Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Prognostic Signature and Discrimination Signature of Lung Adenocarcinoma based on Pyroptosis-Related Genes

Author(s): Guo-Sheng Li, Hui-Ping Lu, Li Gao, Jian-Di Li, Rong-Quan He, Hua-Fu Zhou, Shang-Wei Chen, Jun Liu, Zong-Wang Fu, Jin-Liang Kong, Jiang-Hui Zeng, Juan He and Gang Chen*

Volume 26, Issue 2, 2023

Published on: 30 June, 2022

Page: [347 - 361] Pages: 15

DOI: 10.2174/1386207325666220421102117

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: The clinical value of pyroptosis-related genes (PRGs) in lung adenocarcinoma (LUAD) remains obscure.

Objective: The study attempts to explore PRGs in LUAD, which will enable an understanding of LUAD from the perspective of PRGs.

Methods: Lung adenocarcinoma patients were diagnosed using pathology, and their clinical information was collected from several public databases. A PRGs prognostic signature (PPS) for LUAD patients was established based on a multivariate Cox regression analysis. The differential expression of PRGs was identified using standardized mean differences in 6,958 samples. The area under the curve (AUC) was used to evaluate the predictive effects of the PPS to determine the survival rate of LUAD patients. Decision curve analysis was utilized to assess the clinical significance of the PPS in LUAD.

Results: The PPS consists of five PRGs, namely CASP3, CASP9, GSDMB, NLRP1, and TNF. The prognostic effect of the PPS is evident in all the predicted one-, three-, and five-year survival rates (AUCs ≥ 0.58). The PPS represents an independent risk factor for the prognosis of LUAD patients (hazard ratio > 1; 95% confidence interval excluding 1). The PPS risk score can predict the prognosis of LUAD patients more accurately than PRGs of the PPS and multiple clinical parameters, such as age, tumor stage, and clinical stage. The decision curve analysis revealed that the nomogram based on the PPS and clinical parameters might result in better clinical decisions.

Conclusion: The PPS makes it feasible to distinguish LUAD from non-LUAD. Thus, the underlying significance of the PPS in distinguishing LUAD from non-LUAD is promising.

Keywords: Lung adenocarcinoma, pyroptosis-related gene, survival, prognosis, signature, immunity.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomata-ram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Glo-bocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: Good or bad news from the 2018 global cancer statistics? Cancer Commun. (Lond.), 2019, 39(1), 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]
[3]
Relli, V.; Trerotola, M.; Guerra, E.; Alberti, S. Abandoning the notion of non-small cell lung cancer. Trends Mol. Med., 2019, 25(7), 585-594.
[http://dx.doi.org/10.1016/j.molmed.2019.04.012] [PMID: 31155338]
[4]
Yokoyama, S.; Nakayama, S.; Xu, L.; Pilon, A.L.; Kimura, S. Secretoglobin 3A2 eliminates human cancer cells through py-roptosis. Cell Death Discov., 2021, 7(1), 12.
[http://dx.doi.org/10.1038/s41420-020-00385-w] [PMID: 33452234]
[5]
Hou, J.; Zhao, R.; Xia, W.; Chang, C.W.; You, Y.; Hsu, J.M.; Nie, L.; Chen, Y.; Wang, Y.C.; Liu, C.; Wang, W.J.; Wu, Y.; Ke, B.; Hsu, J.L.; Huang, K.; Ye, Z.; Yang, Y.; Xia, X.; Li, Y.; Li, C.W.; Shao, B.; Tainer, J.A.; Hung, M.C. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol., 2020, 22(10), 1264-1275.
[http://dx.doi.org/10.1038/s41556-020-0575-z] [PMID: 32929201]
[6]
Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Py-roptosis: Mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128.
[http://dx.doi.org/10.1038/s41392-021-00507-5] [PMID: 33776057]
[7]
Ma, X.; Guo, P.; Qiu, Y.; Mu, K.; Zhu, L.; Zhao, W.; Li, T.; Han, L. Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget, 2016, 7(24), 36185-36197.
[http://dx.doi.org/10.18632/oncotarget.9154] [PMID: 27167192]
[8]
Hergueta-Redondo, M.; Sarrió, D.; Molina-Crespo, Á.; Me-gias, D.; Mota, A.; Rojo-Sebastian, A.; García-Sanz, P.; Mo-rales, S.; Abril, S.; Cano, A.; Peinado, H.; Moreno-Bueno, G. Gasdermin-B promotes invasion and metastasis in breast can-cer cells. PLoS One, 2014, 9(3), e90099.
[http://dx.doi.org/10.1371/journal.pone.0090099] [PMID: 24675552]
[9]
Wang, W.J.; Chen, D.; Jiang, M.Z.; Xu, B.; Li, X.W.; Chu, Y.; Zhang, Y.J.; Mao, R.; Liang, J.; Fan, D.M. Downregulation of gasdermin D promotes gastric cancer proliferation by regulat-ing cell cycle-related proteins. J. Dig. Dis., 2018, 19(2), 74-83.
[http://dx.doi.org/10.1111/1751-2980.12576] [PMID: 29314754]
[10]
Lin, W.; Chen, Y.; Wu, B.; Chen, Y.; Li, Z. Identification of the pyroptosis related prognostic gene signature and the asso-ciated regulation axis in lung adenocarcinoma. Cell Death Discov., 2021, 7(1), 161.
[http://dx.doi.org/10.1038/s41420-021-00557-2] [PMID: 34226539]
[11]
Ye, Y.; Dai, Q.; Qi, H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov., 2021, 7(1), 71.
[http://dx.doi.org/10.1038/s41420-021-00451-x] [PMID: 33828074]
[12]
Xia, X.; Wang, X.; Cheng, Z.; Qin, W.; Lei, L.; Jiang, J.; Hu, J. The role of pyroptosis in cancer: Pro-cancer or pro-“host”? Cell Death Dis., 2019, 10(9), 650.
[http://dx.doi.org/10.1038/s41419-019-1883-8] [PMID: 31501419]
[13]
Karki, R.; Kanneganti, T.D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer, 2019, 19(4), 197-214.
[http://dx.doi.org/10.1038/s41568-019-0123-y] [PMID: 30842595]
[14]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression anal-yses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[15]
Leek, J.T.; Storey, J.D. Capturing heterogeneity in gene ex-pression studies by surrogate variable analysis. PLoS Genet., 2007, 3(9), 1724-1735.
[http://dx.doi.org/10.1371/journal.pgen.0030161] [PMID: 17907809]
[16]
Andrade, C. Mean difference, standardized mean difference (SMD), and their use in meta-analysis: As simple as it gets. J. Clin. Psychiatry, 2020, 81(5), 20f13681.
[http://dx.doi.org/10.4088/JCP.20f13681] [PMID: 32965803]
[17]
Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994, 50(4), 1088-1101.
[http://dx.doi.org/10.2307/2533446] [PMID: 7786990]
[18]
Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid. Based Ment. Health, 2019, 22(4), 153-160.
[http://dx.doi.org/10.1136/ebmental-2019-300117] [PMID: 31563865]
[19]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[20]
Wang, Z.; Ni, F.; Yu, F.; Cui, Z.; Zhu, X.; Chen, J. Prognostic significance of mRNA expression of CASPs in gastric cancer. Oncol. Lett., 2019, 18(5), 4535-4554.
[http://dx.doi.org/10.3892/ol.2019.10816] [PMID: 31611962]
[21]
Zhou, M.; Liu, X.; Li, Z.; Huang, Q.; Li, F.; Li, C.Y. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int. J. Cancer, 2018, 143(4), 921-930.
[http://dx.doi.org/10.1002/ijc.31374] [PMID: 29524226]
[22]
Fraga de Andrade, I.; Mehta, C.; Bresnick, E.H. Post-transcriptional control of cellular differentiation by the RNA exosome complex. Nucleic Acids Res., 2020, 48(21), 11913-11928.
[http://dx.doi.org/10.1093/nar/gkaa883] [PMID: 33119769]
[23]
Lou, Y.; Fang, C.Q.; Li, J.H. A study on the expression of CASP9 gene and its polymorphism distribution in non-small cell lung cancer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2007, 24(1), 59-62.
[PMID: 17285546]
[24]
Liu, X.; Xia, S.; Zhang, Z.; Wu, H.; Lieberman, J. Channelling inflammation: Gasdermins in physiology and disease. Nat. Rev. Drug Discov., 2021, 20(5), 384-405.
[http://dx.doi.org/10.1038/s41573-021-00154-z] [PMID: 33692549]
[25]
Shen, E.; Han, Y.; Cai, C.; Liu, P.; Chen, Y.; Gao, L.; Huang, Q.; Shen, H.; Zeng, S.; He, M. Low expression of NLRP1 is associated with a poor prognosis and immune infiltration in lung adenocarcinoma patients. Aging (Albany NY), 2021, 13(5), 7570-7588.
[http://dx.doi.org/10.18632/aging.202620] [PMID: 33658393]
[26]
Gong, K.; Guo, G.; Beckley, N.; Zhang, Y.; Yang, X.; Sharma, M.; Habib, A.A. Tumor necrosis factor in lung cancer: Com-plex roles in biology and resistance to treatment. Neoplasia, 2021, 23(2), 189-196.
[http://dx.doi.org/10.1016/j.neo.2020.12.006] [PMID: 33373873]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy