoneal mesothelial cells in response to hypoxia and transforming growth factor‐β1. Wound Repair Regen 1999; 7(6): 504-10.
[http://dx.doi.org/10.1046/j.1524-475X.1999.00504.x] [PMID: 10633010]
[24]
Basbug M, Bulbuller N, Cami C, et al. The effect of antivascular endothelial growth factor on the development of adhesion formation in laparotomized rats: experimental study. In: Gastroenterol Res Pract. 2011; 2011.
[25]
Holmdahl L, Eriksson E, Al-Jabreen M, Risberg B. Fibrinolysis in human peritoneum during operation. Surgery 1996; 119(6): 701-5.
[http://dx.doi.org/10.1016/S0039-6060(96)80196-6] [PMID: 8650612]
[26]
Başoğlu M, Kiziltunç A, Akcay F, Keleş S, GÜNDOĞDU C, Durkaya Ö. Tumor necrosis factor-\alpha and interleukin-6 in peritoneal adhesion formation. Turk J Med Sci 1998; 28(3): 253-8.
[27]
Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research 2011; 1813(5): 878-88.
[PMID: 21296109]
[28]
Fielding CA, Jones GW, McLoughlin RM, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014; 40(1): 40-50.
[http://dx.doi.org/10.1016/j.immuni.2013.10.022] [PMID: 24412616]
[29]
Chung JH, Cosenza MJ, Rahbar R, Metson RB. Mitomycin C for the prevention of adhesion formation after endoscopic sinus surgery: a randomized, controlled study. Otolaryngol Head Neck Surg 2002; 126(5): 468-74.
[http://dx.doi.org/10.1067/mhn.2002.124705] [PMID: 12075219]
[30]
Braun KM, Diamond MP. The biology of adhesion formation in the peritoneal cavity In: Seminars in pediatric surgery. 2014; 23: pp. (6)336-43.
[http://dx.doi.org/10.1053/j.sempedsurg.2014.06.004]
[31]
Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. J Surg Res 2011; 165(1): 91-111.
[http://dx.doi.org/10.1016/j.jss.2009.09.015] [PMID: 20036389]
[32]
Yang B, Gong C, Qian Z, et al. Prevention of post-surgical abdominal adhesions by a novel biodegradable thermosensitive PECE hydrogel. BMC Biotechnol 2010; 10(1): 65.
[http://dx.doi.org/10.1186/1472-6750-10-65] [PMID: 20825683]
[33]
Takagi K, Araki M, Fukuoka H, et al. Novel powdered anti-adhesion material: preventing postoperative intra-abdominal adhesions in a rat model. Int J Med Sci 2013; 10(4): 467-74.
[http://dx.doi.org/10.7150/ijms.5607] [PMID: 23470962]
[34]
Boland GM, Weigel RJ. Formation and prevention of postoperative abdominal adhesions. J Surg Res 2006; 132(1): 3-12.
[http://dx.doi.org/10.1016/j.jss.2005.12.002] [PMID: 16457846]
[35]
Meek K, Murrell Z, Karamatsu M, et al. Inhibition of intra-abdominal adhesions: a comparison of hemaseel APR and cryoprecipitate fibrin glue. J Invest Surg 2001; 14(4): 227-33.
[http://dx.doi.org/10.1080/089419301750420269] [PMID: 11680533]
[36]
Guzmán-Valdivia Góَmez G, Linares-Rivera E, Tena-Betancourt E, Arroyo-Del Castillo G, Reipen L. Prevention of postoperative abdominal adhesions using systemic enoxaparin and local diclofenac. An experimental study. Surg Pract 2020; 24(1): 4-10.
[http://dx.doi.org/10.1111/1744-1633.12405]
[37]
Arikan S, Adas G, Barut G, et al. An evaluation of low molecular weight heparin and hyperbaric oxygen treatment in the prevention of intra-abdominal adhesions and wound healing. Am J Surg 2005; 189(2): 155-60.
[http://dx.doi.org/10.1016/j.amjsurg.2004.11.002] [PMID: 15720982]
[38]
Türkçapar AG, Ozarslan C, Erdem E, Bumin C, Erverdi N, Kutlay J. The effectiveness of low molecular weight heparin on adhesion formation in experimental rat model. Int Surg 1995; 80(1): 92-4.
[PMID: 7657504]
[39]
Simsek H, Durmus AS, Yildiz H, Ozcelik M. Surgery-induced changes in erythrocyte and plasma lipid peroxidation, enzymatic and non-enzymatic antioxidants of female rats: Protective role of heparin and pentoxifylline. Acta Sci Vet 2018; 46(1): 9.
[http://dx.doi.org/10.22456/1679-9216.89400]
[40]
Irkorucu O, Ferahköşِe Z, Memiş L, Ekinci O, Akin M. Reduction of postsurgical adhesions in a rat model: a comparative study. Clinics 2009; 64(2): 143-8.
[PMID: 19219320]
[41]
Dunn RC, Mohler M. Effect of varying days of tissue plasminogen activator therapy on the prevention of postsurgical adhesions in a rabbit model. J Surg Res 1993; 54(3): 242-5.
[http://dx.doi.org/10.1006/jsre.1993.1038] [PMID: 8474240]
[42]
Smaniotto B, Biondo-Simõُes MLP, Artigas GV, Silva APG, Collaço LM, Ramasco GV. Effect of streptokinase in the prevention of intra-abdominal adhesions in the rat. Acta Cir Bras 1997; 12(4): 240-5.
[http://dx.doi.org/10.1590/S0102-86501997000400005]
[43]
Steinleitner A, Lambert H, Kazensky C, Sanchez I, Sueldo C. Reduction of primary postoperative adhesion formation under calcium channel blockade in the rabbit. J Surg Res 1990; 48(1): 42-5.
[http://dx.doi.org/10.1016/0022-4804(90)90143-P] [PMID: 2296179]
[44]
Skal’Skii SV, Sokolova TF, Sychev DA. Functional activity of peritoneal fibroblasts as a marker for studying pharmacodynamics of non-dihydropyridine calcium channel blockers. Eksp Klinicheskaya Farmakol Article 2017; 80(7): 32-6.
[http://dx.doi.org/10.30906/0869-2092-2017-80-7-32-36]
[45]
Tsauo J, Song HY, Choi EY, et al. EW-7197, an oral transforming growth factor β type I receptor kinase inhibitor, for preventing peritoneal adhesion formation in a rat model. Surgery 2018; 164(5): 1100-8.
[http://dx.doi.org/10.1016/j.surg.2018.07.005] [PMID: 30172565]
[46]
Soleimani A, Asgharzadeh F, Rahmani F, et al. Novel oral transforming growth factor‐β signaling inhibitor potently inhibits postsurgical adhesion band formation. J Cell Physiol 2020; 235(2): 1349-57.
[http://dx.doi.org/10.1002/jcp.29053] [PMID: 31313829]
[47]
Sudo M, Iida K, Tsutsui H, et al. Blockade of tumor necrosis factor by etanercept prevents postoperative adhesion formation in mice. Cell Physiol Biochem 2020; 54(5): 1041-53.
[http://dx.doi.org/10.33594/000000286] [PMID: 33053302]
[48]
Schönbeck U, Libby P. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation 2004; 109(21) (_suppl. 1): II18-26.
[http://dx.doi.org/10.1161/01.CIR.0000129505.34151.23] [PMID: 15173059]
[49]
Choi GJ, Park HK, Kim DS, Lee D, Kang H. Effect of statins on experimental postoperative adhesion: a systematic review and meta-analysis. Sci Rep 2018; 8(1): 14754.
[http://dx.doi.org/10.1038/s41598-018-33145-z] [PMID: 30283040]
[50]
Haslinger B, Goedde MF, Toet KH, Kooistra T. Simvastatin increases fibrinolytic activity in human peritoneal mesothelial cells independent of cholesterol lowering. Kidney Int 2002; 62(5): 1611-9.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00601.x] [PMID: 12371961]
[51]
Haslinger B, Kleemann R, Toet KH, Kooistra T. Simvastatin suppresses tissue factor expression and increases fibrinolytic activity in tumor necrosis factor-α–activated human peritoneal mesothelial cells. Kidney Int 2003; 63(6): 2065-74.
[http://dx.doi.org/10.1046/j.1523-1755.2003.t01-2-00004.x] [PMID: 12753293]
[52]
Kucuk HF, Kaptanoglu L, Kurt N, et al. The role of simvastatin on postoperative peritoneal adhesion formation in an animal model. Eur Surg Res 2007; 39(2): 98-102.
[http://dx.doi.org/10.1159/000099156] [PMID: 17283433]
[53]
Yildiz MK, Okan I, Dursun N, et al. Effect of orally administered simvastatin on prevention of postoperative adhesion in rats. Int J Clin Exp Med 2014; 7(2): 405-10.
[PMID: 24600496]
[54]
Chiorescu S, Andercou OA, Grad NO, Mironiuc IA. Intraperitoneal administration of rosuvastatin prevents postoperative peritoneal adhesions by decreasing the release of tumor necrosis factor. Med Pharm Rep 2018; 91(1): 79-84.
[http://dx.doi.org/10.15386/cjmed-859] [PMID: 29440955]
[55]
Tavakkoli M, Aali S, Khaledifar B, et al. The potential association between the risk of post-surgical adhesion and the activated local angiotensin II type 1 receptors: Need for novel treatment strategies. Gastrointest Tumors 2021; 8(3): 107-14.
[http://dx.doi.org/10.1159/000514614] [PMID: 34307308]
[56]
Dinarvand P, et al. Novel approach to reduce postsurgical adhesions to a minimum: Administration of losartan plus atorvastatin intraperitoneally. J Surg Res 2013; 181(1): 91-8.
[http://dx.doi.org/10.1016/j.jss.2012.05.035]
[57]
Arjmand MH, Zahedi-Avval F, Barneh F, et al. Intraperitoneal administration of telmisartan prevents postsurgical adhesion band formation. J Surg Res 2020; 248: 171-81.
[http://dx.doi.org/10.1016/j.jss.2019.10.029] [PMID: 31923833]
[58]
Micha AE, Psarras K, Ouroumidis O, et al. A time course of bevacizumab (anti-VEGF) effect on rat peritoneum: Relations between antiadhesive action and fibrin regulation enzymes. Surg Innov 2017; 24(6): 543-51.
[http://dx.doi.org/10.1177/1553350617729510] [PMID: 28877644]
[59]
Kruger EA, Figg WD. TNP-470: an angiogenesis inhibitor in clinical development for cancer. Expert Opin Investig Drugs 2000; 9(6): 1383-96.
[http://dx.doi.org/10.1517/13543784.9.6.1383] [PMID: 11060750]
[60]
Chiang SC, Cheng CH, Moulton KS, Kasznica JM, Moulton SL. TNP-470 inhibits intraabdominal adhesion formation. J Pediatr Surg 2000; 35(2): 189-96.
[http://dx.doi.org/10.1016/S0022-3468(00)90008-3] [PMID: 10693664]
[61]
Myśliwski A, Kubasik-Juraniec J, Koszałka P, Szmit E. The effect of angiogenesis inhibitor TNP-470 on the blood vessels of the lungs, kidneys and livers of treated hamsters. Folia Morphol (Warsz) 2004; 63(1): 5-9.
[PMID: 15039893]
[62]
Rahmanian-Devin P, Rakhshandeh H, Baradaran Rahimi V, et al. Intraperitoneal lavage with Crocus sativus prevents postoperative-induced peritoneal adhesion in a rat model: Evidence from animal and cellular studies. Oxid Med Cell Longev 2021; 2021: 1-22.
[http://dx.doi.org/10.1155/2021/5945101] [PMID: 34956439]
[63]
Arjmand MH, Hashemzehi M, Soleimani A, et al. Therapeutic potential of active components of saffron in post-surgical adhesion band formation. J Tradit Complement Med 2022; 11(4): 328-35.
[http://dx.doi.org/10.1016/j.jtcme.2021.01.002]
[64]
Abad ANA, Nouri MHK, Tavakkoli F. Effect of Salvia officinalis hydroalcoholic extract on vincristine-induced neuropathy in mice. Chin J Nat Med 2011; 9(5): 354-8.
[65]
Raisi A, Dezfoulian O, Davoodi F, Taheri S, Ghahremani SA. Salvia miltiorrhiza hydroalcoholic extract inhibits postoperative peritoneal adhesions in rats. BMC Complementary Medicine and Therapies 2021; 21(1): 126.
[http://dx.doi.org/10.1186/s12906-021-03300-7] [PMID: 33879143]
[66]
Zhou YX, Xin HL, Rahman K, Wang SJ, Peng C, Zhang H. Portulaca oleracea L.: a review of phytochemistry and pharmacological effects. BioMed Res Int 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/925631] [PMID: 25692148]
[67]
Jaafari A, Baradaran Rahimi V, Vahdati-Mashhadian N, et al. Evaluation of the therapeutic effects of the hydroethanolic extract of Portulaca oleracea on surgical-induced peritoneal adhesion. Mediators Inflamm 2021; 2021: 1-18.
[http://dx.doi.org/10.1155/2021/8437753] [PMID: 34381307]
[68]
de Oliveira JR, Camargo SEA, de Oliveira LD. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 2019; 26(1): 5.
[http://dx.doi.org/10.1186/s12929-019-0499-8] [PMID: 30621719]
[69]
Roohbakhsh Y, Baradaran Rahimi V, Silakhori S, et al. Evaluation of the effects of peritoneal lavage with rosmarinus officinalis extract against the prevention of postsurgical-induced peritoneal adhesion. Planta Med 2020; 86(6): 405-14.
[http://dx.doi.org/10.1055/a-1118-3918] [PMID: 32097974]
[70]
Xu D, Pan Y, Chen J. Chemical constituents, pharmacologic properties, and clinical applications of Bletilla striata. Front Pharmacol 2019; 10: 1168.
[http://dx.doi.org/10.3389/fphar.2019.01168] [PMID: 31736742]
[71]
Wang Y, Liu D, Chen S, Wang Y, Jiang H, Yin H. A new glucomannan from Bletilla striata: Structural and anti-fibrosis effects. Fitoterapia 2014; 92: 72-8.
[http://dx.doi.org/10.1016/j.fitote.2013.10.008] [PMID: 24513571]
[72]
Liu B, Zhang Q, Wu X, et al. Effect of bletilla striata on the prevention of postoperative peritoneal adhesions in abrasion-induced rat model. Evid Based Complement Alternat Med 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/9148754] [PMID: 31281407]
[73]
Vučić V, Grabež M, Trchounian A, Arsić A. Composition and potential health benefits of pomegranate: A review. Curr Pharm Des 2019; 25(16): 1817-27.
[http://dx.doi.org/10.2174/1381612825666190708183941] [PMID: 31298147]
[74]
Ghadiri M, Baradaran Rahimi V, Moradi E, et al. Standardised pomegranate peel extract lavage prevents postoperative peritoneal adhesion by regulating TGF-β and VEGF levels. Inflammopharmacology 2021; 29(3): 855-68.
[http://dx.doi.org/10.1007/s10787-021-00819-6] [PMID: 33993390]
[75]
Xu J, Zhao Y, Aisa HA. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pharm Biol 2017; 55(1): 2095-101.
[http://dx.doi.org/10.1080/13880209.2017.1357737] [PMID: 28832232]
[76]
Mahmoudieh M, Keleidari B, Nasr Esfahani F, et al. The effect of Punica granatum L. flower extract on post-surgical peritoneal adhesions in a rat model. Eur J Obstet Gynecol Reprod Biol 2020; 246: 113-6.
[http://dx.doi.org/10.1016/j.ejogrb.2019.12.034] [PMID: 32004879]
[77]
Wen L, He T, Yu AX, et al. Breviscapine: A review on its phytochemistry, pharmacokinetics and therapeutic effects. Am J Chin Med 2021; 49(6): 1369-97.
[http://dx.doi.org/10.1142/S0192415X21500646] [PMID: 34263720]
[78]
Zhang H, Song Y, Li Z, Zhang T, Zeng L. Evaluation of breviscapine on prevention of experimentally induced abdominal adhesions in rats. Am J Surg 2016; 211(6): 1143-52.
[http://dx.doi.org/10.1016/j.amjsurg.2015.05.037] [PMID: 26394920]
[79]
Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 2013; 15(1): 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[80]
Türkoğlu A, Gül M, Yuksel HK, et al. Effect of intraperitoneal curcumin instillation on postoperative peritoneal adhesions. Med Princ Pract 2015; 24(2): 153-8.
[http://dx.doi.org/10.1159/000369020] [PMID: 25504140]
[81]
Sarigoz T, Sevim Y, Dirik H, et al. Protective effects of curcumin on postoperative adhesions in rat models. Chirurgia 2017; 30(6): 191-5.
[http://dx.doi.org/10.23736/S0394-9508.17.04660-5]
[82]
Geetha RG, Ramachandran S. Recent advances in the anti-inflammatory activity of plant-derived alkaloid rhynchophylline in neurological and cardiovascular diseases. Pharmaceutics 2021; 13(8): 1170.
[http://dx.doi.org/10.3390/pharmaceutics13081170] [PMID: 34452133]
[83]
Song Y, Zhang H, Liu RL, et al. Prevention of abdominal adhesions in rats by rhynchophylline through inhibition of Smad singnaling pathway. Yao Xue Xue Bao 2017; 52(2): 229-35.
[http://dx.doi.org/10.16438/j.0513-4870.2016-0798] [PMID: 29979504]
[84]
Wei G, Chen X, Wang G, Fan L, Wang K, Li X. Effect of resveratrol on the prevention of intra-abdominal adhesion formation in a rat model. Cell Physiol Biochem 2016; 39(1): 33-46.
[http://dx.doi.org/10.1159/000445603] [PMID: 27322053]
[85]
Orçan S, Seven A, Isık H, et al. Resveratrol inhibits postoperative adhesion formation in a rat uterine horn adhesion model. Hum Fertil (Camb) 2012; 15(4): 217-20.
[http://dx.doi.org/10.3109/14647273.2012.717337] [PMID: 22873947]
[86]
Üreyen O, et al. The effect of resveratrol and octreotide on peritoneal adhesions in a rat model. Malays J Pathol 2018; 40(2): 153-60.
[87]
Fernandes FHA, Salgado HRN. Gallic acid: Review of the methods of determination and quantification. Crit Rev Anal Chem 2016; 46(3): 257-65.
[http://dx.doi.org/10.1080/10408347.2015.1095064] [PMID: 26440222]
[88]
Wei G, Wu Y, Gao Q, et al. Gallic acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model. Med Sci Monit 2018; 24: 827-38.
[http://dx.doi.org/10.12659/MSM.908550] [PMID: 29429982]
[89]
Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Des Devel Ther 2020; 14: 4735-48.
[http://dx.doi.org/10.2147/DDDT.S266911] [PMID: 33192051]
[90]
Wang C, Li X, Meng X, Zhou J, Qin F, Hou L. Prevention of experimental postoperative peritoneal adhesions through the intraperitoneal administration of tanshinone IIA. Planta Med 2014; 80(12): 969-73.
[http://dx.doi.org/10.1055/s-0034-1382877] [PMID: 25089738]
[91]
Hou L, Qin F, Ma Y, et al. Efficacy and mechanism of tanshinone IIA liquid nanoparticles in preventing experimental postoperative peritoneal adhesions in vivo and in vitro. Int J Nanomedicine 2015; 10: 3699-716.
[http://dx.doi.org/10.2147/IJN.S81650] [PMID: 26056449]
[92]
Lin S, Qin F, Song LY, Hou CQ, Hou LB. Sodium tanshinone IIA sulfonate prevents postoperative peritoneal adhesions in rats by enhancing the activity of the peritoneal fibrinolytic system. Nan Fang Yi Ke Da Xue Xue Bao 2016; 36(2): 260-4.
[PMID: 26922027]
[93]
Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther 2020; 207: 107452.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107452] [PMID: 31836457]
[94]
Gao Q, Wei G, Wu Y, et al. Paeoniflorin prevents postoperative peritoneal adhesion formation in an experimental rat model. Oncotarget 2017; 8(55): 93899-911.
[http://dx.doi.org/10.18632/oncotarget.21333] [PMID: 29212197]
[95]
Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, Propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev 2017; 2017: 1-21.
[http://dx.doi.org/10.1155/2017/1259510] [PMID: 28814983]
[96]
Šuran J, Cepanec I, Mašek T, et al. Propolis extract and its bioactive compounds—from traditional to modern extraction technologies. Molecules 2021; 26(10): 2930.
[http://dx.doi.org/10.3390/molecules26102930] [PMID: 34069165]
[97]
Askari VR, Rahimi VB, Zamani P, et al. Evaluation of the effects of Iranian propolis on the severity of post operational-induced peritoneal adhesion in rats. Biomed Pharmacother 2018; 99: 346-53.
[http://dx.doi.org/10.1016/j.biopha.2018.01.068] [PMID: 29665643]
[98]
Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 2011; 1(2): 154-60.
[http://dx.doi.org/10.1016/S2221-1691(11)60016-6] [PMID: 23569748]
[99]
Rahimi VB, Shirazinia R, Fereydouni N, et al. Comparison of honey and dextrose solution on post-operative peritoneal adhesion in rat model. Biomed Pharmacother 2017; 92: 849-55.
[http://dx.doi.org/10.1016/j.biopha.2017.05.114] [PMID: 28618654]
[100]
Negahi AR, Hosseinpour P, Vaziri M, et al. “Comparison of honey versus polylactide anti-adhesion barrier on peritoneal adhesion and healing of colon anastomosis in rabbits,” (in English), Open Access Maced. J. Med. Sci. Open Access Maced J Med Sci 2019; 7(10): 1597-601.
[http://dx.doi.org/10.3889/oamjms.2019.284] [PMID: 31210807]
[101]
Yuzbasioglu MF, Kurutas EB, Bulbuloglu E, et al. Administration of honey to prevent peritoneal adhesions in a rat peritonitis model. Int J Surg 2009; 7(1): 54-7.
[http://dx.doi.org/10.1016/j.ijsu.2008.10.011] [PMID: 19042166]
[102]
Celepli S, Kismet K, Kaptanoğlu B, et al. The effect of oral honey and pollen on postoperative intraabdominal adhesions. Turk J Gastroenterol 2011; 22(1): 65-72.
[http://dx.doi.org/10.4318/tjg.2011.0159] [PMID: 21480114]
[103]
Jansen RP. Failure of peritoneal irrigation with heparin during pelvic operations upon young women to reduce adhesions. Surg Gynecol Obstet 1988; 166(2): 154-60.
[PMID: 2962321]
[104]
Hellebrekers BWJ, Trimbos-Kemper TCM, Boesten L, et al. Preoperative predictors of postsurgical adhesion formation and the prevention of adhesions with plasminogen activator (PAPA-study): Results of a clinical pilot study. Fertil Steril 2009; 91(4): 1204-14.
[http://dx.doi.org/10.1016/j.fertnstert.2008.01.052] [PMID: 18353314]
[105]
Sharpe-Timms KL, Zimmer RL, Jolliff WJ, Wright JA, Nothnick WB, Curry TE. Gonadotropin-Releasing hormone agonist (GnRH-a) therapy alters activity of plasminogen activators, matrix metalloproteinases, and their inhibitors in rat models for adhesion formation and endometriosis: Potential GnRH-a-regulated mechanisms reducing adhesion formation 11 supported in part by grants HD29026 (K.L.S.-T.) and HD 273995 (T.E.C.) from the national institutes of health, bethesda, maryland. Additional support provided by TAP Pharmaceuticals, Inc., Deerfield, Illinois. Fertil Steril 1998; 69(5): 916-23.
[http://dx.doi.org/10.1016/S0015-0282(98)00032-6]
[106]
Scott FI, Vajravelu RK, Mamtani R, et al. Association between statin use at the time of intra-abdominal surgery and postoperative adhesion-related complications and small-bowel obstruction. JAMA Netw Open 2021; 4(2): e2036315.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.36315] [PMID: 33533930]
[107]
Fu S, Yelorda K, Knowlton L. Are statins associated with reduced risk of adhesion-related complications after abdominal surgery? JAMA Netw Open 2021; 4(2): e2037296.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.37296] [PMID: 33533927]
[108]
Rajab TK, Wallwiener M, Planck C, Brochhausen C, Kraemer B, Wallwiener CW. A direct comparison of seprafilm, adept, intercoat, and spraygel for adhesion prophylaxis. J Surg Res 2010; 161(2): 246-9.
[http://dx.doi.org/10.1016/j.jss.2008.11.839] [PMID: 19375716]
[109]
Tingstedt B, Isaksson K, Andersson E, Andersson R. Prevention of abdominal adhesions--present state and what’s beyond the horizon? Eur Surg Res 2007; 39(5): 259-68.
[http://dx.doi.org/10.1159/000102591] [PMID: 17495476]
[110]
Verco S, Rodgers K, Roda N, Peers E, Brown C, diZerega G. Inhibition of postoperative adhesions by a nonviscous polymer solution, Adept (TM) In: Human Reproduction. OXFORD UNIV PRESS: GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1999; 14: p. 275.
[111]
Johns A. Evidence-based prevention of post-operative adhesions. Hum Reprod Update 2001; 7(6): 577-9.
[http://dx.doi.org/10.1093/humupd/7.6.577] [PMID: 11727866]
[112]
Holtz G, Baker E, Tsai C. Effect of thirty-two per cent dextran 70 on peritoneal adhesion formation and re-formation after lysis. Fertil Steril 1980; 33(6): 660-2.
[http://dx.doi.org/10.1016/S0015-0282(16)44782-5] [PMID: 6155293]
[113]
Diamond MP, Group TSAS. Reduction of de novo postsurgical adhesions by intraoperative precoating with Sepracoat (HAL-C) solution: a prospective, randomized, blinded, placebo-controlled multicenter study. Fertil Steril 1998; 69(6): 1067-74.
[http://dx.doi.org/10.1016/S0015-0282(98)00057-0] [PMID: 9627294]
[114]
Ustün C, Koçak I, Akpolat I. Effects of Seprafilm (sodium hyaluranate-based bioresorbable), Sepracoat (0.4% hyaluronic acid), and Ringer’s lactate on the prevention of postsurgical adhesion formation in rat models. J Obstet Gynaecol 2000; 20(1): 78-80.
[http://dx.doi.org/10.1080/01443610063543] [PMID: 15512475]
[115]
Oncel M, Remzi FH, Senagore AJ, Connor JT, Fazio VW. Liquid antiadhesive product (Adcon-p) prevents post-operative adhesions within the intra-abdominal organs in a rat model. Int J Colorectal Dis 2003; 18(6): 514-7.
[http://dx.doi.org/10.1007/s00384-003-0489-9] [PMID: 12827407]
[116]
Yaacobi Y, Goldberg EP, Habal MB. Effect of Ringer’s lactate irrigation on the formation of postoperative abdominal adhesions. J Invest Surg 1991; 4(1): 31-6.
[http://dx.doi.org/10.3109/08941939109140759] [PMID: 1863585]
[117]
Cohen BM, Heyman T, Mast D. Use of intraperitoneal solutions for preventing pelvic adhesions in the rat. J Reprod Med 1983; 28(10): 649-53.
[PMID: 6197523]
[118]
Yaacobi Y, Israel AA, Goldberg EP. Prevention of postoperative abdominal adhesions by tissue precoating with polymer solutions. J Surg Res 1993; 55(4): 422-6.
[http://dx.doi.org/10.1006/jsre.1993.1163] [PMID: 8412130]
[119]
Lin LX, Yuan F, Zhang HH, Liao NN, Luo JW, Sun YL. Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model. PLoS One 2017; 12(2): e0172088.
[http://dx.doi.org/10.1371/journal.pone.0172088] [PMID: 28207824]
[120]
Reijnen MMPJ, Meis JF, Postma VA, van Goor H. Prevention of intra-abdominal abscesses and adhesions using a hyaluronic acid solution in a rat peritonitis model. Arch Surg 1999; 134(9): 997-1001.
[http://dx.doi.org/10.1001/archsurg.134.9.997] [PMID: 10487596]
[121]
Kataria H, Singh VP. Liquid paraffin vs hyaluronic acid in preventing intraperitoneal adhesions. Indian J Surg 2017; 79(6): 539-43.
[http://dx.doi.org/10.1007/s12262-016-1522-x] [PMID: 29217906]
[122]
Elbert DL, Hubbell JA. Reduction of fibrous adhesion formation by a copolymer possessing an affinity for anionic surfaces. Journal of J Biomed Mater Res 1998; 42(1): 55-65.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199810)42:1<55::AID-JBM8>3.0.CO;2-N]
[123]
Diamond MP, Burns EL, Accomando B, Mian S, Holmdahl L. Seprafilm® adhesion barrier: (1) a review of preclinical, animal, and human investigational studies. Gynecol Surg 2012; 9(3): 237-45.
[http://dx.doi.org/10.1007/s10397-012-0741-9] [PMID: 22837732]
[124]
Ghellai A, Stucchi AF, Lynch DJ, Skinner KC, Colt MJ, Becker JM. Role of a hyaluronate-based membrane in the prevention of peritonitis-induced adhesions. J Gastrointest Surg 2000; 4(3): 310-5.
[http://dx.doi.org/10.1016/S1091-255X(00)80081-5] [PMID: 10769095]
[125]
Diamond MP, Burns EL, Accomando B, Mian S, Holmdahl L. Seprafilm® adhesion barrier: (2) a review of the clinical literature on intraabdominal use. Gynecol Surg 2012; 9(3): 247-57.
[http://dx.doi.org/10.1007/s10397-012-0742-8] [PMID: 22837733]
[126]
Ota K, Sato K, Ogasawara J, Takahashi T, Mizunuma H, Tanaka M. Safe and easy technique for the laparoscopic application of Seprafilm® in gynecologic surgery. Asian J Endosc Surg 2019; 12(2): 242-5.
[http://dx.doi.org/10.1111/ases.12621] [PMID: 30549222]
[127]
Sumi Y, Yamashita K, Kanemitsu K, et al. Simple and easy technique for the placement of seprafilm during laparoscopic surgery. Indian J Surg 2015; 77(S3) (Suppl. 3): 1462-5.
[http://dx.doi.org/10.1007/s12262-015-1220-0] [PMID: 27011601]
[128]
Naito M, Ogura N, Yamanashi T, et al. Prospective randomized controlled study on the validity and safety of an absorbable adhesion barrier (Interceed®) made of oxidized regenerated cellulose for laparoscopic colorectal surgery. Asian J Endosc Surg 2017; 10(1): 7-11.
[http://dx.doi.org/10.1111/ases.12334] [PMID: 27753246]
[129]
Tulandi T, Al-Shahrani A. Adhesion prevention in gynecologic surgery. Curr Opin Obstet Gynecol 2005; 17(4): 395-8.
[http://dx.doi.org/10.1097/01.gco.0000175357.25932.89] [PMID: 15976545]
[130]
Dabrowski A, Lepère M, Zaranis C, Coelio C, Hauters P. Efficacy and safety of a resorbable collagen membrane COVA+™ for the prevention of postoperative adhesions in abdominal surgery. Surg Endosc 2016; 30(6): 2358-66.
[http://dx.doi.org/10.1007/s00464-015-4484-3] [PMID: 26482156]
[131]
Bel A, Ricci M, Piquet J, et al. Prevention of postcardiopulmonary bypass pericardial adhesions by a new resorbable collagen membrane. Interact Cardiovasc Thorac Surg 2012; 14(4): 469-73.
[http://dx.doi.org/10.1093/icvts/ivr159] [PMID: 22268067]
[132]
Borrazzo EC, Belmont MF, Boffa D, Fowler DL. Effect of prosthetic material on adhesion formation after laparoscopic ventral hernia repair in a porcine model. Hernia 2004; 8(2): 108-12.
[http://dx.doi.org/10.1007/s10029-003-0181-6] [PMID: 14634842]
[133]
Wang J, Le K, Guo X, et al. Platelet‐rich fibrin prevents postoperative intestinal adhesion. J Biomed Mater Res A 2020; 108(5): 1077-85.
[http://dx.doi.org/10.1002/jbm.a.36883] [PMID: 31943765]
[134]
Park SN, Jang HJ, Choi YS, et al. Preparation and characterization of biodegradable anti-adhesive membrane for peritoneal wound healing. J Mater Sci Mater Med 2007; 18(3): 475-82.
[http://dx.doi.org/10.1007/s10856-007-2007-z] [PMID: 17334698]
[135]
Ersoy E, Ozturk V, Yazgan A, Ozdogan M, Gundogdu H. Comparison of the two types of bioresorbable barriers to prevent intra-abdominal adhesions in rats. J Gastrointest Surg 2009; 13(2): 282-6.
[http://dx.doi.org/10.1007/s11605-008-0678-5] [PMID: 18777122]
[136]
Avital S, Bollinger TJ, Wilkinson JD, Marchetti F, Hellinger MD, Sands LR. Preventing intra-abdominal adhesions with polylactic acid film: an animal study. Dis Colon Rectum 2005; 48(1): 153-7.
[http://dx.doi.org/10.1007/s10350-004-0748-z] [PMID: 15690673]
[137]
Allègre L, Le Teuff I, Leprince S, et al. A new bioabsorbable polymer film to prevent peritoneal adhesions validated in a post-surgical animal model. PLoS One 2018; 13(11): e0202285.
[http://dx.doi.org/10.1371/journal.pone.0202285] [PMID: 30395571]
[138]
Ozpolat B, Bratisl Lek Listy, et al. Polylactic acid and polyethylene glycol prevent surgical adhesions 2016; 117(1): 54-8.
[http://dx.doi.org/10.4149/BLL_2016_011]
[139]
Kessler M, Esser E, Groll J, Tessmar J. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions. J Biomed Mater Res B Appl Biomater 2016; 104(8): 1563-70.
[http://dx.doi.org/10.1002/jbm.b.33503] [PMID: 26284452]
[140]
van Steensel S, Liu H, Mommers EHH, Lenaerts K, Bouvy ND. Comparing five new polymer barriers for the prevention of intra-abdominal adhesions in a rat model. J Surg Res 2019; 243: 453-9.
[http://dx.doi.org/10.1016/j.jss.2019.05.043] [PMID: 31377484]
[141]
Yang D, Song Z, Shen J, et al. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model. Artif Cells Nanomed Biotechnol 2020; 48(1): 425-34.
[http://dx.doi.org/10.1080/21691401.2019.1709858] [PMID: 31916462]
[142]
Mao Y, Sanbhal N, Li Y, et al. Chitosan functionalised poly(ε-caprolactone) nanofibrous membranes as potential anti-adhesive barrier films. React Funct Polym 2019; 143: 104319.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104319]
[143]
Cheng F, Wu Y, Li H, et al. Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydr Polym 2019; 207: 180-90.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.077] [PMID: 30599998]
[144]
Shi K, Xue B, Liao J, Qu Y, Qian Z. Polymeric hydrogels for post-operative adhesion prevention: A review. Mater Express 2017; 7(6): 417-38.
[http://dx.doi.org/10.1166/mex.2017.1403]
[145]
Amano Y, Qi P, Nakagawa Y, Kirita K, Ohta S, Ito T. Prevention of peritoneal adhesions by ferric ion-cross-linked hydrogels of hyaluronic acid modified with iminodiacetic acids. ACS Biomater Sci Eng 2018; 4(9): 3405-12.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00456] [PMID: 33435074]
[146]
Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 2007; 28(6): 975-83.
[http://dx.doi.org/10.1016/j.biomaterials.2006.10.021] [PMID: 17109954]
[147]
Li L, Wang N, Jin X, et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 2014; 35(12): 3903-17.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.050] [PMID: 24507411]
[148]
Lang RA, Grüntzig PM, Weisgerber C, Weis C, Odermatt EK, Kirschner MH. Polyvinyl alcohol gel prevents abdominal adhesion formation in a rabbit model. Fertil Steril 2007; 88(4) (Suppl.): 1180-6.
[http://dx.doi.org/10.1016/j.fertnstert.2007.01.108] [PMID: 17482168]
[149]
Okubo S, Shindoh J, Kobayashi Y, Hashimoto M. Safety of a new spray‐type adhesion barrier (AdSpray®) in liver surgery. J Hepatobiliary Pancreat Sci 2020; 27(9): 648-54.
[http://dx.doi.org/10.1002/jhbp.786] [PMID: 32510785]
[150]
Yeo Y, Highley CB, Bellas E, et al. In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials 2006; 27(27): 4698-705.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.043] [PMID: 16750564]
[151]
Al-Jaroudi D, Md TT. Adhesion prevention in gynecologic surgery. Obstet Gynecol Surv 2004; 59(5): 360-7.
[http://dx.doi.org/10.1097/00006254-200405000-00024] [PMID: 15097797]
[152]
Chino N, Ishihara H, Niimi T, Kai M, Kawanishi T. Development of a spray-type adhesion barrier. Polym J 2020; 52(5): 473-9.
[http://dx.doi.org/10.1038/s41428-020-0306-0]
[153]
Kojima Y, Sakamoto K, Okuzawa A. Experience of using a spray-type anti-adhesion barrier in laparoscopic surgery for colorectal cancer. J Surg Case Rep 2019; 2019(3): rjz085.
[http://dx.doi.org/10.1093/jscr/rjz085] [PMID: 30949335]
[154]
Dunn R, Lyman MD, Edelman PG, Campbell PK. Evaluation of the SprayGel™ adhesion barrier in the rat cecum abrasion and rabbit uterine horn adhesion models. Fertil Steril 2001; 75(2): 411-6.
[http://dx.doi.org/10.1016/S0015-0282(00)01677-0] [PMID: 11172849]
[155]
Ahmad M, Crescenti F. Significant adhesion reduction with 4DryField PH after release of adhesive small bowel obstruction. Surg J (NY) 2019; 5(1): e28-34.
[http://dx.doi.org/10.1055/s-0039-1687857] [PMID: 31093531]
[156]
Blumhardt G, Haas M, Polte S. 2018; 2018.Effect of 4DryField® PH, a novel adhesion barrier, on recurrence of intestinal adhesions after extensive visceral adhesiolysis In: Case reports in Surgery. 2018; 2018.
[http://dx.doi.org/10.1155/2018/9628742]
[157]
Song Z, Zhang Y, Shao H, et al. Effect of xanthan gum on the prevention of intra-abdominal adhesion in rats. Int J Biol Macromol 2019; 126: 531-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.233] [PMID: 30593814]
[158]
Giusto G, Vercelli C, Iussich S, et al. A pectin-honey hydrogel prevents postoperative intraperitoneal adhesions in a rat model. BMC Vet Res 2016; 13(1): 55.
[http://dx.doi.org/10.1186/s12917-017-0965-z] [PMID: 28212637]
[159]
Kim SG, Song KY, Lee HH, et al. Efficacy of an antiadhesive agent for the prevention of intra-abdominal adhesions after radical gastrectomy. Medicine 2019; 98(19): e15141.
[http://dx.doi.org/10.1097/MD.0000000000015141] [PMID: 31083151]
[160]
de Virgilio C, Elbassir M, Hidalgo A, et al. Fibrin glue reduces the severity of intra-abdominal adhesions in a rat model. Am J Surg 1999; 178(6): 577-80.
[http://dx.doi.org/10.1016/S0002-9610(99)00237-8] [PMID: 10670876]
[161]
Ferland R, Mulani D, Campbell PK. Evaluation of a sprayable polyethylene glycol adhesion barrier in a porcine efficacy model. Hum Reprod 2001; 16(12): 2718-23.
[http://dx.doi.org/10.1093/humrep/16.12.2718] [PMID: 11726601]
[162]
Johns DA, Ferland R, Dunn R. Initial feasibility study of a sprayable hydrogel adhesion barrier system in patients undergoing laparoscopic ovarian surgery. J Am Assoc Gynecol Laparosc 2003; 10(3): 334-8.
[http://dx.doi.org/10.1016/S1074-3804(05)60257-5] [PMID: 14567807]
[163]
Mettler L, Audebert A, Lehmann-Willenbrock E, Schive-Peterhansl K, Jacobs VR. A randomized, prospective, controlled, multicenter clinical trial of a sprayable, site-specific adhesion barrier system in patients undergoing myomectomy. Fertil Steril 2004; 82(2): 398-404.
[http://dx.doi.org/10.1016/j.fertnstert.2003.12.046] [PMID: 15302290]
[164]
Rajab TK, Kimonis KO, Ali E, Offodile AC II, Brady M, Bleday R. Practical implications of postoperative adhesions for preoperative consent and operative technique. Int J Surg 2013; 11(9): 753-6.
[http://dx.doi.org/10.1016/j.ijsu.2013.07.019] [PMID: 23962663]
[165]
West JL, Hubbell JA. Comparison of covalently and physically cross-linked polyethylene glycol-based hydrogels for the prevention of postoperative adhesions in a rat model. Biomaterials 1995; 16(15): 1153-6.
[http://dx.doi.org/10.1016/0142-9612(95)93579-3] [PMID: 8562791]
[166]
Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J. Biodegradable and thermoreversible PCLA–PEG–PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 2011; 32(21): 4725-36.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.046] [PMID: 21482434]
[167]
Lin LX, Luo JW, Yuan F, et al. In situ cross-linking carbodiimide-modified chitosan hydrogel for postoperative adhesion prevention in a rat model. Mater Sci Eng C 2017; 81: 380-5.
[http://dx.doi.org/10.1016/j.msec.2017.07.024] [PMID: 28887987]
[168]
Yang B, Gong C, Zhao X, et al. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel. Int J Nanomedicine 2012; 7: 547-57.
[PMID: 22346350]
[169]
Liu Y, Shu XZ, Prestwich GD. Reduced postoperative intra-abdominal adhesions using Carbylan-SX, a semisynthetic glycosaminoglycan hydrogel. Fertil Steril 2007; 87(4): 940-8.
[http://dx.doi.org/10.1016/j.fertnstert.2006.07.1532] [PMID: 17157844]
[170]
Zhang E, Guo Q, Ji F, et al. Thermoresponsive polysaccharide-based composite hydrogel with antibacterial and healing-promoting activities for preventing recurrent adhesion after adhesiolysis. Acta Biomater 2018; 74: 439-53.
[http://dx.doi.org/10.1016/j.actbio.2018.05.037] [PMID: 29803006]
[171]
Uyama N, Tsutsui H, Wu S, et al. Anti-interleukin-6 receptor antibody treatment ameliorates postoperative adhesion formation. Sci Rep 2019; 9(1): 17558.
[http://dx.doi.org/10.1038/s41598-019-54175-1] [PMID: 31772282]
[172]
Hoshino A, Kawamura YI, Yasuhara M, et al. Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J Immunol 2007; 178(8): 5296-304.
[http://dx.doi.org/10.4049/jimmunol.178.8.5296] [PMID: 17404314]
[173]
Oshio T, Kawashima R, Kawamura YI, et al. Chemokine receptor CCR8 is required for lipopolysaccharide-triggered cytokine production in mouse peritoneal macrophages. PLoS One 2014; 9(4): e94445.
[http://dx.doi.org/10.1371/journal.pone.0094445] [PMID: 24714157]
[174]
Strowitzki MJ, Ritter AS, Radhakrishnan P, et al. Pharmacological HIF-inhibition attenuates postoperative adhesion formation. Sci Rep 2017; 7(1): 13151.
[http://dx.doi.org/10.1038/s41598-017-13638-z] [PMID: 29030625]
[175]
Boudreau C, LeVatte T, Jones C, Gareau A, Legere S, Bezuhly M. The selective angiotensin II type 2 receptor agonist compound 21 reduces abdominal adhesions in mice. J Surg Res 2020; 256: 231-42.
[http://dx.doi.org/10.1016/j.jss.2020.06.051] [PMID: 32711180]
[176]
Ersoy R, Celik A, Yilmaz O, et al. The effects of irbesartan and spironolactone in prevention of peritoneal fibrosis in rats. Perit Dial Int 2007; 27(4): 424-31.
[http://dx.doi.org/10.1177/089686080702700410] [PMID: 17602151]
[177]
Arslan S, Zeytun H, Basuguy E, et al. Cordycepin prevents postoperative formation of intra-abdominal adhesions in a rat model: An experimental study. Ulus Travma Acil Cerrahi Derg 2016; 23(4): 273-8.
[http://dx.doi.org/10.5505/tjtes.2016.48979] [PMID: 28762461]
[178]
Auzhanov DB, Aymagambetov MZ, Zhagiparova ZA, Noso Y. Effect of azathioprine on the formation of adhesive process of the abdominal cavity in experiment. Nov Khir Novosti Khirurgii 2019; 27(4): 369-78.
[http://dx.doi.org/10.18484/2305-0047.2019.4.369]
[179]
Kurt A, Karanlik H, Soylu S, et al. Effect of intraperitoneal cetuximab administration on colonic anastomosis and early postoperative adhesion formation in a rat model. Ulus Cerrahi Derg 2016; 32(3): 157-61.
[http://dx.doi.org/10.5152/UCD.2016.3250] [PMID: 27528807]
[180]
Kim S, Lee S, Greene AK, et al. Inhibition of intra-abdominal adhesion formation with the angiogenesis inhibitor sunitinib. J Surg Res 2008; 149(1): 115-9.
[http://dx.doi.org/10.1016/j.jss.2007.10.010] [PMID: 18374947]
[181]
Azadi H, Davoodabadi A, Akbari H, Benafsheh HR, Norroddini M, Hajian A. Effect of pimecrolimus on postoperative peritoneal adhesions in rat: An experimental study. Int J Surgery Open 2020; 24: 156-60.
[http://dx.doi.org/10.1016/j.ijso.2020.05.009]
[182]
Guler S, Cimen S, Hu Q, Venkatachalam AB, Alwayn I, Alwayn I. Effects of mTOR inhibitors in prevention of abdominal adhesions. J Invest Surg 2016; 29(5): 275-81.
[http://dx.doi.org/10.3109/08941939.2016.1149643] [PMID: 26980426]
[183]
Lucas PA, Warejcka DJ, Young HE, Lee BY. Formation of abdominal adhesions is inhibited by antibodies to transforming growth factor-β1. J Surg Res 1996; 65(2): 135-8.
[http://dx.doi.org/10.1006/jsre.1996.0355] [PMID: 8903459]
[184]
Bayhan Z, Zeren S, Kocak FE, et al. Antiadhesive and anti-inflammatory effects of pirfenidone in postoperative intra-abdominal adhesion in an experimental rat model. J Surg Res 2016; 201(2): 348-55.
[http://dx.doi.org/10.1016/j.jss.2015.11.033] [PMID: 27020818]
[185]
Ozbilgin K, ـÜner MA, Ozkut M, Hasdemir PS. The effects of pirfenidone on T helper cells in prevention of intraperitoneal adhesions. Kaohsiung J Med Sci 2017; 33(6): 271-6.
[http://dx.doi.org/10.1016/j.kjms.2017.03.011] [PMID: 28601230]
[186]
Hasdemir PS, Ozkut M, Guvenal T, et al. Effect of pirfenidone on vascular proliferation, inflammation and fibrosis in an abdominal adhesion rat model. J Invest Surg 2017; 30(1): 26-32.
[http://dx.doi.org/10.1080/08941939.2016.1215578] [PMID: 27715339]
[187]
Berkesoglu M, Karabulut YY, Yildirim DD, Turkmenoglu OM, Dirlik MM. Topical application of high-dose mesna prevents adhesion formation: An experimental animal study. J Surg Res 2020; 251: 152-8.
[http://dx.doi.org/10.1016/j.jss.2020.01.027] [PMID: 32145558]
[188]
Bi J, Zhang S, Du Z, et al. Peripheral serotonin regulates postoperative intra-abdominal adhesion formation in mice. Sci Rep 2017; 7(1): 10001.
[http://dx.doi.org/10.1038/s41598-017-10582-w] [PMID: 28855642]
[189]
Bianchi E, Boekelheide K, Sigman M, Lamb DJ, Hall SJ, Hwang K. Ghrelin ameliorates adhesions in a postsurgical mouse model. J Surg Res 2016; 201(1): 226-34.
[http://dx.doi.org/10.1016/j.jss.2015.10.044] [PMID: 26850207]
[190]
Bianchi E, Boekelheide K, Sigman M, Lamb DJ, Hall SJ, Hwang K. "Ghrelin inhibits post-operative adhesions via blockage of the TGF-β signaling pathway. PLoS One 2016; 11(4): e0153968.
[http://dx.doi.org/10.1371/journal.pone.0153968] [PMID: 27082244]
[191]
Borges LPB, et al. Effect of vitamin E on the prevention of peritoneal adhesions in sheep. World's. Vet J 2018; 8(4): 90-4.
[192]
de la Portilla F, Ynfante I, Bejarano D, et al. Prevention of peritoneal adhesions by intraperitoneal administration of vitamin E: an experimental study in rats. Dis Colon Rectum 2004; 47(12): 2157-61.
[http://dx.doi.org/10.1007/s10350-004-0741-6] [PMID: 15657668]
[193]
Hemadeh O, Chilukuri S, Bonet V, Hussein S, Chaudry IH. Prevention of peritoneal adhesions by administration of sodium carboxymethyl cellulose and oral vitamin E. Surgery 1993; 114(5): 907-10.
[PMID: 8236013]
[194]
Morshedi M, Bahramifar A, Nabizadeh A. Comparison of the effects of atorvastatin, hyaluronic acid and oxidized cellulose (Interceed) on reducing intestinal adhesions postoperative after open abdominal surgery in animal models. Indian J Pharm Sci 2019; 15(3): 81-90.
[195]
Chiorescu S, Grad NO, Mironiuc IA, Andercou OA. Rosuvastatin administered intraperitoneally reduces the formation of postoperative adhesions in rats. Annali italiani di chirurgia 2018; 89: 95-100.
[196]
Javaherzadeh M, Shekarchizadeh A, Kafaei M, Mirafshrieh A, Mosaffa N, Sabet B. Effects of intraperitoneal administration of simvastatin in prevention of postoperative intra-abdominal adhesion formation in animal model of rat. Bull Emerg Trauma 2016; 4(3): 156-60.
[PMID: 27540550]
[197]
Fang CC, Chou TH, Huang JW, Lee CC, Chen SC. The small molecule inhibitor QLT-0267 decreases the production of fibrin-induced inflammatory cytokines and prevents post-surgical peritoneal adhesions. Scientific reports 2018; 8(1): 9481.
[http://dx.doi.org/10.1038/s41598-018-25994-5]
[198]
Kuşaslan R, Ercan G, Ağcaoğlu O, Altınay S, Binboğa S, Altınel Y. A novel coenzyme-Q approach for the prevention of postsurgical adhesion. Turk J Surg 2020; 36(2): 202-8.
[http://dx.doi.org/10.5578/turkjsurg.4398] [PMID: 33015565]
[199]
Yuzbasioglu MF, Ezberci F, Imrek E, Bulbuloglu E, Kurutas EB, Imrek S. The effect of intraperitoneal catalase on prevention of peritoneal adhesion formation in rats. J Invest Surg 2008; 21(2): 65-9.
[http://dx.doi.org/10.1080/08941930701883616] [PMID: 18340622]
[200]
Portz DM, Elkins TE, White R, Warren J, Adadevoh S, Randolph J. Oxygen free radicals and pelvic adhesion formation: I. Blocking oxygen free radical toxicity to prevent adhesion formation in an endometriosis model. Int J Fertil 1991; 36(1): 39-42.
[PMID: 1672675]
[201]
Legrand EK, Rodgers KE, Girgis W, Campeau JD, Dizerega GS. Comparative efficacy of nonsteroidal anti-inflammatory drugs and anti-thromboxane agents in a rabbit adhesion-prevention model. J Invest Surg 1995; 8(3): 187-94.
[http://dx.doi.org/10.3109/08941939509023141] [PMID: 7547726]
[202]
Greene AK, Alwayn IPJ, Nose V, et al. Prevention of intra-abdominal adhesions using the antiangiogenic COX-2 inhibitor celecoxib. Ann Surg 2005; 242(1): 140-6.
[http://dx.doi.org/10.1097/01.sla.0000167847.53159.c1] [PMID: 15973112]
[203]
Aldemir M, Öztürk H, Büyükbayram H, Erten G. The preventive effect of Rofecoxib in postoperative intraperitoneal adhesions. Acta Chir Belg 2004; 104(1): 97-100.
[http://dx.doi.org/10.1080/00015458.2003.11978403] [PMID: 15053473]
[204]
Hernandez Villarroel LA, Fernandez H, Cesin L. Meloxicam decreases the formation of peritoneal adhesions in an experimental surgical model in rats. International Journal of Medical Students 2017; 5(1): 6-13.
[http://dx.doi.org/10.5195/ijms.2017.175]
[205]
Parsa H, Saravani H, Sameei-Rad F, Nasiri M, Farahaninik Z, Rahmani A. Comparing lavage of the peritoneal cavity with lidocaine, bupivacaine and normal saline to reduce the formation of abdominal adhesion bands in rats. Malays J Med Sci 2017; 24(3): 26-32.
[http://dx.doi.org/10.21315/mjms2017.24.3.4] [PMID: 28814930]
[206]
Rijhwani A, Sen S, Gunasekaran S, Ponnaiya J, Balasubramanian KA, Mammen KE. Allopurinol reduces the severity of peritoneal adhesions in mice. J Pediatr Surg 1995; 30(4): 533-7.
[http://dx.doi.org/10.1016/0022-3468(95)90124-8] [PMID: 7595827]
[207]
Iwasaki K, Ahmadi AR, Qi L, et al. Pharmacological mobilization and recruitment of stem cells in rats stops abdominal adhesions after laparotomy. Sci Rep 2019; 9(1): 7149.
[http://dx.doi.org/10.1038/s41598-019-43734-1] [PMID: 31073167]
[208]
Kuru S, Bozkirli OB, Barlas AM, et al. The preventive effect of dexmedetomidine against postoperative intra-abdominal adhesions in Rats. Int Surg 2015; 100(1): 87-95.
[http://dx.doi.org/10.9738/INTSURG-D-14-00184.1] [PMID: 25594644]
[209]
Liu S, Liu L, Jin D, Zhang Q, Takai S. The novel mechanism of valproate to prevent peritoneal adhesion formation. Surg Today 2020; 50(9): 1091-8.
[http://dx.doi.org/10.1007/s00595-020-01979-8] [PMID: 32239305]
[210]
Avsar AF, Avsar FM, Sahin M, Topaloglu S, Vatansev H, Belviranli M. Diphenhydramine and hyaluronic acid derivatives reduce adnexal adhesions and prevent tubal obstructions in rats. Eur J Obstet Gynecol Reprod Biol 2003; 106(1): 50-4.
[http://dx.doi.org/10.1016/S0301-2115(02)00213-0] [PMID: 12475581]
[211]
Avsar FM, Sahin M, Aksoy F, et al. Effects of diphenhydramine HCl and methylprednisolone in the prevention of abdominal adhesions. Am J Surg 2001; 181(6): 512-5.
[http://dx.doi.org/10.1016/S0002-9610(01)00617-1] [PMID: 11513775]
[212]
Robertson LM, Fletcher NM, Diamond MP, Saed GM. Evitar (l-alanyl-l-glutamine) regulates key signaling molecules in the pathogenesis of postoperative tissue fibrosis. Reprod Sci 2019; 26(6): 724-33.
[http://dx.doi.org/10.1177/1933719118789511] [PMID: 30185141]
[213]
Acun G, Ozdemir H, Sunamak O, et al. The effect of single-dose intraperitoneal bevacizumab on peritoneal adhesion formation. Rev Invest Clin 2018; 70(6): 279-84.
[http://dx.doi.org/10.24875/RIC.18002589] [PMID: 30532115]
[214]
Asadi SY, Parsaei P, Shafiei Alavijeh S, Rafieian-Kopaei M, Karimi M. Preventive Effect of Silybum marianum Hydroalcoholic Extract on Post-Surgical Intra-Abdominal Adhesion in Rats. Journal of Zanjan University of Medical Sciences and Health Services 2016; 24(102): 32-43.
[215]
Karimi M, Parsaei P, Shafiei-Alavijeh S, Rafieian-Kopaei M, Asadi SY. Effect of silymarin alcoholic extract on surgery-induced intraperitoneal adhesion in rats. Surg Pract 2016; 20(1): 27-33.
[http://dx.doi.org/10.1111/1744-1633.12157]
[216]
Jomezadeh V, et al. Effect of malva sylvestris extract on postoperative peritoneal adhesion in rats. Jundishapur J Nat Pharm Prod 2019; 14(3)
[217]
Karimi M, Yazdan Asadi S, Parsaei P, Rafieian-Kopaei M, Ghaheri H, Ezzati S. The effect of ethanol extract of rose (Rosa damascena) on intra-abdominal adhesions after laparotomy in rats. Wounds 2016; 28(5): 167-74.
[PMID: 27191175]
[218]
Süntar I, Demirel MA, Ceribasi AO, Ergin I, Gökbulut A, et al. Preventive effect of Rumex crispus L. on surgically induced intra-abdominal adhesion model in rats. DARU J Pharm Sci 2021.
[http://dx.doi.org/10.1007/s40199-021-00387-8]
[219]
Topal U, Göret NE, Göret CC, Özkan ÖF. The effect of Allium sativum in experimental peritoneal adhesion model in rats. Acta Cir Bras 2019; 34(10): e201901002.
[http://dx.doi.org/10.1590/s0102-865020190100000002] [PMID: 31826148]
[220]
Sahbaz A, Aynioglu O, Isik H, et al. Bromelain: A natural proteolytic for intra-abdominal adhesion prevention. Int J Surg 2015; 14: 7-11.
[http://dx.doi.org/10.1016/j.ijsu.2014.12.024] [PMID: 25573606]
[221]
Goret CC, Goret NE, Kiraz A, Ozkan OF, Karaayvaz M. The effect of pycnogenol on lymphatic nodes and adhesion during in a peritoneal adhesion model in rats. Acta Cir Bras 2018; 33(2): 134-43.
[http://dx.doi.org/10.1590/s0102-865020180020000005] [PMID: 29513812]
[222]
Karaca G, Aydin O, Pehlivanli F, et al. Effect of ankaferd blood stopper in experimental peritoneal adhesion model. Ann Surg Treat Res 2016; 90(4): 213-7.
[http://dx.doi.org/10.4174/astr.2016.90.4.213] [PMID: 27073792]
[223]
Khorshidi HR, Kasraianfard A, Derakhshanfar A, et al. Evaluation of the effectiveness of sodium hyaluronate, sesame oil, honey, and silver nanoparticles in preventing postoperative surgical adhesion formation. An experimental study. Acta Cir Bras 2017; 32(8): 626-32.
[http://dx.doi.org/10.1590/s0102-865020170080000004] [PMID: 28902938]
[224]
Özden H, Saygun O, Daphan ÇE, et al. The Effects of Thymoquinone (Kalonji) on Abdominal Adhesion in Experimental Abdominal Adhesive Model. Indian J Surg 2020; 82(3): 305-9.
[http://dx.doi.org/10.1007/s12262-019-01941-0]
[225]
Wu S, Uyama N, Itou RA, Hatano E, Tsutsui H, Fujimoto J. The effect of Daikenchuto, Japanese herbal medicine, on adhesion formation induced by cecum cauterization and cecum abrasion in mice. Biol Pharm Bull 2019; 42(2): 179-86.
[http://dx.doi.org/10.1248/bpb.b18-00543] [PMID: 30713250]
[226]
Zhang J, Xu J, Zhang Y. Clinical observation on oral Simotang combined with traditional Chinese Medicine enema in treatment of postoperative adhesive intestinal obstruction in patients with colon cancer. Article 2017; 29(4): 255-8.
[http://dx.doi.org/10.3760/cma.j.issn.1006-9801.2017.04.009]
[227]
Zhou C, Jia P, Jiang Z, et al. Preventive effects of the intestine function recovery decoction, a traditional Chinese medicine, on postoperative intra-abdominal adhesion formation in a rat model. Evid Based Complement Alternat Med 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/1621894] [PMID: 28105058]
[228]
Lu B, Wang F, Jiang H, Zeng XX, Long XY. Effects of salvianolic-acid B on proliferation and extracellular matrix synthesis in rat adhesive fibroblasts induced by transforming growth factor-beta1. Chin J New Drugs 2017; 26(8): 930.
[229]
Wei G, Wu Y, Gao Q, et al. Effect of emodin on preventing postoperative intra-abdominal adhesion formation. Oxid Med Cell Longev 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/1740317] [PMID: 28831292]
[230]
Wu Y, Wei G, Yu J, et al. Danhong injection alleviates postoperative intra-abdominal adhesion in a rat model. Oxid Med Cell Longev 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/4591384] [PMID: 31531183]
[231]
Zhao M, et al. HuoXueTongFu formula alleviates intraperitoneal adhesion by regulating macrophage polarization and the SOCS/ JAK2/STAT/PPAR-γ signalling pathway. Mediators of inflammation 2019; 2019
[http://dx.doi.org/10.1155/2019/1769374]
[232]
Zhang H, et al. Evaluation of ligustrazine on the prevention of experimentally induced abdominal adhesions in rats. Int J Surg 2015; 21: 115-21.
[http://dx.doi.org/10.1016/j.ijsu.2015.06.081]
[233]
Yan S, Yue Y, Zeng L, et al. Ligustrazine nanoparticles nano spray’s activation on Nrf2/ARE pathway in oxidative stress injury in rats with postoperative abdominal adhesion. Ann Transl Med 2019; 7(16): 379.
[http://dx.doi.org/10.21037/atm.2019.07.72]
[234]
Yan S, Yue Y, Zeng L, et al. Effect of intra-abdominal administration of ligustrazine nanoparticles nano spray on postoperative peritoneal adhesion in rat model. J Obstet Gynaecol Res 2015; 41(12): 1942-50.
[http://dx.doi.org/10.1111/jog.12807] [PMID: 26419644]
[235]
Yan S, Yang L, Yue Y, et al. Effect of ligustrazine nanoparticles nano spray on transforming growth factor-β/Smad signal pathway of rat peritoneal mesothelial cells induced by tumor necrosis factor-α. Chin J Integr Med 2016; 22(8): 629-34.
[http://dx.doi.org/10.1007/s11655-015-2180-8] [PMID: 26424291]
[236]
Charboneau AJ, Delaney JP, Beilman G. Fucoidans inhibit the formation of post-operative abdominal adhesions in a rat model. PLoS One 2018; 13(11): e0207797.
[http://dx.doi.org/10.1371/journal.pone.0207797] [PMID: 30462732]
[237]
Beck DE. The role of Seprafilm bioresorbable membrane in adhesion prevention. Eur J Surg Suppl 1997; (577): 49-55.
[PMID: 9076452]
[238]
Park CM, Lee WY, Cho YB, et al. Sodium hyaluronate-based bioresorbable membrane (Seprafilm®) reduced early postoperative intestinal obstruction after lower abdominal surgery for colorectal cancer: the preliminary report. Int J Colorectal Dis 2009; 24(3): 305-10.
[http://dx.doi.org/10.1007/s00384-008-0602-1] [PMID: 18953549]
[239]
Fazio VW, Cohen Z, Fleshman JW, et al. Reduction in adhesive small-bowel obstruction by Seprafilm adhesion barrier after intestinal resection. Dis Colon Rectum 2006; 49(1): 1-11.
[http://dx.doi.org/10.1007/s10350-005-0268-5] [PMID: 16320005]
[240]
Tchartchian G, Hackethal A, Herrmann A, et al. Evaluation of SprayShield™ adhesion barrier in a single center: Randomized controlled study in 15 women undergoing reconstructive surgery after laparoscopic myomectomy. Arch Gynecol Obstet 2014; 290(4): 697-704.
[http://dx.doi.org/10.1007/s00404-014-3251-3] [PMID: 24781718]
[241]
Fossum GT, Silverberg KM, Miller CE, Diamond MP, Holmdahl L. Gynecologic use of sepraspray adhesion barrier for reduction of adhesion development after laparoscopic myomectomy: A pilot study. Fertil Steril 2011; 96(2): 487-91.
[http://dx.doi.org/10.1016/j.fertnstert.2011.05.081] [PMID: 21718999]
[242]
Lang R, Baumann P, Schmoor C, Odermatt EK, Wente MN, Jauch KW. A-part gel, an adhesion prophylaxis for abdominal surgery: A randomized controlled phase I-II safety study [NCT00646412]. Ann Surg Innov Res 2015; 9(1): 5.
[http://dx.doi.org/10.1186/s13022-015-0014-1] [PMID: 26336510]
[243]
Suto T, Watanabe M, Endo T, et al. The primary result of prospective randomized multicenter trial of new spray-type bio-absorbable adhesion barrier system (TCD-11091) against postoperative adhesion formation. J Gastrointest Surg 2017; 21(10): 1683-91.
[http://dx.doi.org/10.1007/s11605-017-3503-1] [PMID: 28744742]
[244]
Ha US, Koh JS, Cho KJ, et al. Hyaluronic acid-carboxymethyl-cellulose reduced postoperative bowel adhesions following laparoscopic urologic pelvic surgery: a prospective, randomized, controlled, single-blind study. BMC Urol 2016; 16(1): 28.
[http://dx.doi.org/10.1186/s12894-016-0149-3] [PMID: 27286961]
[245]
Sakari T, Sjödahl R, Påhlman L, Karlbom U. Role of icodextrin in the prevention of small bowel obstruction. Safety randomized patients control of the first 300 in the ADEPT trial. Colorectal Dis 2016; 18(3): 295-300.
[http://dx.doi.org/10.1111/codi.13095] [PMID: 26934850]
[246]
di Zerega GS, Verco SJ, Young P, et al. A randomized, controlled pilot study of the safety and efficacy of 4% icodextrin solution in the reduction of adhesions following laparoscopic gynaecological surgery. Hum Reprod 2002; 17(4): 1031-8.
[http://dx.doi.org/10.1093/humrep/17.4.1031] [PMID: 11925401]
[247]
Catena F, Ansaloni L, Di Saverio S, Pinna AD. P.O.P.A. study: prevention of postoperative abdominal adhesions by icodextrin 4% solution after laparotomy for adhesive small bowel obstruction. A prospective randomized controlled trial. J Gastrointest Surg 2012; 16(2): 382-8.
[http://dx.doi.org/10.1007/s11605-011-1736-y] [PMID: 22052104]
[248]
Trew G, Pistofidis G, Pados G, et al. Gynaecological endoscopic evaluation of 4% icodextrin solution: a European, multicentre, double-blind, randomized study of the efficacy and safety in the reduction of de novo adhesions after laparoscopic gynaecological surgery. Hum Reprod 2011; 26(8): 2015-27.
[http://dx.doi.org/10.1093/humrep/der135] [PMID: 21632697]
[249]
Imai A, Sugiyama M, Furui T, Takahashi S, Tamaya T. Gonadotrophin-releasing hormones agonist therapy increases peritoneal fibrinolytic activity and prevents adhesion formation after myomectomy. J Obstet Gynaecol 2003; 23(6): 660-3.
[http://dx.doi.org/10.1080/01443610310001604493] [PMID: 14617474]
[250]
Coddington CC, Grow DR, Ahmed MS, Toner JP, Cook E, Diamond MP. Gonadotropin-releasing hormone agonist pretreatment did not decrease postoperative adhesion formation after abdominal myomectomy in a randomized control trial. Fertil Steril 2009; 91(5): 1909-13.
[http://dx.doi.org/10.1016/j.fertnstert.2008.02.128] [PMID: 18439584]
[251]
Di Nardo MA, Annunziata ML, Ammirabile M, et al. Pelvic adhesion and gonadotropin-releasing hormone analogue: effects of triptorelin acetate depot on coagulation and fibrinolytic activities. Reprod Sci 2012; 19(6): 615-22.
[http://dx.doi.org/10.1177/1933719111428517] [PMID: 22344729]
[252]
Hudeček R, Ivanová Z, Šmerdová M, Pánková S, Krajcovicová R. Effect of GnRH analogues pre-treatment on myomectomy outcomes in reproductive age women. Ceska Gynekol 2012; 77(2): 109-17.
[253]
Kuyumcu A, Akyol A, Buyuktuncer Z, Ozmen MM, Besler HT. Improved oxidative status in major abdominal surgery patients after N-acetyl cystein supplementation. Nutr J 2015; 14(1): 4.
[http://dx.doi.org/10.1186/1475-2891-14-4] [PMID: 25559659]
[254]
Alexander ZE, Su’a B, Hill CTG, Lyndon MP, Singh PP, Hill AG. The effect of oral simvastatin on fibrinolytic activity after colorectal surgery-a pilot study. J Surg Res 2016; 205(1): 28-32.
[http://dx.doi.org/10.1016/j.jss.2016.05.037] [PMID: 27620995]
[255]
Wiig ME, Dahlin LB, Fridén J, et al. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: randomized controlled trial. PLoS One 2014; 9(10): e110735.
[http://dx.doi.org/10.1371/journal.pone.0110735] [PMID: 25340801]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy