Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Acid-sensitive Ion Channels in Central Nervous System Diseases

Author(s): Yueqin Zhu, Xiaojie Hu, Lili Wang, Jin Zhang, Xuesheng Pan, Yangyang Li, Rui Cao, Bowen Li, Huimin Lin, Yanan Wang, Longquan Zuo and Yan Huang*

Volume 28, Issue 17, 2022

Published on: 10 June, 2022

Page: [1406 - 1411] Pages: 6

DOI: 10.2174/1381612828666220422084159

Price: $65

conference banner
Abstract

Acid-sensitive ion channels (ASICs) are cationic channels activated by extracellular protons and widely distributed in the nervous system of mammals. It belongs to the ENaC/DEG family and has four coding genes: ASIC1, ASIC2, ASIC3, and ASIC4, which encode eight subunit proteins: ASIC1a, ASIC1b, ASIC1b2, ASIC2a, ASIC2b, ASIC3, ASIC4, and ASIC5. Different subtypes of ASICs have different distributions in the central nervous system, and they play an important role in various physiological and pathological processes of the central nervous system, including synaptic plasticity, anxiety disorders, fear conditioning, depressionrelated behavior, epilepsy, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, malignant Glioma, pain, and others. This paper reviewed the recent studies of ASICs on the central nervous system to improve the understanding of ASICs’ physiological functions and pathological effects. This article also references studying the molecular mechanisms and therapeutic measures of nervous system-related diseases.

Keywords: ASICs, icon channels, nervous injury, pharmacology, central nervous system, Alzheimer’s disease.

[1]
Wang YC, Li WZ, Wu Y, et al. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons. J Neuroinflammation 2015; 12(1): 246.
[http://dx.doi.org/10.1186/s12974-015-0465-7] [PMID: 26715049]
[2]
Chu XP, Xiong ZG. Acid-sensing ion channels in pathological conditions Sodium Calcium Exchange: A Growing Spectrum of Patho-physiological Implications. Boston, MA: Springer 2013; pp. 419-31.
[http://dx.doi.org/10.1007/978-1-4614-4756-6_36]
[3]
Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH Jr, Welsh MJ. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 2003; 23(13): 5496-502.
[http://dx.doi.org/10.1523/JNEUROSCI.23-13-05496.2003] [PMID: 12843249]
[4]
Kreple CJ, Lu Y, Taugher RJ, et al. Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci 2014; 17(8): 1083-91.
[http://dx.doi.org/10.1038/nn.3750] [PMID: 24952644]
[5]
Zha XM, Costa V, Harding AMS, Reznikov L, Benson CJ, Welsh MJ. ASIC2 subunits target acid-sensing ion channels to the synapse via an association with PSD-95. J Neurosci 2009; 29(26): 8438-46.
[http://dx.doi.org/10.1523/JNEUROSCI.1284-09.2009] [PMID: 19571134]
[6]
Zha XM, Wemmie JA, Green SH, Welsh MJ. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci 2006; 103(44): 16556-61.
[http://dx.doi.org/10.1073/pnas.0608018103] [PMID: 17060608]
[7]
González-Inchauspe C, Urbano FJ, Di Guilmi MN, Uchitel OD. Acid-sensing ion channels activated by evoked released protons modulate synaptic transmission at the mouse calyx of held synapse. J Neurosci 2017; 37(10): 2589-99.
[http://dx.doi.org/10.1523/JNEUROSCI.2566-16.2017] [PMID: 28159907]
[8]
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73(10): e22120.
[http://dx.doi.org/10.1002/syn.22120] [PMID: 31180161]
[9]
Cho JH, Askwith CC. Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice. J Neurophysiol 2008; 99(2): 426-41.
[http://dx.doi.org/10.1152/jn.00940.2007] [PMID: 18094106]
[10]
Gobetto MN, González-Inchauspe C, Uchitel OD. Histamine and corticosterone modulate Acid Sensing Ion Channels (ASICs) dependent long-term potentiation at the mouse anterior cingulate cortex. Neuroscience 2021; 460: 145-60.
[http://dx.doi.org/10.1016/j.neuroscience.2021.01.022] [PMID: 33493620]
[11]
Yu Z, Wu YJ, Wang YZ, et al. The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning. Sci Signal 2018; 11(542): eaar4481.
[http://dx.doi.org/10.1126/scisignal.aar4481] [PMID: 30087178]
[12]
Mango D, Nisticò R. Acid-Sensing ion channel 1a is involved in N-Methyl D-aspartate receptor-dependent long-term depression in the hippocampus. Front Pharmacol 2019; 10: 555.
[http://dx.doi.org/10.3389/fphar.2019.00555] [PMID: 31178731]
[13]
Wu PY, Huang YY, Chen CC, et al. Acid-sensing ion channel-1a is not required for normal hippocampal LTP and spatial memory. J Neurosci 2013; 33(5): 1828-32.
[http://dx.doi.org/10.1523/JNEUROSCI.4132-12.2013] [PMID: 23365222]
[14]
Dwyer JM, Rizzo SJS, Neal SJ, et al. Acid Sensing Ion Channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology 2009; 203(1): 41-52.
[http://dx.doi.org/10.1007/s00213-008-1373-7] [PMID: 18949460]
[15]
Aissouni Y, El Guerrab A, Hamieh AM, et al. Acid-sensing ion channel 1a in the amygdala is involved in pain and anxiety-related behaviours associated with arthritis. Sci Rep 2017; 7(1): 43617.
[http://dx.doi.org/10.1038/srep43617] [PMID: 28321113]
[16]
Maren S. An acid-sensing channel sows fear and panic. Cell 2009; 139(5): 867-9.
[http://dx.doi.org/10.1016/j.cell.2009.11.008] [PMID: 19945375]
[17]
Gugliandolo A, Gangemi C, Caccamo D, et al. The RS685012 polymorphism of ACCN2, the human ortholog of murine Acid-Sensing Ion Channel 1 (ASIC1) gene, is highly represented in patients with panic disorder. Neuromolecular Med 2016; 18(1): 91-8.
[http://dx.doi.org/10.1007/s12017-015-8380-8] [PMID: 26589317]
[18]
Smoller JW, Gallagher PJ, Duncan LE, et al. The human ortholog of Acid-Sensing Ion Channel gene ASIC1a is associated with panic disorder and amygdala structure and function. Biol Psychiatry 2014; 76(11): 902-10.
[http://dx.doi.org/10.1016/j.biopsych.2013.12.018] [PMID: 24529281]
[19]
Hettema JM, An SS, Neale MC, van den Oord EJ, Kendler KS, Chen X. Lack of association between the Amiloride-Sensitive Cation Channel 2 (ACCN2) gene and anxiety spectrum disorders. Psychiatr Genet 2008; 18(2): 73-9.
[http://dx.doi.org/10.1097/YPG.0b013e3282f08a2a] [PMID: 18349698]
[20]
Pidoplichko VI, Aroniadou-Anderjaska V, Prager EM, et al. ASIC1a activation enhances inhibition in the basolateral amygdala and reduces anxiety. J Neurosci 2014; 34(9): 3130-41.
[http://dx.doi.org/10.1523/JNEUROSCI.4009-13.2014] [PMID: 24573273]
[21]
Wu WL, Lin YW, Min MY, Chen CC. Mice lacking Asic3 show reduced anxiety-like behavior on the elevated plus maze and reduced aggression. Genes Brain Behav 2010; 9(6): 603-14.
[http://dx.doi.org/10.1111/j.1601-183X.2010.00591.x] [PMID: 20497234]
[22]
Lin SH, Chien YC, Chiang WW, Liu YZ, Lien CC, Chen CC. Genetic mapping of ASIC4 and contrasting phenotype to ASIC1a in modulating innate fear and anxiety. Eur J Neurosci 2015; 41(12): 1553-68.
[http://dx.doi.org/10.1111/ejn.12905] [PMID: 25828470]
[23]
Wang Q, Wang Q, Song XL, et al. Fear extinction requires ASIC1a-dependent regulation of hippocampal-prefrontal correlates. Sci Adv 2018; 4(10): eaau3075.
[http://dx.doi.org/10.1126/sciadv.aau3075] [PMID: 30417090]
[24]
Taugher RJ, Lu Y, Fan R, et al. ASIC1A in neurons is critical for fear-related behaviors. Genes Brain Behav 2017; 16(8): 745-55.
[http://dx.doi.org/10.1111/gbb.12398] [PMID: 28657172]
[25]
Coryell MW, Wunsch AM, Haenfler JM, et al. Restoring Acid-sensing ion channel-1a in the amygdala of knock-out mice rescues fear memory but not unconditioned fear responses. J Neurosci 2008; 28(51): 13738-41.
[http://dx.doi.org/10.1523/JNEUROSCI.3907-08.2008] [PMID: 19091964]
[26]
Chiang PH, Chien TC, Chen CC, Yanagawa Y, Lien CC. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory. Sci Rep 2015; 5(1): 10143.
[http://dx.doi.org/10.1038/srep10143] [PMID: 25988357]
[27]
Ziemann AE, Allen JE, Dahdaleh NS, et al. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 2009; 139(5): 1012-21.
[http://dx.doi.org/10.1016/j.cell.2009.10.029] [PMID: 19945383]
[28]
Vralsted VC, Price MP, Du J, et al. Expressing acid-sensing ion channel 3 in the brain alters acid-evoked currents and impairs fear conditioning. Genes Brain Behav 2011; 10(4): 444-50.
[http://dx.doi.org/10.1111/j.1601-183X.2011.00683.x] [PMID: 21324060]
[29]
González-Inchauspe C, Gobetto MN, Uchitel OD. Modulation of acid sensing ion channel dependent protonergic neurotransmission at the mouse calyx of Held. Neuroscience 2020; 439: 195-210.
[http://dx.doi.org/10.1016/j.neuroscience.2019.04.023] [PMID: 31022462]
[30]
Coryell MW, Wunsch AM, Haenfler JM, et al. Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci 2009; 29(17): 5381-8.
[http://dx.doi.org/10.1523/JNEUROSCI.0360-09.2009] [PMID: 19403806]
[31]
Noël J, Salinas M, Baron A, Diochot S, Deval E, Lingueglia E. Current perspectives on acid-sensing ion channels: New advances and therapeutic implications. Expert Rev Clin Pharmacol 2010; 3(3): 331-46.
[http://dx.doi.org/10.1586/ecp.10.13] [PMID: 22111614]
[32]
Guo W, Chen X, He JJ, et al. Down-regulated expression of acid-sensing ion channel 1a in cortical lesions of patients with focal cortical dysplasia. J Mol Neurosci 2014; 53(2): 176-82.
[http://dx.doi.org/10.1007/s12031-014-0270-2] [PMID: 24682892]
[33]
Biagini G, Babinski K, Avoli M, Marcinkiewicz M, Séguéla P. Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiol Dis 2001; 8(1): 45-58.
[http://dx.doi.org/10.1006/nbdi.2000.0331] [PMID: 11162239]
[34]
Zhang H, Gao G, Zhang Y, et al. Glucose deficiency elevates acid-sensing ion channel 2a expression and increases seizure susceptibility in temporal lobe epilepsy. Sci Rep 2017; 7(1): 5870.
[http://dx.doi.org/10.1038/s41598-017-05038-0] [PMID: 28725010]
[35]
Lv RJ, He JS, Fu YH, et al. ASIC1a polymorphism is associated with temporal lobe epilepsy. Epilepsy Res 2011; 96(1-2): 74-80.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.05.002] [PMID: 21664108]
[36]
Yang F, Sun X, Ding Y, et al. Astrocytic acid-sensing ion channel 1a contributes to the development of chronic epileptogenesis. Sci Rep 2016; 6(1): 31581.
[http://dx.doi.org/10.1038/srep31581] [PMID: 27526777]
[37]
Ziemann AE, Schnizler MK, Albert GW, et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 2008; 11(7): 816-22.
[http://dx.doi.org/10.1038/nn.2132] [PMID: 18536711]
[38]
Ievglevskyi O, Isaev D, Netsyk O, et al. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: Possible implications for epilepsy. Phil Trans R Soc B 2016; 3711700 : 20150431.
[http://dx.doi.org/10.1098/rstb.2015.0431]
[39]
Weng JY, Lin YC, Lien CC. Cell type-specific expression of acid-sensing ion channels in hippocampal interneurons. J Neurosci 2010; 30(19): 6548-58.
[http://dx.doi.org/10.1523/JNEUROSCI.0582-10.2010] [PMID: 20463218]
[40]
Wu H, Wang C, Liu B, et al. Altered expression pattern of acid-sensing ion channel isoforms in piriform cortex after seizures. Mol Neurobiol 2016; 53(3): 1782-93.
[http://dx.doi.org/10.1007/s12035-015-9130-5] [PMID: 25744567]
[41]
Gonzales EB, Sumien N. Acidity and acid-sensing ion channels in the normal and Alzheimer’s disease brain. J Alzheimers Dis 2017; 57(4): 1137-44.
[http://dx.doi.org/10.3233/JAD-161131] [PMID: 28211811]
[42]
Storozhuk M, Cherninskyi A, Maximyuk O, Isaev D, Krishtal O. Acid-sensing ion channels: Focus on physiological and some pathological roles in the brain. Curr Neuropharmacol 2021; 19(9): 1570-89.
[http://dx.doi.org/10.2174/1570159X19666210125151824] [PMID: 33550975]
[43]
Yingjun G, Xun Q. Acid-sensing ion channels under hypoxia. Channels (Austin) 2013; 7(4): 231-7.
[http://dx.doi.org/10.4161/chan.25223] [PMID: 23764948]
[44]
Li L, Gao B, Liu M, Santafe M. Antagonistic effects of tetramethylpyrazine on hypoxic respiratory depression in rats. Evid Based Complement Alternat Med 2020; 2020: 6456017.
[http://dx.doi.org/10.1155/2020/6456017] [PMID: 33062018]
[45]
Zhou RP, Wu XS, Wang ZS, Xie YY, Ge JF, Chen FH. Novel insights into acid-sensing ion channels: Implications for degenerative diseases. Aging Dis 2015; 7(4): 491-501.
[http://dx.doi.org/10.14336/AD.2015.1213] [PMID: 27493834]
[46]
Arias RL, Sung MLA, Vasylyev D, et al. Amiloride is neuroprotective in an MPTP model of Parkinson’s disease. Neurobiol Dis 2008; 31(3): 334-41.
[http://dx.doi.org/10.1016/j.nbd.2008.05.008] [PMID: 18606547]
[47]
Wu BM, Bargaineer J, Zhang L, Yang T, Xiong ZG, Leng TD. Upregulation of acid sensing ion channel 1a (ASIC1a) by hydrogen peroxide through the JNK pathway. Acta Pharmacol Sin 2021; 42(8): 1248-55.
[http://dx.doi.org/10.1038/s41401-020-00559-3] [PMID: 33184449]
[48]
Joch M, Ase AR, Chen CXQ, et al. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol Biol Cell 2007; 18(8): 3105-18.
[http://dx.doi.org/10.1091/mbc.e05-11-1027] [PMID: 17553932]
[49]
Cheng J, Chen Y, Xing H, Jiang H, Ye X. Down-regulation of ASICs current and the calcium transients by disrupting PICK1 protects primary cultured mouse cortical neurons from OGD-Rep insults. Int J Clin Exp Pathol 2015; 8(9): 10272-82.
[PMID: 26617735]
[50]
Cao BY, Yang YP, Luo WF, et al. Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway. J Ethnopharmacol 2010; 131(1): 122-9.
[http://dx.doi.org/10.1016/j.jep.2010.06.009] [PMID: 20558269]
[51]
Sun X, Cao YB, Hu LF, et al. ASICs mediate the modulatory effect by paeoniflorin on α-synuclein autophagic degradation. Brain Res 2011; 1396: 77-87.
[http://dx.doi.org/10.1016/j.brainres.2011.04.011] [PMID: 21529788]
[52]
Wang JJ, Xu TL. Acid-sensing ion channels as a target for neuroprotection: Acidotoxicity revisited. Sheng li xue bao: Acta physiologica Sinica 2016; 68(4): 403-13.
[53]
Wong HK, Bauer PO, Kurosawa M, et al. Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet 2008; 17(20): 3223-35.
[http://dx.doi.org/10.1093/hmg/ddn218] [PMID: 18658163]
[54]
Waxman SG. Axonal conduction and injury in multiple sclerosis: The role of sodium channels. Nat Rev Neurosci 2006; 7(12): 932-41.
[http://dx.doi.org/10.1038/nrn2023] [PMID: 17115075]
[55]
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-sensing ion channels and mechanosensation. Int J Mol Sci 2021; 22(9): 4810.
[http://dx.doi.org/10.3390/ijms22094810] [PMID: 34062742]
[56]
Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 2014; 10(4): 225-38.
[http://dx.doi.org/10.1038/nrneurol.2014.37] [PMID: 24638138]
[57]
Boiko N, Kucher V, Eaton BA, Stockand JD. Inhibition of neuronal degenerin/epithelial Na+ channels by the multiple sclerosis drug 4-aminopyridine. J Biol Chem 2013; 288(13): 9418-27.
[http://dx.doi.org/10.1074/jbc.M112.449413] [PMID: 23404498]
[58]
Friese MA, Craner MJ, Etzensperger R, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 2007; 13(12): 1483-9.
[http://dx.doi.org/10.1038/nm1668] [PMID: 17994101]
[59]
Vergo S, Craner MJ, Etzensperger R, et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 2011; 134(Pt 2): 571-84.
[http://dx.doi.org/10.1093/brain/awq337] [PMID: 21233144]
[60]
Wang IC, Chung CY, Liao F, Chen CC, Lee CH. Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis. Sci Rep 2017; 7(1): 42304.
[http://dx.doi.org/10.1038/srep42304] [PMID: 28181561]
[61]
Fazia T, Pastorino R, Notartomaso S, et al. Acid sensing ion channel 2: A new potential player in the pathophysiology of multiple sclerosis. Eur J Neurosci 2019; 49(10): 1233-43.
[PMID: 30549327]
[62]
Tian Y, Bresenitz P, Reska A, El Moussaoui L, Beier CP, Gründer S. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3. Sci Rep 2017; 7(1): 13674.
[http://dx.doi.org/10.1038/s41598-017-13666-9] [PMID: 29057936]
[63]
Sun X, Zhao D, Li YL, et al. Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol Rep 2013; 30(6): 2852-8.
[http://dx.doi.org/10.3892/or.2013.2777] [PMID: 24100685]
[64]
Weng XC, Zheng JQ, Li J, Xiao WB. Underlying mechanism of ASIC1a involved in acidosis-induced cytotoxicity in rat C6 glioma cells. Acta Pharmacol Sin 2007; 28(11): 1731-6.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00708.x] [PMID: 17959023]
[65]
Kapoor N, Bartoszewski RA, Qadri YJ, et al. Knockdown of ASIC1 and ENaC subunits inhibits glioblastoma whole cell current and cell migration. J Biol Chem 2009; 284(36): 24526-41.
[66]
Rooj AK, Liu Z, McNicholas CM, Fuller CM. Physical and functional interactions between a glioma cation channel and integrin-β1 require α-actinin. Am J Physiol Cell Physiol 2015; 309(5): C308-19.
[http://dx.doi.org/10.1152/ajpcell.00036.2015] [PMID: 26108662]
[67]
Sheng Y, Wu B, Leng T, Zhu L, Xiong Z. Acid-Sensing Ion Channel 1 (ASIC1) mediates weak acid-induced migration of human malignant glioma cells. Am J Cancer Res 2021; 11(3): 997-1008.
[PMID: 33791169]
[68]
Kapoor N, Lee W, Clark E, et al. Interaction of ASIC1 and ENaC subunits in human glioma cells and rat astrocytes. Am J Physiol Cell Physiol 2011; 300(6): C1246-59.
[http://dx.doi.org/10.1152/ajpcell.00199.2010] [PMID: 21346156]
[69]
Clark EB, Jovov B, Rooj AK, Fuller CM, Benos DJ. Proteolytic cleavage of the human acid sensing ion channel 1 by the serine protease matriptase. J Biol Chem 2010; 285(35): 27130-43.
[http://dx.doi.org/10.1074/jbc.M110.153213]
[70]
Castellanos LCS, Rozenfeld P, Gatto RG, Reisin RC, Uchitel OD, Weissmann C. Upregulation of ASIC1a channels in an in vitro model of Fabry disease. Neurochem Int 2020; 140: 104824.
[http://dx.doi.org/10.1016/j.neuint.2020.104824] [PMID: 32841711]
[71]
Li HS, Su XY, Song XL, et al. Protein Kinase C lambda mediates acid-sensing ion channel 1a-dependent cortical synaptic plasticity and pain hypersensitivity. J Neurosci 2019; 39(29): 5773-93.
[http://dx.doi.org/10.1523/JNEUROSCI.0213-19.2019] [PMID: 31101759]
[72]
Lee CH, Chen CC. Roles of ASICs in nociception and proprioception. Advances in Pain Research: Mechanisms and Modulation of Chronic Pain 2018; 1099: 37-47.
[http://dx.doi.org/10.1007/978-981-13-1756-9_4]
[73]
Holton CM, Strother LC, Dripps I, Pradhan AA, Goadsby PJ, Holland PR. Acid-sensing ion channel 3 blockade inhibits durovascular and nitric oxide-mediated trigeminal pain. Br J Pharmacol 2020; 177(11): 2478-86.
[http://dx.doi.org/10.1111/bph.14990] [PMID: 31975427]
[74]
Faraci FM, Taugher RJ, Lynch C, Fan R, Gupta S, Wemmie JA. Acid-sensing ion channels: Novel mediators of cerebral vascular responses. Circ Res 2019; 125(10): 907-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315024] [PMID: 31451088]
[75]
Kreko-Pierce T, Boiko N, Harbidge DG, Marcus DC, Stockand JD, Pugh JR. Cerebellar ataxia caused by type ii unipolar brush cell dysfunction in the asic5 knockout mouse. Sci Rep 2020; 10(1): 2168.
[http://dx.doi.org/10.1038/s41598-020-58901-y] [PMID: 32034189]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy