Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Bioactive Molecule-incorporated Polymeric Electrospun Fibers for Bone Tissue Engineering

Author(s): Aarkampoondi Elumalai Purushothaman, Ranganathan Abhinandan, Senthilkumar Pranav Adithya, Dharmaraj Saleth Sidharthan, Kalimuthu Balagangadharan and Nagarajan Selvamurugan*

Volume 18, Issue 4, 2023

Published on: 13 September, 2022

Page: [470 - 486] Pages: 17

DOI: 10.2174/1574888X17666220414100358

Price: $65

conference banner
Abstract

Bone tissue engineering (BTE) is based on the participation and combination of different biomaterials, cells, and bioactive molecules to generate biosynthetic grafts for bone regeneration. Electrospinning has been used to fabricate fibrous scaffolds, which provide nanoscale architecture comprising interconnecting pores, resembling the natural hierarchy of tissues and enabling the formation of artificial functional tissues. Electrospun fibers for BTE applications have been mostly produced from polymers (chitosan, alginate, polycaprolactone, polylactic acid) and bioceramics (hydroxyapatite). Stem cells are among the most prolific cell types employed in regenerative medicine owing to their self-renewal and differentiation capacity. Most importantly, bioactive molecules, such as synthetic drugs, growth factors, and phytocompounds, are consistently used to regulate cell behavior inducing differentiation towards the osteoblast lineage. An expanding body of literature has provided evidence that these electrospun fibers loaded with bioactive molecules support the differentiation of stem cells towards osteoblasts. Thus, this review briefly describes the current development of polymers and bioceramic-based electrospun fibers and the influence of bioactive molecules in these electrospun fibers on bone tissue regeneration.

Keywords: Electrospinning, stem cells, growth factors, phytocompounds, bone tissue engineering, tissue regeneration.

Graphical Abstract
[1]
Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res Int 2015; 2015: 421746.
[http://dx.doi.org/10.1155/2015/421746] [PMID: 26247020]
[2]
Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3 (Suppl. 3): S131-9.
[http://dx.doi.org/10.2215/CJN.04151206] [PMID: 18988698]
[3]
Iolascon G, Napolano R, Gioia M, Moretti A, Riccio I, Gimigliano F. The contribution of cortical and trabecular tissues to bone strength: Insights from denosumab studies. Clin Cases Miner Bone Metab 2013; 10(1): 47-51.
[http://dx.doi.org/10.11138/ccmbm/2013.10.1.047] [PMID: 23858311]
[4]
Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 2013; 5(1): a008334.
[http://dx.doi.org/10.1101/cshperspect.a008334] [PMID: 23284041]
[5]
Zhang H, Shi X, Wang L, et al. Intramembranous ossification and endochondral ossification are impaired differently between glucocorticoid-induced osteoporosis and estrogen deficiency-induced osteoporosis. Sci Rep 2018; 8(1): 3867.
[http://dx.doi.org/10.1038/s41598-018-22095-1] [PMID: 29497100]
[6]
Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285(33): 25103-8.
[http://dx.doi.org/10.1074/jbc.R109.041087] [PMID: 20501658]
[7]
Sanjeev G, Sidharthan DS, Pranavkrishna S, et al. An osteoinductive effect of phytol on mouse mesenchymal stem cells (C3H10T1/2) towards osteoblasts. Bioorg Med Chem Lett 2020; 30(11): 127137.
[http://dx.doi.org/10.1016/j.bmcl.2020.127137] [PMID: 32245598]
[8]
Ansari M. Bone tissue regeneration: Biology, strategies and interface studies. Prog Biomater 2019; 8(4): 223-37.
[http://dx.doi.org/10.1007/s40204-019-00125-z] [PMID: 31768895]
[9]
Yin S, Zhang W, Zhang Z, Jiang X. Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv Healthc Mater 2019; 8(10): e1801433.
[http://dx.doi.org/10.1002/adhm.201801433] [PMID: 30938094]
[10]
Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed 2019; 30(14): 1308-55.
[http://dx.doi.org/10.1080/09205063.2019.1630699] [PMID: 31181982]
[11]
Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol 2020; 8: 474.
[http://dx.doi.org/10.3389/fbioe.2020.00474] [PMID: 32509754]
[12]
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and synthetic polymers for bone scaffolds optimization. Polymers (Basel) 2020; 12(4): 905.
[http://dx.doi.org/10.3390/polym12040905] [PMID: 32295115]
[13]
Stratakis E. Novel biomaterials for tissue engineering. Int J Mol Sci 2018; 19(12): 3960.
[http://dx.doi.org/10.3390/ijms19123960]
[14]
Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and scaffolds: A winning combination for tissue engineering. Front Bioeng Biotechnol 2015; 3: 202.
[http://dx.doi.org/10.3389/fbioe.2015.00202] [PMID: 26734605]
[15]
Xu HH, Wang P, Wang L, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res 2017; 5(1): 17056.
[http://dx.doi.org/10.1038/boneres.2017.56] [PMID: 29354304]
[16]
Saito N, Takaoka K. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials 2003; 24(13): 2287-93.
[http://dx.doi.org/10.1016/S0142-9612(03)00040-1] [PMID: 12699665]
[17]
Berton F, Porrelli D, Di Lenarda R, Turco G. A critical review on the production of electrospun nanofibers for guided bone regeneration in oral surgery. Nanomaterials (Basel) 2019; 10(1): 16.
[http://dx.doi.org/10.3390/nano10010016] [PMID: 31861582]
[18]
Ding H, Cheng Y, Niu X, Hu Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. J Biomater Sci Polym Ed 2021; 32(4): 536-61.
[http://dx.doi.org/10.1080/09205063.2020.1849922] [PMID: 33175667]
[19]
Rao SH, Harini B, Shadamarshan RPK, Balagangadharan K, Selvamurugan N. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 2018; 110: 88-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.029] [PMID: 28917940]
[20]
Roy S, Kuddannaya S, Das T, et al. A novel approach for fabricating highly tunable and fluffy bioinspired 3D poly(vinyl alcohol) (PVA) fiber scaffolds. Nanoscale 2017; 9(21): 7081-93.
[http://dx.doi.org/10.1039/C7NR00503B] [PMID: 28513711]
[21]
Abudhahir M, Saleem A, Paramita P, et al. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications. J Biomed Mater Res B Appl Biomater 2021; 109(5): 654-64.
[http://dx.doi.org/10.1002/jbm.b.34729] [PMID: 32935919]
[22]
Ranganathan S, Balagangadharan K, Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 2019; 133: 354-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.115] [PMID: 31002907]
[23]
Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering Int J Biol Macromol 2017; 104(Pt B): 1372-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.046] [PMID: 27993655]
[24]
Kandasamy S, Narayanan V, Sumathi S. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications. Int J Biol Macromol 2020; 145: 1018-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.193] [PMID: 31726129]
[25]
Enayati MS, Behzad T, Sajkiewicz P, et al. Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res A 2018; 106(4): 1111-20.
[http://dx.doi.org/10.1002/jbm.a.36309] [PMID: 29266718]
[26]
Swetha S, Lavanya K, Sruthi R, Selvamurugan N. An insight into cell-laden 3D-printed constructs for bone tissue engineering. J Mater Chem B Mater B 2020; 8(43): 9836-62.
[http://dx.doi.org/10.1039/D0TB02019B] [PMID: 33030166]
[27]
Ashwin B, Abinaya B, Prasith TP, et al. 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. Int J Biol Macromol 2020; 162: 523-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.157] [PMID: 32569692]
[28]
Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids Surf B Biointerfaces 2020; 188: 110713.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110713] [PMID: 31884080]
[29]
Sahithi K, Swetha M, Prabaharan M, et al. Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 2010; 6(4): 333-9.
[http://dx.doi.org/10.1166/jbn.2010.1138] [PMID: 21323106]
[30]
Abhinandan R, Pranav Adithya S, Saleth Sidharthan D, Balagangadharan K, Selvamurugan N. Synthesis and characterization of magnesium diboride nanosheets in alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 2021; 203: 111771.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111771] [PMID: 33894648]
[31]
Saha N, Shah R, Gupta P, et al. PVP - CMC hydrogel: An excellent bioinspired and biocompatible scaffold for osseointegration. Mater Sci Eng C 2019; 95: 440-9.
[http://dx.doi.org/10.1016/j.msec.2018.04.050] [PMID: 30573269]
[32]
Abinaya B, Prasith TP, Ashwin B, Viji Chandran S, Selvamurugan N. Chitosan in surface modification for bone tissue engineering applications. Biotechnol J 2019; 14(12): e1900171.
[http://dx.doi.org/10.1002/biot.201900171] [PMID: 31502754]
[33]
Balagangadharan K, Viji Chandran S, Arumugam B, Saravanan S, Devanand Venkatasubbu G, Selvamurugan N. Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int J Biol Macromol 2018; 111: 953-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.122] [PMID: 29415417]
[34]
Wen Y, Xun S, Haoye M, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: A review. Biomater Sci 2017; 5(9): 1690-8.
[http://dx.doi.org/10.1039/C7BM00315C] [PMID: 28686244]
[35]
Moorthi A, Parihar PR, Saravanan S, Vairamani M, Selvamurugan N. Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation. Mater Sci Eng C Mater Bio Appl 2014; 43: 458-64.
[http://dx.doi.org/10.1016/j.msec.2014.07.040] [PMID: 25175236]
[36]
Suzuki O, Shiwaku Y, Hamai R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dent Mater J 2020; 39(2): 187-99.
[http://dx.doi.org/10.4012/dmj.2020-001] [PMID: 32161239]
[37]
Kumar JP, Lakshmi L, Jyothsna V, et al. Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering In vitro and In vivo. J Biomed Nanotechnol 2014; 10(6): 970-81.
[http://dx.doi.org/10.1166/jbn.2014.1808] [PMID: 24749392]
[38]
Dhivya S, Keshav Narayan A, Logith Kumar R, Viji Chandran S, Vairamani M, Selvamurugan N. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif 2018; 51(1): e12408.
[http://dx.doi.org/10.1111/cpr.12408] [PMID: 29159895]
[39]
Ajita J, Saravanan S, Selvamurugan N. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications. Mater Sci Eng C Mater Bio Appl 2015; 53: 142-9.
[http://dx.doi.org/10.1016/j.msec.2015.04.041] [PMID: 26042701]
[40]
Jazayeri HE, Lee SM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater 2020; 36(2): e47-58.
[http://dx.doi.org/10.1016/j.dental.2019.11.005] [PMID: 31791734]
[41]
Thorsteinsdóttir S, Deries M, Cachaço AS, Bajanca F. The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354(2): 191-207.
[http://dx.doi.org/10.1016/j.ydbio.2011.03.015] [PMID: 21420400]
[42]
Seong YJ, Song EH, Park C, et al. Porous calcium phosphate-collagen composite microspheres for effective growth factor delivery and bone tissue regeneration. Mater Sci Eng C Mater Bio Appl 2020; 109: 110480.
[http://dx.doi.org/10.1016/j.msec.2019.110480] [PMID: 32228926]
[43]
Soundarya PS, Menon HA, Chandran VS. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 2018; 119: 1228-39.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.056] [PMID: 30107161]
[44]
Menon AH, Soundarya SP, Sanjay V, Chandran SV, Balagangadharan K, Selvamurugan N. Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohydr Polym 2018; 195: 356-67.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.115] [PMID: 29804987]
[45]
Chandran SV, Vairamani M, Selvamurugan N. Osteostimulatory effect of biocomposite scaffold containing phytomolecule diosmin by Integrin/FAK/ERK signaling pathway in mouse mesenchymal stem cells. Sci Rep 2019; 9(1): 11900.
[http://dx.doi.org/10.1038/s41598-019-48429-1] [PMID: 31417150]
[46]
Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater 2017; 6(22): 1700298.
[http://dx.doi.org/10.1002/adhm.201700298] [PMID: 28804984]
[47]
Zhu C, Pongkitwitoon S, Qiu J, Thomopoulos S, Xia Y. Design and fabrication of a hierarchically structured scaffold for tendon‐to-bone repair. Adv Mater 2018; 30(16): e1707306.
[http://dx.doi.org/10.1002/adma.201707306] [PMID: 29534316]
[48]
Rao F, Yuan Z, Li M, et al. Expanded 3D nanofibre sponge scaffolds by gas-foaming technique enhance peripheral nerve regeneration. Artif Cells Nanomed Biotechnol 2019; 47(1): 491-500.
[http://dx.doi.org/10.1080/21691401.2018.1557669] [PMID: 30942090]
[49]
Zhang S. Emerging biological materials through molecular self-assembly. Biotechnol Adv 2002; 20(5-6): 321-39.
[http://dx.doi.org/10.1016/S0734-9750(02)00026-5] [PMID: 14550019]
[50]
Yadav LR, Chandran SV, Lavanya K, Selvamurugan N. Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int J Biol Macromol 2021; 183: 1925-38.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.215] [PMID: 34097956]
[51]
Sriram M, Sainitya R, Kalyanaraman V, Dhivya S, Selvamurugan N. Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 2015; 74: 404-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.034] [PMID: 25543062]
[52]
Binulal NS, Deepthy M, Selvamurugan N, et al. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for In vitro bone tissue engineering--response to osteogenic regulators. Tissue Eng Part A 2010; 16(2): 393-404.
[http://dx.doi.org/10.1089/ten.tea.2009.0242] [PMID: 19772455]
[53]
Ramachandran K, Gouma PI. Electrospinning for bone tissue engineering. Recent Pat Nanotechnol 2008; 2(1): 1-7.
[http://dx.doi.org/10.2174/187221008783478608] [PMID: 19076038]
[54]
Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 2010; 28(3): 325-47.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[55]
Saravanan S, Leena RS, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering Int J Biol Macromol 2016; 93(Pt B): 1354-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.112] [PMID: 26845481]
[56]
Kareem MM, Hodgkinson T, Sanchez MS, Dalby MJ, Tanner KE. Hybrid core-shell scaffolds for bone tissue engineering. Biomed Mater 2019; 14(2): 025008.
[http://dx.doi.org/10.1088/1748-605X/aafbf1] [PMID: 30609417]
[57]
Scaffaro R, Lopresti F, Botta L. Preparation, characterization and hydrolytic degradation of PLA/PCL co-mingled nanofibrous mats prepared via dual-jet electrospinning. Eur Polym J 2017; 96: 266-77.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.09.016]
[58]
Wang X, Um IC, Fang D, Okamoto A, Hsiao BS, Chu B. Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer 2005; 46(13): 4853-67.
[http://dx.doi.org/10.1016/j.polymer.2005.03.058]
[59]
Guo S, He L, Yang R, et al. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. J Biomater Sci Polym Ed 2020; 31(2): 155-68.
[http://dx.doi.org/10.1080/09205063.2019.1680927] [PMID: 31710268]
[60]
Ye H, Zhu J, Deng D, Jin S, Li J, Man Y. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration. J Biomater Sci Polym Ed 2019; 30(16): 1505-22.
[http://dx.doi.org/10.1080/09205063.2019.1646628] [PMID: 31322979]
[61]
Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C 2013; 33(3): 1228-35.
[http://dx.doi.org/10.1016/j.msec.2012.12.015] [PMID: 23827565]
[62]
Rong D, Chen P, Yang Y, et al. Fabrication of gelatin/PCL electrospun fiber mat with bone powder and the study of its biocompatibility. J Funct Biomater 2016; 7(1): 6.
[http://dx.doi.org/10.3390/jfb7010006] [PMID: 26959071]
[63]
Alvarez Perez MA, Guarino V, Cirillo V, Ambrosio L. In vitro mineralization and bone osteogenesis in polyε-caprolactone)/gelatin nanofibers. J Biomed Mater Res A 2012; 100(11): 3008-19.
[http://dx.doi.org/10.1002/jbm.a.34233] [PMID: 22700476]
[64]
Son SR, Linh NB, Yang HM, Lee BT. In vitro and In vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration. Sci Technol Adv Mater 2013; 14(1): 015009.
[http://dx.doi.org/10.1088/1468-6996/14/1/015009] [PMID: 27877567]
[65]
Adithya SP, Sidharthan DS, Abhinandan R, Balagangadharan K, Selvamurugan N. Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. Int J Biol Macromol 2020; 164: 1960-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.053] [PMID: 32800960]
[66]
McCullen SD, Zhu Y, Bernacki SH, et al. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed Mater 2009; 4(3): 035002.
[http://dx.doi.org/10.1088/1748-6041/4/3/035002] [PMID: 19390143]
[67]
Baudequin T, Gaut L, Mueller M, et al. The osteogenic and tenogenic differentiation potential of C3H10T1/2 (mesenchymal stem cell model) cultured on PCL/PLA electrospun scaffolds in the absence of specific differentiation medium. Materials (Basel) 2017; 10(12): 1387.
[http://dx.doi.org/10.3390/ma10121387] [PMID: 29207566]
[68]
Whited BM, Whitney JR, Hofmann MC, Xu Y, Rylander MN. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials 2011; 32(9): 2294-304.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.003] [PMID: 21195474]
[69]
Sanaei-Rad P, Jafarzadeh Kashi TS, Seyedjafari E, Soleimani M. Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds. Biologicals 2016; 44(6): 511-6.
[http://dx.doi.org/10.1016/j.biologicals.2016.09.002] [PMID: 27720267]
[70]
Yang X, Li Y, He W, Huang Q, Zhang R, Feng Q. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res A 2018; 106(11): 2863-70.
[http://dx.doi.org/10.1002/jbm.a.36475] [PMID: 30289593]
[71]
Goonoo N, Khanbabaee B, Steuber M, et al. κ-Carrageenan enhances the biomineralization and osteogenic differentiation of electrospu polyhydroxybutyrate and polyhydroxybutyrate valerate fibers. Biomacromolecules 2017; 18(5): 1563-73.
[http://dx.doi.org/10.1021/acs.biomac.7b00150] [PMID: 28346782]
[72]
Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH. Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 2012; 90(1): 181-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.012] [PMID: 24751028]
[73]
Chen Z, Song Y, Zhang J, et al. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Mater Sci Eng C 2017; 72: 341-51.
[http://dx.doi.org/10.1016/j.msec.2016.11.070] [PMID: 28024596]
[74]
Zhao X, Zhou L, Li Q, et al. Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo. Carbohydr Polym 2018; 195: 225-34. [https://doi.org/10.1016/j.carbpol.2018.04.090
[75]
Andersson O. Role of adenosine signalling and metabolism in β-cell regeneration. Exp Cell Res 2014; 321(1): 3-10.
[http://dx.doi.org/10.1016/j.yexcr.2013.11.019] [PMID: 24315942]
[76]
Zhong L, Hu D, Qu Y, et al. Preparation of adenosine-loaded electrospun nanofibers and their application in bone regeneration. J Biomed Nanotechnol 2019; 15(5): 857-77.
[http://dx.doi.org/10.1166/jbn.2019.2761] [PMID: 30890220]
[77]
Zhu Y, Song F, Ju Y, et al. NAC-loaded electrospun scaffolding system with dual compartments for the osteogenesis of rBMSCs In vitro. Int J Nanomedicine 2019; 14: 787-98.
[http://dx.doi.org/10.2147/IJN.S183233] [PMID: 30774333]
[78]
Pişkin E, Işoğlu IA, Bölgen N, et al. In vivo performance of simvastatin-loaded electrospun spiral-wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. J Biomed Mater Res A 2009; 90(4): 1137-51.
[http://dx.doi.org/10.1002/jbm.a.32157] [PMID: 18671271]
[79]
Sartawi Z, Waeber C, Schipani E, Ryan KB. Development of electrospun polymer scaffolds for the localized and controlled delivery of siponimod for the management of critical bone defects. Int J Pharm 2020; 590: 119956.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119956] [PMID: 33035608]
[80]
Zhu J, Ye H, Deng D, Li J, Wu Y. Electrospun metformin-loaded polycaprolactone/chitosan nanofibrous membranes as promoting guided bone regeneration membranes: Preparation and characterization of fibers, drug release, and osteogenic activity In vitro. J Biomater Appl 2020; 34(9): 1282-93.
[http://dx.doi.org/10.1177/0885328220901807] [PMID: 31964207]
[81]
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: Recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 2013; 19(4): 308-26.
[http://dx.doi.org/10.1089/ten.teb.2012.0138] [PMID: 23268651]
[82]
Porgham Daryasari M, Dusti Telgerd M, Hossein Karami M, et al. Poly-l-lactic acid scaffold incorporated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone delivery. Artif Cells Nanomed Biotechnol 2019; 47(1): 4020-9.
[http://dx.doi.org/10.1080/21691401.2019.1658594] [PMID: 31595797]
[83]
Guo Z, Wu S, Li H, Li Q, Wu G, Zhou C. In vitro evaluation of electrospun PLGA/PLLA/PDLLA blend fibers loaded with naringin for guided bone regeneration. Dent Mater J 2018; 37(2): 317-24.
[http://dx.doi.org/10.4012/dmj.2016-220] [PMID: 29279541]
[84]
Gong M, Chi C, Ye J, et al. Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum. Colloids Surf B Biointerfaces 2018; 170: 201-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.012] [PMID: 29909312]
[85]
Kim M, Kim G. Electrospun PCL/phlorotannin nanofibres for tissue engineering: Physical properties and cellular activities. Carbohydr Polym 2012; 90(1): 592-601.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.082] [PMID: 24751081]
[86]
Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193: 111110.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111110] [PMID: 32416516]
[87]
PranavKumar Shadamarshan R Balaji H, Rao HS, Balagangadharan K, Viji Chandran S, Selvamurugan N. Fabrication of PCL/PVP electrospun fibers loaded with trans-anethole for bone regeneration In vitro. Colloids Surf B Biointerfaces 2018; 171: 698-706.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.005] [PMID: 30119018]
[88]
Balagangadharan K, Trivedi R, Vairamani M, Selvamurugan N. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration In vitro and In vivo. Carbohydr Polym 2019; 216: 1-16.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.002] [PMID: 31047045]
[89]
Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM. Bone Morphogenetic Proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 2014; 561: 64-73.
[http://dx.doi.org/10.1016/j.abb.2014.07.011] [PMID: 25043976]
[90]
Su Y, Su Q, Liu W, et al. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater 2012; 8(2): 763-71.
[http://dx.doi.org/10.1016/j.actbio.2011.11.002] [PMID: 22100346]
[91]
Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 2015; 37: 218-29.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.015] [PMID: 25453952]
[92]
Wu Z, Bao C, Zhou S, et al. The synergetic effect of bioactive molecule-loaded electrospun core-shell fibres for reconstruction of critical-sized calvarial bone defect-The effect of synergetic release on bone Formation. Cell Prolif 2020; 53(4): e12796.
[http://dx.doi.org/10.1111/cpr.12796] [PMID: 32202021]
[93]
Ali IH, Khalil IA, El-Sherbiny IM. Phenytoin/sildenafil loaded poly(lactic acid) bilayer nanofibrous scaffolds for efficient orthopedics regeneration. Int J Biol Macromol 2019; 136: 154-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.048] [PMID: 31195040]
[94]
De Mori A, Peña Fernández M, Blunn G, Tozzi G, Roldo M. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers (Basel) 2018; 10(3): 285.
[http://dx.doi.org/10.3390/polym10030285] [PMID: 30966320]
[95]
Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 2004; 10(1-2): 33-41.
[http://dx.doi.org/10.1089/107632704322791673] [PMID: 15009928]
[96]
Carvalho MS, Silva JC, Udangawa RN, et al. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Mater Sci Eng C 2019; 99: 479-90.
[http://dx.doi.org/10.1016/j.msec.2019.01.127] [PMID: 30889723]
[97]
Perez RA, Kim M, Kim TH, et al. Utilizing core-shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering. Tissue Eng Part A 2014; 20(1-2): 103-14.
[http://dx.doi.org/10.1089/ten.tea.2013.0198] [PMID: 23924353]
[98]
Yang W, Yang F, Wang Y, Both SK, Jansen JA. In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 2103; 9(1): 4505-12.
[http://dx.doi.org/10.1016/j.actbio.2012.10.003]
[99]
Morgan SM, Tilley S, Perera S, et al. Expansion of human bone marrow stromal cells on poly-(DL-lactide-co-glycolide) (PDL LGA) hollow fibres designed for use in skeletal tissue engineering. Biomaterials 2007; 28(35): 5332-43.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.029] [PMID: 17822756]
[100]
Ryu NE, Lee SH, Park H. Spheroid culture system methods and applications for mesenchymal stem cells. Cells 2019; 8(12): 1620.
[http://dx.doi.org/10.3390/cells8121620] [PMID: 31842346]
[101]
Ahmad T, Byun H, Lee J, et al. Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials 2020; 230: 119652.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119652] [PMID: 31787333]
[102]
Ebrahimi L, Farzin A, Ghasemi Y, et al. Metformin-loaded PCL/PVA fibrous scaffold preseeded with human endometrial stem cells for effective guided bone regeneration membranes. ACS Biomater Sci Eng 2021; 7(1): 222-31.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00958] [PMID: 33347290]
[103]
Anitua E, Zalduendo MM, Alkhraisat MH, Orive G. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors. Ann Anat 2013; 195(5): 461-6.
[http://dx.doi.org/10.1016/j.aanat.2013.04.004] [PMID: 23722041]
[104]
Abazari MF, Nejati F, Nasiri N, et al. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene 2019; 720: 144096.
[http://dx.doi.org/10.1016/j.gene.2019.144096] [PMID: 31476405]
[105]
Olmos Buitrago J, Perez RA, El-Fiqi A, Singh RK, Kim JH, Kim HW. Core-shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering. Acta Biomater 2015; 28: 183-92.
[http://dx.doi.org/10.1016/j.actbio.2015.09.021] [PMID: 26391494]
[106]
Ao C, Niu Y, Zhang X, He X, Zhang W, Lu C. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol 2017; 97: 568-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.091] [PMID: 28087448]
[107]
Tavangar B, Arasteh S, Edalatkhah H, Salimi A, Doostmohammadi A, Seyedjafari E. Hardystonite-coated poly (l-lactide) nanofibrous scaffold and efficient osteogenic differentiation of adipose-derived mesenchymal stem cells. Artif Organs 2018; 42(11): E335-48.
[http://dx.doi.org/10.1111/aor.12891] [PMID: 28653337]
[108]
Xie X, Shi X, Wang S, Cao L, Yang C, Ma Z. Effect of attapulgite-doped electrospun fibrous PLGA scaffold on pro-osteogenesis and barrier function in the application of guided bone regeneration. Int J Nanomedicine 2020; 15: 6761-77.
[http://dx.doi.org/10.2147/IJN.S244533] [PMID: 32982232]
[109]
Heydari Z, Mohebbi-Kalhori D, Afarani MS. Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater Sci Eng C 2017; 81: 127-32.
[http://dx.doi.org/10.1016/j.msec.2017.07.041] [PMID: 28887955]
[110]
Zhu J, Tang D, Lu Z, et al. Ultrafast bone-like apatite formation on highly porous poly(l-lactic acid)-hydroxyapatite fibres. Mater Sci Eng C 2020; 116: 111168.
[http://dx.doi.org/10.1016/j.msec.2020.111168] [PMID: 32806301]
[111]
Wang Z, Liang R, Jiang X, et al. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs). Mater Sci Eng C 2019; 104: 109796.
[http://dx.doi.org/10.1016/j.msec.2019.109796] [PMID: 31500029]
[112]
Deliormanlı AM. Preparation and In vitro characterization of electrospun 45S5 bioactive glass nanofibers. Ceram Int 2015; 41(1): 417-25.
[http://dx.doi.org/10.1016/j.ceramint.2014.08.086]
[113]
Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: In-vitro and in-vivo evaluation. Biomed Mater 2017; 12(5): 055011.
[http://dx.doi.org/10.1088/1748-605X/aa792b] [PMID: 28944766]
[114]
Nagarajan S, Belaid H, Pochat-Bohatier C, et al. Design of boron nitride/gelatin electrospun nanofibers for bone tissue engineering. ACS Appl Mater Interfaces 2017; 9(39): 33695-706.
[http://dx.doi.org/10.1021/acsami.7b13199] [PMID: 28891632]
[115]
Zhou T, Li G, Lin S, et al. Electrospun poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene oxide scaffold: Enhanced properties and promoted In vivo bone repair in rats. ACS Appl Mater Interfaces 2017; 9(49): 42589-600.
[http://dx.doi.org/10.1021/acsami.7b14267] [PMID: 29148704]
[116]
Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006; 27(16): 3115-24.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.022] [PMID: 16458961]
[117]
Ji W, Yang F, Ma J, et al. Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 2013; 34(3): 735-45.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.016] [PMID: 23117215]
[118]
Phipps MC, Xu Y, Bellis SL. Delivery of platelet-derived growth factor as a chemotactic factor for mesenchymal stem cells by bone-mimetic electrospun scaffolds. PLoS One 2012; 7(7): e40831.
[http://dx.doi.org/10.1371/journal.pone.0040831] [PMID: 22808271]
[119]
Lee YJ, Lee JH, Cho HJ, Kim HK, Yoon TRH, Shin H. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials 2013; 34(21): 5059-69.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.051] [PMID: 23578562]
[120]
De-Paula MMM, Afewerki S, Viana BC, Webster TJ, Lobo AO, Marciano FR. Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Mater Sci Eng C 2019; 103: 109778.
[http://dx.doi.org/10.1016/j.msec.2019.109778] [PMID: 31349506]
[121]
Lee JH, Lee YJ, Cho HJ, Kim DW, Shin H. The incorporation of bFGF mediated by heparin into PCL/gelatin composite fiber meshes for guided bone regeneration. Drug Deliv Transl Res 2015; 5(2): 146-59.
[http://dx.doi.org/10.1007/s13346-013-0154-y] [PMID: 25787740]
[122]
Srouji S, Ben-David D, Lotan R, Livne E, Avrahami R, Zussman E. Slow-release human recombinant bone morphogenetic protein-2 embedded within electrospun scaffolds for regeneration of bone defect: In vitro and in vivo evaluation. Tissue Eng Part A 2011; 17(3-4): 269-77.
[http://dx.doi.org/10.1089/ten.tea.2010.0250] [PMID: 20799887]
[123]
Yin L, Yang S, He M, et al. Physicochemical and biological characteristics of BMP-2/IGF-1-loaded three-dimensional coaxial electrospun fibrous membranes for bone defect repair. J Mater Sci Mater Med 2017; 28(6): 94.
[http://dx.doi.org/10.1007/s10856-017-5898-3] [PMID: 28500409]
[124]
Aragón J, Salerno S, De Bartolo L, Irusta S, Mendoza G. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. J Colloid Interface Sci 2018; 531: 126-37.
[http://dx.doi.org/10.1016/j.jcis.2018.07.029] [PMID: 30029031]
[125]
Toprak Ö, Topuz B, Monsef YA, Oto Ç, Orhan K, Karakeçili A. BMP-6 carrying metal organic framework-embedded in bioresorbable electrospun fibers for enhanced bone regeneration. Mater Sci Eng C 2021; 120: 111738.
[http://dx.doi.org/10.1016/j.msec.2020.111738] [PMID: 33545881]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy