Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Dopaminergic Signaling as a Plausible Modulator of Astrocytic Toll-Like Receptor 4: A Crosstalk between Neuroinflammation and Cognition

Author(s): Prasada Chowdari Gurram, Suman Manandhar, Sairaj Satarker, Jayesh Mudgal, Devinder Arora and Madhavan Nampoothiri*

Volume 22, Issue 4, 2023

Published on: 14 June, 2022

Page: [539 - 557] Pages: 19

DOI: 10.2174/1871527321666220413090541

Price: $65

conference banner
Abstract

Neuroinflammation is one of the major pathological factors leading to Alzheimer's disease (AD). The role of microglial cells in neuroinflammation associated with AD has been known for a long time. Recently, astrocytic inflammatory responses have been linked to the neuronal degeneration and pathological development of AD. Lipopolysaccharide (LPS) and Amyloid Beta (Aβ) activate astrocytes and microglial cells via toll-like 4 (TLR4) receptors leading to neuroinflammation. Reactive (activated) astrocytes mainly comprising of A1 astrocytes (A1s) are involved in neuroinflammation, while A2 astrocytes (A2s) possess neuroprotective activity. Studies link low dopamine (DA) levels during the early stages of neurodegenerative disorders with its anti-inflammatory and immuoregulatory properties. DA mediates neuroprotection via inhibition of the A1 astrocytic pathway through blockade of NF-kB and nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3); and promotion of A2 astrocytic pathways leading to the formation of neurotrophic factors like BDNF and GDNF. In this current review, we have discussed the crosstalk between the dopaminergic system in astrocytic TLR4 and NF-kB in addition to NLRP3 inflammasome in the modulation of neuroinflammatory pathologies in cognitive deficits.

Keywords: Astrocytes, dopamine, lipopolysaccharide, TLR4, NF-kB, NLRP3 inflammasomes.

Graphical Abstract
[1]
Du RH, Zhou Y, Xia ML, Lu M, Ding JH, Hu G. α-Synuclein disrupts the anti-inflammatory role of Drd2 via interfering β-arrestin2-TAB1 interaction in astrocytes. J Neuroinflammation 2018; 15(1): 258.
[http://dx.doi.org/10.1186/s12974-018-1302-6] [PMID: 30200997]
[2]
Nieoullon A. Dopamine and the regulation of cognition and attention. Prog Neurobiol 2002; 67(1): 53-83.
[http://dx.doi.org/10.1016/S0301-0082(02)00011-4] [PMID: 12126656]
[3]
Wu Y, Hu Y, Wang B, et al. Dopamine uses the DRD5-ARRB2-PP2A signaling axis to block the TRAF6-Mediated NF-κB pathway and suppress systemic inflammation. Mol Cell 2020; 78(1): 42-56.e6.
[http://dx.doi.org/10.1016/j.molcel.2020.01.022] [PMID: 32035036]
[4]
Cheng Z-Y, Xia Q-P, Hu Y-H, Wang C, He L. Dopamine D1 receptor agonist A-68930 ameliorates Aβ1-42-induced cognitive impairment and neuroinflammation in mice. Int Immunopharmacol 2020; 88: 106963.
[http://dx.doi.org/10.1016/j.intimp.2020.106963] [PMID: 33182028]
[5]
Fischer T, Scheffler P, Lohr C. Dopamine-induced calcium signaling in olfactory bulb astrocytes. Sci Rep 2020; 10(1): 631.
[http://dx.doi.org/10.1038/s41598-020-57462-4] [PMID: 31959788]
[6]
Khakh BS. Astrocyte–Neuron interactions in the striatum: Insights on identity, form, and function. Trends in Neurosciences 2019; 42: 617-30.
[7]
Rodgers KR, Lin Y, Langan TJ, Iwakura Y, Chou RC. Innate immune functions of astrocytes are dependent upon tumor necrosis factor-alpha. Sci Rep 2020; 10(1): 7047.
[http://dx.doi.org/10.1038/s41598-020-63766-2] [PMID: 32341377]
[8]
Hou B, Zhang Y, Liang P, et al. Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis 2020; 11(5): 377.
[http://dx.doi.org/10.1038/s41419-020-2565-2] [PMID: 32415059]
[9]
Arreola R, Alvarez-Herrera S, Pérez-Sánchez G, et al. Immunomodulatory effects mediated by dopamine. J Immunol 2016; 2016: 3160486.
[http://dx.doi.org/10.1155/2016/3160486]
[10]
Han X, Li B, Ye X, et al. Dopamine D2 receptor signalling controls inflammation in acute pancreatitis via a PP2A-dependent Akt/NF-κB signalling pathway. Br J Pharmacol 2017; 174(24): 4751-70.
[http://dx.doi.org/10.1111/bph.14057] [PMID: 28963856]
[11]
Shen H, Guan Q, Zhang X, et al. New mechanism of neuroinflammation in Alzheimer’s disease: The activation of NLRP3 inflammasome mediated by gut microbiota. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100: 109884.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109884] [PMID: 32032696]
[12]
Zhao W, Shi C-S, Harrison K, et al. AKT regulates NLRP3 inflammasome activation by phosphorylating NLRP3 serine 5. J Immunol 2020; 205(8): 2255-64.
[http://dx.doi.org/10.4049/jimmunol.2000649] [PMID: 32929041]
[13]
Yan Y, Jiang W, Liu L, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 2015; 160(1-2): 62-73.
[http://dx.doi.org/10.1016/j.cell.2014.11.047] [PMID: 25594175]
[14]
Zhu J, Hu Z, Han X, et al. Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of β-arrestin2 and NLRP3. Cell Death Differ 2018; 25(11): 2037-49.
[http://dx.doi.org/10.1038/s41418-018-0127-2] [PMID: 29786071]
[15]
Li F, Zhang B, Duan S, et al. Small dose of L-dopa/Benserazide hydrochloride improved sepsis-induced neuroinflammation and long-term cognitive dysfunction in sepsis mice. Brain Res 2020; 1737: 146780.
[16]
Dursun E, Gezen-Ak D, Hanağası H, et al. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol 2015; 283: 50-7.
[http://dx.doi.org/10.1016/j.jneuroim.2015.04.014] [PMID: 26004156]
[17]
Fernandes J, Mudgal J, Rao CM, et al. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats. Toxicol Mech Methods 2018; 28(5): 328-34.
[http://dx.doi.org/10.1080/15376516.2017.1411412] [PMID: 29185389]
[18]
Broome ST, Louangaphay K, Keay K, Leggio G, Musumeci G, Castorina A. Dopamine: An immune transmitter. Neural Regen Res 2020; 15: 2173-85.
[19]
Liu A, Ding S. Anti-inflammatory effects of dopamine in lipopolysaccharide (LPS)-stimulated RAW264.7 cells via inhibiting NLRP3 inflammasome activation. Ann Clin Lab Sci 2019; 49(3): 353-60.
[PMID: 31308035]
[20]
Wang T, Huang XJ, Van KC, Went GT, Nguyen JT, Lyeth BG. Amantadine improves cognitive outcome and increases neuronal survival after fluid percussion traumatic brain injury in rats. J Neurotrauma 2014; 31(4): 370-7.
[http://dx.doi.org/10.1089/neu.2013.2917] [PMID: 23574258]
[21]
Hasegawa S, Fukushima H, Hosoda H, et al. Hippocampal clock regulates memory retrieval via Dopamine and PKA-induced GluA1 phosphorylation. Nat Commun 2019; 10(1): 5766.
[http://dx.doi.org/10.1038/s41467-019-13554-y] [PMID: 31852900]
[22]
Zvejniece L, Zvejniece B, Videja M, et al. Neuroprotective and anti-inflammatory activity of DAT inhibitor R-phenylpiracetam in experimental models of inflammation in male mice. Inflammopharmacology 2020; 28(5): 1283-92.
[http://dx.doi.org/10.1007/s10787-020-00705-7] [PMID: 32279140]
[23]
de Almeida GRL, Szczepanik JC, Selhorst I, et al. Methylglyoxal-Mediated dopamine depletion, working memory deficit, and depression-like behavior are prevented by a dopamine/noradrenaline reuptake inhibitor. Mol Neurobiol 2021; 58(2): 735-49.
[http://dx.doi.org/10.1007/s12035-020-02146-3] [PMID: 33011857]
[24]
Singh S, Mishra A, Srivastava N, Shukla R, Shukla S. Acetyl-lcarnitine via upegulating dopamine d1 receptor and attenuating microglial activation prevents neuronal loss and improves memory functions in parkinsonian rats. Mol Neurobiol 2018; 55(1): 583-602.
[http://dx.doi.org/10.1007/s12035-016-0293-5] [PMID: 27975173]
[25]
Singh S, Mishra A, Mishra SK, Shukla S. ALCAR promote adult hippocampal neurogenesis by regulating cell-survival and cell death-related signals in rat model of Parkinson’s disease like-phenotypes. Neurochem Int 2017; 108: 388-96.
[http://dx.doi.org/10.1016/j.neuint.2017.05.017] [PMID: 28577987]
[26]
Guo YS, Liang PZ, Lu SZ, Chen R, Yin YQ, Zhou JW. Extracellular αB-crystallin modulates the inflammatory responses. Biochem Biophys Res Commun 2019; 508(1): 282-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.024] [PMID: 30497777]
[27]
Zhang Y, Chen Y, Wu J, et al. Activation of dopamine D2 receptor suppresses neuroinflammation through αB-Crystalline by inhibition of NF-κB nuclear translocation in experimental ICH mice model. Stroke 2015; 46(9): 2637-46.
[http://dx.doi.org/10.1161/STROKEAHA.115.009792] [PMID: 26251254]
[28]
Xia QP, Cheng ZY, He L. The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol 2019; 76: 105908.
[29]
Sharma P, Kulkarni GT, Sharma B. Possible involvement of D2/D3 receptor activation in ischemic preconditioning mediated protection of the brain. Brain Res 2020; 1748: 147116.
[http://dx.doi.org/10.1016/j.brainres.2020.147116] [PMID: 32919985]
[30]
Rocchetti J, Isingrini E, Dal Bo G, et al. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol Psychiatry 2015; 77(6): 513-25.
[http://dx.doi.org/10.1016/j.biopsych.2014.03.013] [PMID: 24742619]
[31]
Marzagalli R, Leggio GM, Bucolo C, et al. Genetic blockade of the dopamine D3 receptor enhances hippocampal expression of PACAP and receptors and alters their cortical distribution. Neuroscience 2016; 316: 279-95.
[http://dx.doi.org/10.1016/j.neuroscience.2015.12.034] [PMID: 26718601]
[32]
Millan MJ, Dekeyne A, Gobert A, et al. Dual-acting agents for improving cognition and real-world function in Alzheimer’s disease: Focus on 5-HT6 and D3 receptors as hubs. Neuropharmacology 2020; 177: 108099.
[33]
Montoya A, Elgueta D, Campos J, et al. Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J Neuroinflammation 2019; 16(1): 258.
[http://dx.doi.org/10.1186/s12974-019-1652-8] [PMID: 31810491]
[34]
Navakkode S, Chew KCM, Tay SJN, Lin Q, Behnisch T, Soong TW. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus. Sci Rep 2017; 7(1): 15571.
[http://dx.doi.org/10.1038/s41598-017-15917-1] [PMID: 29138490]
[35]
Ji MH, Lei L, Gao DP, Tong JH, Wang Y, Yang JJ. Neural network disturbance in the medial prefrontal cortex might contribute to cognitive impairments induced by neuroinflammation. Brain Behav Immun 2020; 89: 133-44.
[http://dx.doi.org/10.1016/j.bbi.2020.06.001] [PMID: 32505714]
[36]
Boutin JA, Bouillaud F, Janda E, et al. S29434, a quinone reductase 2 inhibitor: Main biochemical and cellular characterization. Mol Pharmacol 2019; 95(3): 269-85.
[http://dx.doi.org/10.1124/mol.118.114231] [PMID: 30567956]
[37]
Bianchet MA, Erdemli SB, Amzel LM. Structure, function, and mechanism of cytosolic quinone reductases. Vitam Horm 2008; 78(07): 63-84.
[http://dx.doi.org/10.1016/S0083-6729(07)00004-0] [PMID: 18374190]
[38]
Rappaport AN, Jacob E, Sharma V, et al. Expression of quinone reductase-2 in the cortex is a muscarinic acetylcholine receptor-dependent memory consolidation constraint. J Neurosci 2015; 35(47): 15568-81.
[http://dx.doi.org/10.1523/JNEUROSCI.1170-15.2015] [PMID: 26609153]
[39]
Cassagnes LE, Chhour M, Pério P, et al. Oxidative stress and neurodegeneration: The possible contribution of quinone reductase 2. Free Radic Biol Med 2018; 120: 56-61.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.002] [PMID: 29526807]
[40]
Gould NL, Sharma V, Hleihil M, et al. Dopamine-dependent QR2 pathway activation in ca1 interneurons enhances novel memory formation. J Neurosci 2020; 40(45): 8698-714.
[http://dx.doi.org/10.1523/JNEUROSCI.1243-20.2020] [PMID: 33046554]
[41]
Costa A, Peppe A, Dell’Agnello G, Caltagirone C, Carlesimo GA. Dopamine and cognitive functioning in de novo subjects with Parkin-son’s disease: Effects of pramipexole and pergolide on working memory. Neuropsychologia 2009; 47(5): 1374-81.
[http://dx.doi.org/10.1016/j.neuropsychologia.2009.01.039] [PMID: 19428401]
[42]
Lewis SJG, Slabosz A, Robbins TW, Barker RA, Owen AM. Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia 2005; 43(6): 823-32.
[http://dx.doi.org/10.1016/j.neuropsychologia.2004.10.001] [PMID: 15716155]
[43]
Cools R, Sheridan M, Jacobs E, D’Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci 2007; 27(20): 5506-14.
[http://dx.doi.org/10.1523/JNEUROSCI.0601-07.2007] [PMID: 17507572]
[44]
Frank MJ, O’Reilly RC. A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 2006; 120(3): 497-517.
[http://dx.doi.org/10.1037/0735-7044.120.3.497] [PMID: 16768602]
[45]
Frank MJ, Santamaria A, O’Reilly RC, Willcutt E. Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2007; 32(7): 1583-99.
[http://dx.doi.org/10.1038/sj.npp.1301278] [PMID: 17164816]
[46]
van Holstein M, Aarts E, van der Schaaf ME, et al. Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology (Berl) 2011; 218(3): 567-78.
[http://dx.doi.org/10.1007/s00213-011-2340-2] [PMID: 21611724]
[47]
Edelstyn NMJ, Shepherd TA, Mayes AR, Sherman SM, Ellis SJ. Effect of disease severity and dopaminergic medication on recollection and familiarity in patients with idiopathic nondementing Parkinson’s. Neuropsychologia 2010; 48(5): 1367-75.
[http://dx.doi.org/10.1016/j.neuropsychologia.2009.12.039] [PMID: 20036678]
[48]
Tsang J, Fullard JF, Giakoumaki SG, et al. The relationship between dopamine receptor D1 and cognitive performance. NPJ Schizophr 2015; 1(1): 1-6.
[49]
Kozak R, Kiss T, Dlugolenski K, et al. Characterization of PF-6142, a novel, non-catecholamine dopamine receptor D1 agonist, in murine and nonhuman primate models of dopaminergic activation. Front Pharmacol 2020; 11: 1005.
[http://dx.doi.org/10.3389/fphar.2020.01005] [PMID: 32733245]
[50]
Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells 2021; 10: 735.
[51]
Li N, Jasanoff A. Local and global consequences of reward-evoked striatal dopamine release. Nature 2020; 580(7802): 239-44.
[http://dx.doi.org/10.1038/s41586-020-2158-3] [PMID: 32269346]
[52]
Duszkiewicz AJ, McNamara CG, Takeuchi T, Genzel L. Novelty and dopaminergic modulation of memory persistence: A tale of two systems. Trends Neurosci 2019; 42: 102-4.
[53]
Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373: 711-27.
[http://dx.doi.org/10.1007/s00441-018-2800-7]
[54]
Ghazizadeh A, Hong S, Hikosaka O. Prefrontal cortex represents long-term memory of object values for months. Curr Biol 2018; 28(14): 2206-2217.e5.
[http://dx.doi.org/10.1016/j.cub.2018.05.017] [PMID: 30056855]
[55]
Han Y, Zhang Y, Kim H, et al. Excitatory VTA to DH projections provide a valence signal to memory circuits. Nat Commun 2020; 11(1): 1466.
[http://dx.doi.org/10.1038/s41467-020-15035-z] [PMID: 32193428]
[56]
Wei X, Ma T, Cheng Y, et al. Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict Biol 2018; 23(2): 569-84.
[http://dx.doi.org/10.1111/adb.12512] [PMID: 28436559]
[57]
Mu Y, Zhao C, Gage FH. Dopaminergic modulation of cortical inputs during maturation of adult-born dentate granule cells. J Neurosci 2011; 31(11): 4113-23.
[http://dx.doi.org/10.1523/JNEUROSCI.4913-10.2011] [PMID: 21411652]
[58]
Shetty MS, Sajikumar S. Differential involvement of Ca2+/] calmodulin-dependent protein kinases and mitogen-activated protein kinases in the dopamine D1/D5 receptor-mediated potentiation in hippocampal CA1 pyramidal neurons. Neurobiol Learn Mem 2017; 138: 111-20.
[http://dx.doi.org/10.1016/j.nlm.2016.07.020] [PMID: 27470093]
[59]
Moser EI, Moser MB, McNaughton BL. Spatial representation in the hippocampal formation: A history. Nat Neurosci 2017; 20: 1448-64.
[60]
Robinson NTM, Priestley JB, Rueckemann JW, et al. Medial entorhinal cortex selectively supports temporal coding by hippocampal neurons. Neuron 2017; 94(3): 677-688.e6.
[http://dx.doi.org/10.1016/j.neuron.2017.04.003] [PMID: 28434800]
[61]
Kaur S, DasGupta G, Singh S. ltered neurochemistry in Alzheimer’s disease: Targeting neurotransmitter receptor mechanisms and therapeutic strategy. Neurophysiology 2019; 51: 293-309.
[62]
Nobili A, Latagliata EC, Viscomi MT, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 2017; 8(1): 14727.
[http://dx.doi.org/10.1038/ncomms14727] [PMID: 28367951]
[63]
Olivieri P, Lagarde J, Lehericy S, et al. Early alteration of the locus coeruleus in phenotypic variants of Alzheimer’s disease. Ann Clin Transl Neurol 2019; 6(7): 1345-51.
[http://dx.doi.org/10.1002/acn3.50818] [PMID: 31353860]
[64]
Soutschek A, Kozak R, de Martinis N, et al. Activation of D1 receptors affects human reactivity and flexibility to valued cues. Neuropsychopharmacology 2020; 45(5): 780-5.
[http://dx.doi.org/10.1038/s41386-020-0617-z] [PMID: 31962344]
[65]
Hofmann K, Rodriguez-Rodriguez R, Gaebler A, Casals N, Scheller A, Kuerschner L. Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci Rep 2017; 7(1): 10779.
[http://dx.doi.org/10.1038/s41598-017-11103-5] [PMID: 28883484]
[66]
Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and functions in brain pathologies. Front Pharmacol 2019; 10(SEP): 1114.
[http://dx.doi.org/10.3389/fphar.2019.01114] [PMID: 31611796]
[67]
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27(5): 629-44.
[http://dx.doi.org/10.1111/bpa.12537] [PMID: 28805002]
[68]
Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24: 312-25.
[69]
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol 2016; 305-15.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.020]
[70]
Li K, Li J, Zheng J, Qin S. Reactive astrocytes in neurodegenerative diseases. Aging Dis 2019; 10: 664-75.
[71]
Sahu P, Mudgal J, Arora D, et al. Cannabinoid receptor 2 activation mitigates lipopolysaccharide-induced neuroinflammation and sickness behavior in mice. Psychopharmacology (Berl) 2019; 236(6): 1829-38.
[http://dx.doi.org/10.1007/s00213-019-5166-y] [PMID: 30666359]
[72]
Basu Mallik S, Mudgal J, Hall S, et al. Remedial effects of caffeine against depressive-like behaviour in mice by modulation of neuroinflammation and BDNF. Nutr Neurosci 2021; 1-9: 1836-44.
[http://dx.doi.org/10.1080/1028415X.2021.1906393] [PMID: 33814004]
[73]
Robb JL, Hammad NA, Weightman Potter PG, Chilton JK, Beall C, Ellacott KLJ. The metabolic response to inflammation in astrocytes is regulated by nuclear factor-kappa B signaling. Glia 2020; 68(11): 2246-63.
[http://dx.doi.org/10.1002/glia.23835] [PMID: 32277522]
[74]
Chowdhury B, Sharma A, Satarker S, Mudgal J, Nampoothiri M. Dialogue between neuroinflammation and neurodegenerative diseases in COVID-19. J Environ Pathol Toxicol Oncol 2021; 40(3): 37-49.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2021038365] [PMID: 34587403]
[75]
Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial Toll-Like Receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 2021; 91: 740-55.
[http://dx.doi.org/10.1016/j.bbi.2020.10.007] [PMID: 33039660]
[76]
Mudgal J, Basu Mallik S, Nampoothiri M, et al. Effect of coffee constituents, caffeine and caffeic acid on anxiety and lipopolysaccha-ride-induced sickness behavior in mice. J Funct Foods 2020; 64: 103638.
[http://dx.doi.org/10.1016/j.jff.2019.103638]
[77]
Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci 2021; 24(10): 1475-87.
[http://dx.doi.org/10.1038/s41593-021-00905-6] [PMID: 34413515]
[78]
Al-Dalahmah O, Sosunov AA, Shaik A, et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun 2020; 8(1): 19.
[http://dx.doi.org/10.1186/s40478-020-0880-6] [PMID: 32070434]
[79]
Colombo E, Farina C. Astrocytes: Key regulators of neuroinflammation. Trends in Immunology. Elsevier 2016; 37: pp. 608-20.
[80]
Villarino AV, Gadina M, O’Shea JJ, Kanno Y. SnapShot: Jak-STAT signaling II. Cell 2020; 181(7): 1696-1696.e1.
[http://dx.doi.org/10.1016/j.cell.2020.04.052] [PMID: 32589961]
[81]
Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L, Escartin C. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway? Neuroscience 2016; 330: 205-18.
[82]
Satarker S, Tom AA, Shaji RA, Alosious A, Luvis M, Nampoothiri M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad Med 2021; 133(5): 489-507.
[http://dx.doi.org/10.1080/00325481.2020.1855921] [PMID: 33245005]
[83]
Liddelow SA, Barres BA. Reactive astrocytes: Production, function, and therapeutic potential. Immunity Cell Press 2017; 46: 957-67.
[84]
Rothhammer V, Borucki DM, Tjon EC, et al. Microglial control of astrocytes in response to microbial metabolites. Nature 2018; 557(7707): 724-8.
[http://dx.doi.org/10.1038/s41586-018-0119-x] [PMID: 29769726]
[85]
Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 2015; 16: 249-63.
[86]
Sofroniew MV. Astrocyte reactivity: Subtypes, states, and functions in CNS innate immunity. Trends Immunol 2020; 41: 758-70.
[87]
Geyer S, Jacobs M, Hsu NJ. Immunity against bacterial infection of the central nervous system: An astrocyte perspective. Front Mol Neurosci 2019; 12: 57.
[88]
Wheeler MA, Jaronen M, Covacu R, et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 2019; 176(3): 581-596.e18.
[http://dx.doi.org/10.1016/j.cell.2018.12.012] [PMID: 30661753]
[89]
Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020; 20: 95-112.
[90]
Nie L, Cai SY, Shao JZ, Chen J. Toll-Like receptors, associated biological roles, and signaling networks in non-mammals. Front Immunol 2018; 9: 1523.
[91]
Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN Neurol 2012; 2012: 701950.
[http://dx.doi.org/10.5402/2012/701950] [PMID: 23097717]
[92]
Rietdijk CD, Van Wezel RJA, Garssen J, Kraneveld AD. Neuronal toll-like receptors and neuro-immunity in Parkinson’s disease, Alzheimer’s disease and stroke. Neuroimmunol Neuroinflamm 2016; 3(2): 27.
[http://dx.doi.org/10.20517/2347-8659.2015.28]
[93]
Fei X, Wang JX, Wu Y, Dong N, Sheng ZY. Sevoflurane-induced cognitive decline in aged mice: Involvement of toll-like receptors 4. Brain Res Bull 2020; 165: 23-9.
[http://dx.doi.org/10.1016/j.brainresbull.2020.08.030] [PMID: 32910992]
[94]
Federico S, Pozzetti L, Papa A, et al. Modulation of the innate immune response by targeting toll-like receptors: A perspective on their agonists and antagonists. J Med Chem 2020; 63(22): 13466-513.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01049] [PMID: 32845153]
[95]
Zhang Y, Wu R, Gu C, et al. A study on role and mechanism of TLR4/NF-κB pathway in cognitive impairment induced by cerebral small vascular disease. Clin Hemorheol Microcirc 2019; 72(2): 201-10.
[http://dx.doi.org/10.3233/CH-180515] [PMID: 30689560]
[96]
Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta 2016; 1862(3): 483-91.
[http://dx.doi.org/10.1016/j.bbadis.2015.11.014] [PMID: 26655603]
[97]
Sanz P, Garcia-Gimeno MA. Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci 2020; 21: 1-17.
[98]
Li X, Huang L, Liu G, et al. Ginkgo diterpene lactones inhibit cerebral ischemia/reperfusion induced inflammatory response in astrocytes via TLR4/NF-κB pathway in rats. J Ethnopharmacol 2020; 249: 249.
[http://dx.doi.org/10.1016/j.jep.2019.112365]
[99]
Famakin BM, Vemuganti R. Toll-Like receptor 4 signaling in focal cerebral ischemia: A focus on the neurovascular unit. Mol Neurobiol 2020; 57: 2690-701.
[100]
Xia R, Ji C, Zhang L. Neuroprotective effects of pycnogenol against oxygen-glucose deprivation/reoxygenation-induced injury in primary rat astrocytes via NF-κB and ERK1/2 MAPK pathways. Cell Physiol Biochem 2017; 42(3): 987-98.
[http://dx.doi.org/10.1159/000478681] [PMID: 28662519]
[101]
Shah FA, Li T, Kury LTA, et al. Pathological comparisons of the hippocampal changes in the transient and permanent middle cerebral artery occlusion rat models. Front Neurol 2019; 10: 1178.
[http://dx.doi.org/10.3389/fneur.2019.01178] [PMID: 31798514]
[102]
Jiang H, Wang Y, Liang X, Xing X, Xu X, Zhou C. Toll-Like receptor 4 knockdown attenuates brain damage and neuroinflammation after traumatic brain injury via inhibiting neuronal autophagy and astrocyte activation. Cell Mol Neurobiol 2018; 38(5): 1009-19.
[http://dx.doi.org/10.1007/s10571-017-0570-5] [PMID: 29222622]
[103]
Shi Y, Zhang L, Teng J, Miao W. HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy. Mol Med Rep 2018; 17(4): 5125-31.
[http://dx.doi.org/10.3892/mmr.2018.8485] [PMID: 29393419]
[104]
Rosskothen-Kuhl N, Hildebrandt H, Birkenhäger R, Illing RB. Astrocyte hypertrophy and microglia activation in the rat auditory midbrain is induced by electrical intracochlear stimulation. Front Cell Neurosci 2018; 12: 43.
[http://dx.doi.org/10.3389/fncel.2018.00043] [PMID: 29520220]
[105]
He Y, Ruganzu JB, Zheng Q, et al. Silencing of LRP1 exacerbates inflammatory response via TLR4/NF-κB/MAPKs signaling pathways in APP/PS1 transgenic mice. Mol Neurobiol 2020; 57(9): 3727-43.
[http://dx.doi.org/10.1007/s12035-020-01982-7] [PMID: 32572761]
[106]
Steeland S, Gorlé N, Vandendriessche C, et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med 2018; 10(4): 1-22.
[http://dx.doi.org/10.15252/emmm.201708300] [PMID: 29472246]
[107]
Wu Y, Zhou BP. TNF-α/NFκ-B/Snail pathway in cancer cell migration and invasion. Br J Cancer 2010; 102: 639-44.
[108]
Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10): 136.
[109]
Kinra M, Joseph A, Nampoothiri M, Arora D, Mudgal J. Inhibition of NLRP3-inflammasome mediated IL-1β release by phenylpropanoic acid derivatives: In-silico and in-vitro approach. Eur J Pharm Sci 2021; 157: 105637.
[http://dx.doi.org/10.1016/j.ejps.2020.105637] [PMID: 33171231]
[110]
Lin CH, Chen HY, Wei KC. Role of HMGB1/TLR4 axis in ischemia/reperfusion-impaired extracellular glutamate clearance in primary astrocytes. Cells 2020; 9(12): E2585.
[http://dx.doi.org/10.3390/cells9122585] [PMID: 33287126]
[111]
Cosarderelioglu C, Nidadavolu LS, George CJ, et al. Brain renin–angiotensin system at the intersect of physical and cognitive frailty. Front Neurosci Frontiers Media SA 2020; 14.
[112]
Das A, Ranadive N, Kinra M, Nampoothiri M, Arora D, Mudgal J. An overview on chemotherapy-induced cognitive impairment and potential role of antidepressants. Curr Neuropharmacol 2020; 18(9): 838-51.
[http://dx.doi.org/10.2174/1570159X18666200221113842] [PMID: 32091339]
[113]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[114]
Zheng H, Jiang M, Trumbauer ME, et al. beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 1995; 81(4): 525-31.
[http://dx.doi.org/10.1016/0092-8674(95)90073-X] [PMID: 7758106]
[115]
Goldman B. Scientists reveal how beta-amyloid may cause Alzheimer’s. Standford Medicine News Center 2013; pp. 2013-6.
[116]
Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE. Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol 2004; 61(3): 378-84.
[http://dx.doi.org/10.1001/archneur.61.3.378] [PMID: 15023815]
[117]
Singh CSB, Choi KB, Munro L, Wang HY, Pfeifer CG, Jefferies WA. Reversing pathology in a preclinical model of Alzheimer’s disease by hacking cerebrovascular neoangiogenesis with advanced cancer therapeutics. EBioMedicine 2021; 71(Sep): 103503.
[http://dx.doi.org/10.1016/j.ebiom.2021.103503] [PMID: 34534764]
[118]
Azam S, Jakaria M, Kim IS, Kim J, Ezazul Haque M, Choi DK. Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: Focus on TLR4 signaling. Front Immunol 2019; 10: 1000.
[119]
Abg Abd Wahab DY, Gau CH, Zakaria R, Muthu Karuppan MK, A-Rahbi BS, Abdullah Z. Review on cross talk between neurotransmitters and neuroinflammation in striatum and cerebellum in the mediation of motor behaviour. BioMed Res Int 2019; 2019: 1767203.
[120]
Zeng KW, Yu Q, Liao LX, et al. Anti‐neuroinflammatory effect of MC13, a novel coumarin compound from condiment Murraya, through inhibiting lipopolysaccharide‐induced TRAF6‐TAK1‐NF‐κB, P38/ERK MAPKS and Jak2‐Stat1/Stat3 pathways. J Cell Biochem 2015; 116(7): 1286-99.
[http://dx.doi.org/10.1002/jcb.25084] [PMID: 25676331]
[121]
Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 2019; 23(10): 865-82.
[http://dx.doi.org/10.1080/14728222.2019.1676416]
[122]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduction Targeted Ther 2017; 2: 1-9.
[123]
Kucharzewska P, Maracle CX, Jeucken KCM, et al. NIK-IKK complex interaction controls NF-κB-dependent inflammatory activation of endothelium in response to LTβR ligation. J Cell Sci 2019; 132(7): jcs225615.
[http://dx.doi.org/10.1242/jcs.225615] [PMID: 30837284]
[124]
Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 2017; 17: 545-58.
[125]
Tsui R, Kearns JD, Lynch C, et al. IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer. Nat Commun 2015; 6: 7068.
[http://dx.doi.org/10.1038/ncomms8068] [PMID: 25946967]
[126]
Snow WM, Albensi BC. Neuronal gene targets of NF-κB and their dysregulation in alzheimer’s disease. Front Mol Neurosci 2016; 9: 118.
[127]
Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013; 493(7434): 674-8.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[128]
Daniels MJD, Rivers-Auty J, Schilling T, et al. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat Commun 2016; 7: 12504.
[http://dx.doi.org/10.1038/ncomms12504] [PMID: 27509875]
[129]
Halle A, Hornung V, Petzold GC, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 2008; 9(8): 857-65.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[130]
Zhang X, Xu A, Lv J, et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseas-es. Eur J Med Chem 2020; 185: 111822.
[131]
Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 2019; 10(2): 128.
[132]
Guan Y, Han F. Key mechanisms and potential targets of the NLRP3 inflammasome in neurodegenerative diseases. Front Integr Neurosci 2020; 14: 37.
[133]
Wang S, Yuan YH, Chen NH, Wang HB. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol 2019; 67: 458-64.
[134]
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol 2019; 19: 477-89.
[135]
Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK. Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord 2020; 35: 20-33.
[136]
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci 2019; 20(13): 3328.
[137]
Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Front Immunol 2020; 11: 591803.
[138]
Ising C, Venegas C, Zhang S, et al. NLRP3 inflammasome activation drives tau pathology. Nature 2019; 575(7784): 669-73.
[http://dx.doi.org/10.1038/s41586-019-1769-z] [PMID: 31748742]
[139]
Stancu IC, Cremers N, Vanrusselt H, et al. Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol 2019; 137(4): 599-617.
[http://dx.doi.org/10.1007/s00401-018-01957-y] [PMID: 30721409]
[140]
Lučiūnaitė A, McManus RM, Jankunec M, et al. Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in mi-croglia. J Neurochem 2020; 155(6): 650-61.
[http://dx.doi.org/10.1111/jnc.14945] [PMID: 31872431]
[141]
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res Rev 2020; 64: 101192.
[142]
Scarabino D, Peconi M, Broggio E, et al. Relationship between proinflammatory cytokines (Il-1beta, Il-18) and leukocyte telomere length in mild cognitive impairment and Alzheimer’s disease. Exp Gerontol 2020; 136(Jul): 110945.
[http://dx.doi.org/10.1016/j.exger.2020.110945] [PMID: 32289486]
[143]
Rex DAB, Agarwal N, Prasad TSK, Kandasamy RK, Subbannayya Y, Pinto SM. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal 2020; 14(2): 257-66.
[http://dx.doi.org/10.1007/s12079-019-00544-4] [PMID: 31863285]
[144]
Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T. Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 2009; 30(2): 198-209.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.06.006] [PMID: 17658666]
[145]
Malaguarnera L, Motta M, Di Rosa M, Anzaldi M, Malaguarnera M. Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer’s disease and vascular dementia. Neuropathology 2006; 26(4): 307-12.
[http://dx.doi.org/10.1111/j.1440-1789.2006.00701.x] [PMID: 16961066]
[146]
Sutinen EM, Korolainen MA, Häyrinen J, et al. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells. Front Cell Neurosci 2014; 8(214): 214.
[http://dx.doi.org/10.3389/fncel.2014.00214] [PMID: 25147500]
[147]
Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 2012; 9(1): 199.
[http://dx.doi.org/10.1186/1742-2094-9-199] [PMID: 22898493]
[148]
Bossù P, Ciaramella A, Salani F, et al. Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment. Brain Behav Immun 2008; 22(4): 487-92.
[http://dx.doi.org/10.1016/j.bbi.2007.10.001] [PMID: 17988833]
[149]
Chandrasekar B, Valente AJ, Freeman GL, Mahimainathan L, Mummidi S. Interleukin-18 induces human cardiac endothelial cell death via a novel signaling pathway involving NF-kappaB-dependent PTEN activation. Biochem Biophys Res Commun 2006; 339(3): 956-63.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.100] [PMID: 16325763]
[150]
Kanno T, Nagata T, Yamamoto S, Okamura H, Nishizaki T. Interleukin-18 stimulates synaptically released glutamate and enhances postsynaptic AMPA receptor responses in the CA1 region of mouse hippocampal slices. Brain Res 2004; 1012(1-2): 190-3.
[http://dx.doi.org/10.1016/j.brainres.2004.03.065] [PMID: 15158178]
[151]
Yang J, Wise L, Fukuchi KI. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in alzheimer’s disease. Front Immunol 2020; 11.
[152]
White CS, Lawrence CB, Brough D, Rivers-Auty J. Inflammasomes as therapeutic targets for Alzheimer’s disease. Brain Pathol 2017; 27(2): 223-34.
[http://dx.doi.org/10.1111/bpa.12478] [PMID: 28009077]
[153]
Lue LF, Rydel R, Brigham EF, et al. Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 2001; 35(1): 72-9.
[http://dx.doi.org/10.1002/glia.1072] [PMID: 11424194]
[154]
Shi F, Yang L, Kouadir M, et al. The NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation. J Neuroinflammation 2012; 9(1): 73.
[http://dx.doi.org/10.1186/1742-2094-9-73] [PMID: 22531291]
[155]
Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 2010; 11(10): 897-904.
[http://dx.doi.org/10.1038/ni.1935] [PMID: 20835230]
[156]
Belvederi Murri M, Respino M, Proietti L, et al. Cognitive impairment in late life bipolar disorder: Risk factors and clinical outcomes. J Affect Disord 2019; 257: 166-72.
[http://dx.doi.org/10.1016/j.jad.2019.07.052] [PMID: 31301619]
[157]
Caspell-Garcia C, Simuni T, Tosun-Turgut D, et al. Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo Parkinson disease. PLoS One 2017; 12(5): e0175674.
[http://dx.doi.org/10.1371/journal.pone.0175674] [PMID: 28520803]
[158]
Staff NP, Lucchinetti CF, Keegan BM. Multiple sclerosis with predominant, severe cognitive impairment. Arch Neurol 2009; 66(9): 1139-43.
[http://dx.doi.org/10.1001/archneurol.2009.190] [PMID: 19752304]
[159]
Vinther-Jensen T, Larsen IU, Hjermind LE, et al. A clinical classification acknowledging neuropsychiatric and cognitive impairment in Huntington’s disease. Orphanet J Rare Dis 2014; 9(1): 114.
[http://dx.doi.org/10.1186/s13023-014-0114-8] [PMID: 25026978]
[160]
Femenia T, Qian Y, Arentsen T, Forssberg H, Diaz Heijtz R. Toll-like receptor-4 regulates anxiety-like behavior and DARPP-32 phosphorylation. Brain Behav Immun 2018; 69: 273-82.
[http://dx.doi.org/10.1016/j.bbi.2017.11.022] [PMID: 29221855]
[161]
Liu Q, Li Y, Liu Y, et al. A dopamine D1 receptor agonist improved learning and memory in morphine-treated rats. Neurol Res 2018; 40(12): 1080-7.
[http://dx.doi.org/10.1080/01616412.2018.1519946] [PMID: 30222083]
[162]
Liu Q, Li X, Zhao Y, et al. Dopamine D1 receptor agonist treatment alleviates morphine-exposure-induced learning and memory im-pairments. Brain Res 2019; 1711: 120-9.
[http://dx.doi.org/10.1016/j.brainres.2019.01.020] [PMID: 30660614]
[163]
Anokhin PK, Veretinskaya AG, Pavshintsev VV, Shamakina IY. Experimental studies of the effects of the dopamine d2 receptor agonist cabergoline on catecholamine content and BDNF mRNA expression in the midbrain and hypothalamus. Neurosci Behav Physiol 2020; 50(7): 830-4.
[http://dx.doi.org/10.1007/s11055-020-00974-3]
[164]
Xu D, Lian D, Wu J, et al. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. J Neuroinflammation 2017; 14(1): 156.
[http://dx.doi.org/10.1186/s12974-017-0930-6] [PMID: 28778220]
[165]
Neves BS, Barbosa GPDR, Rosa ACS, et al. On the role of the dopaminergic system in the memory deficits induced by maternal deprivation. Neurobiol Learn Mem 2020; 173(Sep): 107272.
[http://dx.doi.org/10.1016/j.nlm.2020.107272] [PMID: 32622955]
[166]
Jin L, Yuan F, Chen C, et al. Degradation products of polydopamine restrained inflammatory response of LPS-Stimulated macrophages through mediation TLR-4-MYD88 dependent signaling pathways by antioxidant. Inflammation 2019; 42(2): 658-71.
[http://dx.doi.org/10.1007/s10753-018-0923-3] [PMID: 30484006]
[167]
Shao W, Zhang SZ, Tang M, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature 2013; 494(7435): 90-4.
[http://dx.doi.org/10.1038/nature11748] [PMID: 23242137]
[168]
Torres-Rosas R, Yehia G, Peña G, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 2014; 20(3): 291-5.
[http://dx.doi.org/10.1038/nm.3479] [PMID: 24562381]
[169]
Xue L, Geng Y, Li M, et al. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol 2016; 36: 187-98.
[http://dx.doi.org/10.1016/j.intimp.2016.04.030] [PMID: 27156126]
[170]
Liu QF, Li L, Guo YQ, et al. Injection of toll-like receptor 4 siRNA into the ventrolateral periaqueductal gray attenuates withdrawal syndrome in morphine-dependent rats. Arch Ital Biol 2016; 154(4): 133-42.
[PMID: 28306133]
[171]
Fang Y, Jiang Q, Li S, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson’s disease via microglia inflammation and Nprl3. Cell Death Differ 2021; 28(6): 1822-36.
[http://dx.doi.org/10.1038/s41418-020-00704-9] [PMID: 33686256]
[172]
Parameswaran N, Pao CS, Leonhard KS, et al. Arrestin-2 and G protein-coupled receptor kinase 5 interact with NFkappaB1 p105 and negatively regulate lipopolysaccharide-stimulated ERK1/2 activation in macrophages. J Biol Chem 2006; 281(45): 34159-70.
[http://dx.doi.org/10.1074/jbc.M605376200] [PMID: 16980301]
[173]
Fan H, Luttrell LM, Tempel GE, Senn JJ, Perry V, Cook JA. β-Arrestins 1 and 2 differentially regulate LPS-induced signaling. Mol Immunol 2007; 44(12): 3092-9.
[174]
Sharma M, Flood PM. β-arrestin2 regulates the anti-inflammatory effects of Salmeterol in lipopolysaccharide-stimulated BV2 cells. J Neuroimmunol 2018; 325: 10-9.
[http://dx.doi.org/10.1016/j.jneuroim.2018.10.001] [PMID: 30352316]
[175]
Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun 2017; 62: 277-90.
[http://dx.doi.org/10.1016/j.bbi.2017.02.013] [PMID: 28232171]
[176]
Feng Q, Liu D, Lu Y, Liu Z. The interplay of renin-angiotensin system and toll-like receptor 4 in the inflammation of diabetic nephropathy. J Immunol Res 2020; 2020: 6193407.
[http://dx.doi.org/10.1155/2020/6193407]
[177]
Lytra K, Tomou EM, Chrysargyris A, Drouza C, Skaltsa H, Tzortzakis N. Traditionally used sideritis cypria post.: Phytochemistry, nutritional content, bioactive compounds of cultivated populations. Front Pharmacol 2020; 11: 650.
[http://dx.doi.org/10.3389/fphar.2020.00650] [PMID: 32477129]
[178]
Bhat SA, Goel R, Shukla R, Hanif K. Angiotensin receptor blockade modulates NFκB and STAT3 signaling and inhibits glial activation and neuroinflammation better than angiotensin-converting enzyme inhibition. Mol Neurobiol 2016; 53(10): 6950-67.
[http://dx.doi.org/10.1007/s12035-015-9584-5] [PMID: 26666666]
[179]
Cai SM, Yang RQ, Li Y, et al. Angiotensin-(1-7) improves liver fibrosis by regulating the NLRP3 inflammasome via redox balance modulation. Antioxid Redox Signal 2016; 24(14): 795-812.
[http://dx.doi.org/10.1089/ars.2015.6498] [PMID: 26728324]
[180]
Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2016; 310(3): H404-15.
[http://dx.doi.org/10.1152/ajpheart.00247.2015] [PMID: 26637556]
[181]
Rodriguez-Perez AI, Garrido-Gil P, Pedrosa MA, et al. Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain Behav Immun 2020; 87: 256-71.
[http://dx.doi.org/10.1016/j.bbi.2019.12.011] [PMID: 31863823]
[182]
Campos J, Pacheco R. Involvement of dopaminergic signaling in the cross talk between the renin-angiotensin system and inflammation. Semin Immunopathol 2020; 42: 681-96.
[183]
Royea J, Lacalle-Aurioles M, Trigiani LJ, Fermigier A, Hamel E. AT2R’s (Angiotensin II Type 2 Receptor’s) role in cognitive and cerebrovascular deficits in a mouse model of alzheimer disease. Hypertension 2020; 75(6): 1464-74.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14431] [PMID: 32362228]
[184]
Drews HJ, Klein R, Lourhmati A, et al. Losartan improves memory, neurogenesis and cell motility in transgenic Alzheimer’s mice. Pharmaceuticals (Basel) 2021; 14(2): 1-17.
[http://dx.doi.org/10.3390/ph14020166] [PMID: 33672482]
[185]
Kangussu LM, Marzano LAS, Souza CF, Dantas CC, Miranda AS, Silva ACSE. The renin-angiotensin system and the cerebrovascular diseases: Experimental and clinical evidence. Protein Pept Lett 2020; 27(6): 463-75.
[http://dx.doi.org/10.2174/0929866527666191218091823] [PMID: 31849284]
[186]
Wang B, Chen T, Li G, et al. Dopamine alters lipopolysaccharide-induced nitric oxide production in microglial cells via activation of D1-Like receptors. Neurochem Res 2019; 44(4): 947-58.
[http://dx.doi.org/10.1007/s11064-019-02730-7] [PMID: 30659504]
[187]
Lei H, Ren R, Sun Y, et al. Neuroprotective effects of safflower flavonoid extract in 6-hydroxydopamine-induced model of Parkinson’s disease may be related to its anti-inflammatory action. Molecules 2020; 25(21): E5206.
[http://dx.doi.org/10.3390/molecules25215206] [PMID: 33182332]
[188]
Han C, Shen H, Yang Y, et al. Antrodia camphorata polysaccharide resists 6-OHDA-induced dopaminergic neuronal damage by inhibiting ROS-NLRP3 activation. Brain Behav 2020; 10(11): e01824.
[http://dx.doi.org/10.1002/brb3.1824] [PMID: 32902155]
[189]
Wang T, Nowrangi D, Yu L, et al. Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J Neuroinflammation 2018; 15(1): 2.
[http://dx.doi.org/10.1186/s12974-017-1039-7] [PMID: 29301581]
[190]
Chavoshinezhad S, Mohseni Kouchesfahani H, Ahmadiani A, Dargahi L. Interferon beta ameliorates cognitive dysfunction in a rat model of Alzheimer’s disease: Modulation of hippocampal neurogenesis and apoptosis as underlying mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94(Aug): 109661.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109661] [PMID: 31152860]
[191]
Ghosh I, Sankhe R, Mudgal J, Arora D, Nampoothiri M. Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides 2020; 83(March): 102083.
[http://dx.doi.org/10.1016/j.npep.2020.102083] [PMID: 32873420]
[192]
Crother TR, Porritt RA, Dagvadorj J, et al. Autophagy limits inflammasome during chlamydia pneumoniae Infection. Front Immunol 2019; 10(APR): 754.
[http://dx.doi.org/10.3389/fimmu.2019.00754] [PMID: 31031755]
[193]
Saitoh T, Akira S. Regulation of inflammasomes by autophagy. J Allergy Clin Immunol 2016; 138(1): 28-36.
[http://dx.doi.org/10.1016/j.jaci.2016.05.009] [PMID: 27373323]
[194]
Cao JY, Zhou LT, Li ZL, Yang Y, Liu BC, Liu H. Dopamine D1 receptor agonist A68930 attenuates acute kidney injury by inhibiting NLRP3 inflammasome activation. J Pharmacol Sci 2020; 143(3): 226-33.
[http://dx.doi.org/10.1016/j.jphs.2020.04.005] [PMID: 32446726]
[195]
Nolan RA, Reeb KL, Rong Y, et al. Dopamine activates NF-κB and primes the NLRP3 inflammasome in primary human macrophages. Brain, Behav Immun - Heal 2020; 2: 100030.
[196]
Park SM, Chen M, Schmerberg CM, et al. Effects of β-arrestin-biased dopamine D2 receptor ligands on schizophrenia-like behavior in hypoglutamatergic mice. Neuropsychopharmacology 2016; 41(3): 704-15.
[http://dx.doi.org/10.1038/npp.2015.196] [PMID: 26129680]
[197]
Han X, Ni J, Wu Z, et al. Myeloid-specific dopamine D2 receptor signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br J Pharmacol 2020; 177(13): 2991-3008.
[http://dx.doi.org/10.1111/bph.15026] [PMID: 32060901]
[198]
Jolodar SK, Bigdeli M, Moghaddam AH. Hypericin ameliorates maternal separation-induced cognitive deficits and hippocampal inflammation in rats. Mini Rev Med Chem 2021; 21(9): 1144-9.
[http://dx.doi.org/10.2174/1389557520666200727154453] [PMID: 32718290]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy