Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Systematic Review Article

Incorporating Insulin Growth Factor-1 into Regenerative and Personalized Medicine for Cardiovascular Disease: A Systematic Review

Author(s): Quan Fu Gan, Yi Ting Lim, Chai Nien Foo, Chye Wah Yu, Choy Ker Woon*, Soon Keng Cheong and Pooi Pooi Leong

Volume 18, Issue 2, 2023

Published on: 11 August, 2022

Page: [202 - 215] Pages: 14

DOI: 10.2174/1574888X17666220407085901

Price: $65

conference banner
Abstract

Background: Cardiovascular disease (CVD) is one of the world’s leading causes of increased morbidity and mortality. Current interventions for CVD, including percutaneous transluminal coronary angioplasty (PTCA) and coronary artery bypass grafting (CABG), carry certain risks and complications, which may also affect the patient’s quality of life. It is important to minimize those risks and complications while speeding up the recovery. Insulin Growth Factor-1 (IGF-1) is a growth factor responsible for cellular migration, proliferation, differentiation, and angiogenesis, which supports cardiovascular regeneration.

Methods: In light of the current trend of regenerative medicine, the present review aims to pool data relating to the incorporation of IGF-1 in regenerative medicine and provide input on the current research gaps and concerns arising on translating this approach from benchwork into clinical settings.

Results: Using the keywords IGF-1 ‘OR’ Insulin Growth Factor 1 ‘AND’ Mesenchymal Stem Cells ‘AND’ Tissue Healing from 2009 to 2020, we identified 160 and 52 from Medline and PubMed, screening out 202 articles due to non-fulfilment of the inclusion criteria.

Conclusion: Incorporating IGF-1 into regenerative and personalized medicine may be promising for treating CVD; however, the concerns include the role of IGF-1 in inducing cancer growth and its ability to migrate to the specific site of injury, especially for those who present with multiple pathologies should be addressed prior to its translation from bench work into clinical settings.

Keywords: Insulin growth factor-1, cardiovascular regeneration, cardiovascular disease, acute coronary syndrome, myocardial infarction, coronary artery bypass grafting.

Graphical Abstract
[1]
Ambrose JA, Singh M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep 2015; 7: 08.
[http://dx.doi.org/10.12703/P7-08] [PMID: 25705391]
[2]
Mannsverk J, Wilsgaard T, Njølstad I, et al. Age and gender differences in incidence and case fatality trends for myocardial infarction: A 30-year follow-up. The Tromso Study. Eur J Prev Cardiol 2012; 19(5): 927-34.
[http://dx.doi.org/10.1177/1741826711421081] [PMID: 21859780]
[3]
Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med 2016; 4(13): 256.
[http://dx.doi.org/10.21037/atm.2016.06.33] [PMID: 27500157]
[4]
Mark DB, Lee TH. Conservative management of acute coronary syndrome: Cheaper and better for you? Circulation 2002; 105(6): 666-8.
[http://dx.doi.org/10.1161/circ.105.6.666] [PMID: 11839616]
[5]
Steg PG, Himbert D, Benamer H, et al. Conservative management of patients with acute myocardial infarction and spontaneous acute patency of the infarct-related artery. Am Heart J 1997; 134(2 Pt 1): 248-52.
[http://dx.doi.org/10.1016/S0002-8703(97)70131-5] [PMID: 9313604]
[6]
Bangalore S, Gupta N, Guo Y, et al. Outcomes with invasive vs conservative management of cardiogenic shock complicating acute myocardial infarction. Am J Med 2015; 128(6): 601-8.
[http://dx.doi.org/10.1016/j.amjmed.2014.12.009] [PMID: 25554376]
[7]
Grothusen C, Friedrich C, Loehr J, et al. Outcome of stable patients with acute myocardial infarction and coronary artery bypass surgery within 48 hours: A single-center, retrospective experience. J Am Heart Assoc 2017; 6(10): 6.
[http://dx.doi.org/10.1161/JAHA.117.005498] [PMID: 28974496]
[8]
Cho MS, Ahn JM, Lee CH, et al. JACC Cardiovasc Interv 2017; 10: 1498-507.
[9]
Doenst T, Haverich A, Serruys P, et al. PCI and CABG for treating stable coronary artery disease: JACC review topic of the week. J Am Coll Cardiol 2019; 73(8): 964-76.
[http://dx.doi.org/10.1016/j.jacc.2018.11.053] [PMID: 30819365]
[10]
Leoni G, Soehnlein O. (Re) solving repair after myocardial infarction. Front Pharmacol 2018; 9: 1342.
[http://dx.doi.org/10.3389/fphar.2018.01342] [PMID: 30534069]
[11]
Żukowski M, Żukowska A, Kaczmarczyk M, Brykczyński M, Ciechanowicz A. Factors Influencing the Occurrence of Infectious Complications after CABG – Single Centre Study. 2018.
[12]
Moradian ST, Heydari AA, Mahmoudi H. What is the role of preoperative breathing exercises in reducing postoperative atelectasis after CABG? Rev Recent Clin Trials 2019; 14(4): 275-9.
[http://dx.doi.org/10.2174/1574887114666190710165951] [PMID: 31291879]
[13]
Tavakol M, Ashraf S, Brener SJ. Risks and complications of coronary angiography: A comprehensive review. Glob J Health Sci 2012; 4(1): 65-93.
[PMID: 22980117]
[14]
Veldkamp RF, Valk SD, van Domburg RT, van Herwerden LA, Meeter K. Mortality and repeat interventions up until 20 years after aorto-coronary bypass surgery with saphenous vein grafts. A follow-up study of 1041 patients. Eur Heart J 2000; 21(9): 747-53.
[http://dx.doi.org/10.1053/euhj.1999.1867] [PMID: 10739730]
[15]
Reul RM. Will drug-eluting stents replace coronary artery bypass surgery? Tex Heart Inst J 2005; 32(3): 323-30.
[PMID: 16392212]
[16]
Kimura T, Abe K, Shizuta S, et al. Long-term clinical and angiographic follow-up after coronary stent placement in native coronary arteries. Circulation 2002; 105(25): 2986-91.
[http://dx.doi.org/10.1161/01.CIR.0000019743.11941.3B] [PMID: 12081992]
[17]
Gnanasegaran N, Govindasamy V, Simon C, et al. Effect of dental pulp stem cells in MPTP-induced old-aged mice model. Eur J Clin Invest 472017: 403-14.
[18]
Simon C, Gan Q, Kathivaloo P, et al. Deciduous DPSCs ameliorate MPTP-mediated neurotoxicity, sensorimotor coordination and olfactory function in parkinsonian mice. Int J Mol Sci 2019; 20: 568.
[19]
Gan QF, Foo CN, Leong PP, Cheong SK. Regenerative medicine as a potential and future intervention for ankle sprain. Malaysian J Med Heal Sci 2020; 16: 290-9.
[20]
Lee RT, Walsh K. The future of cardiovascular regenerative medicine. Circulation 2016; 133(25): 2618-25.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019214] [PMID: 27324357]
[21]
Decuzzi P, Cooke JP. Regenerative medicine in cardiovascular disease: Introduction. Methodist DeBakey Cardiovasc J 2013; 9(4): 186.
[http://dx.doi.org/10.14797/mdcj-9-4-186] [PMID: 24298307]
[22]
Madeddu P, Avolio E, Alvino VV, Santopaolo M, Spinetti G. Personalized cardiovascular regenerative medicine: Targeting the extreme stages of life. Front Cardiovasc Med 2019; 6: 177.
[http://dx.doi.org/10.3389/fcvm.2019.00177] [PMID: 31828079]
[23]
Luger D, Lipinski MJ, Westman PC, et al. Intravenously delivered mesenchymal stem cells. Circ Res 2017; 120(10): 1598-613.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310599] [PMID: 28232595]
[24]
Chen Y, Zhao Y, Chen W, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther 2017; 8(1): 268.
[http://dx.doi.org/10.1186/s13287-017-0722-z] [PMID: 29178928]
[25]
Miao C, Lei M, Hu W, Han S, Wang Q. A brief review: The therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther 2017; 8(1): 242.
[http://dx.doi.org/10.1186/s13287-017-0697-9] [PMID: 29096705]
[26]
Luo L, Tang J, Nishi K, et al. Fabrication of synthetic mesenchymal stem cells for the treatment of acute myocardial infarction in mice. Circ Res 2017; 120(11): 1768-75.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310374] [PMID: 28298296]
[27]
Bobi J, Solanes N, Fernández-Jiménez R, et al. Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction. J Am Heart Assoc 2017; 6(5): 6.
[http://dx.doi.org/10.1161/JAHA.117.005771] [PMID: 28468789]
[28]
Salmon WD Jr, Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 1957; 49(6): 825-36.
[PMID: 13429201]
[29]
Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993; 75(1): 73-82.
[http://dx.doi.org/10.1016/S0092-8674(05)80085-6] [PMID: 8402902]
[30]
Lin S, Zhang Q, Shao X, et al. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif 2017; 50(6): e12390.
[http://dx.doi.org/10.1111/cpr.12390] [PMID: 28960620]
[31]
Gómez-Mauricio G, Moscoso I, Martín-Cancho MF, et al. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model. Stem Cell Res Ther 2016; 7(1): 94.
[http://dx.doi.org/10.1186/s13287-016-0350-z] [PMID: 27423905]
[32]
Cubbon RM, Kearney MT, Wheatcroft SB. Endothelial IGF-1 receptor signalling in diabetes and insulin resistance. Trends Endocrinol Metab 2016; 27(2): 96-104.
[http://dx.doi.org/10.1016/j.tem.2015.11.009] [PMID: 26712712]
[33]
Yeo GC, Weiss AS. Soluble matrix protein is a potent modulator of mesenchymal stem cell performance. Proc Natl Acad Sci USA 2019; 116(6): 2042-51.
[http://dx.doi.org/10.1073/pnas.1812951116] [PMID: 30659152]
[34]
Gong H, Wang X, Wang L, et al. Inhibition of IGF-1 receptor kinase blocks the differentiation into cardiomyocyte-like cells of BMSCs induced by IGF-1. Mol Med Rep 2017; 16(1): 787-93.
[http://dx.doi.org/10.3892/mmr.2017.6639] [PMID: 28560388]
[35]
Hsiao STF, Asgari A, Lokmic Z, et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 2012; 21(12): 2189-203.
[http://dx.doi.org/10.1089/scd.2011.0674] [PMID: 22188562]
[36]
Jackson R, Tilokee EL, Latham N, et al. Paracrine engineering of human cardiac stem cells with insulin-like growth factor 1 enhances myocardial repair. J Am Heart Assoc 2015; 4(9): e002104.
[http://dx.doi.org/10.1161/JAHA.115.002104] [PMID: 26363004]
[37]
Nelson DM, Baraniak PR, Ma Z, Guan J, Mason NS, Wagner WR. Controlled release of IGF-1 and HGF from a biodegradable polyure-thane scaffold. Pharm Res 2011; 28(6): 1282-93.
[http://dx.doi.org/10.1007/s11095-011-0391-z] [PMID: 21347565]
[38]
Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells 2019; 37(7): 855-64.
[http://dx.doi.org/10.1002/stem.3016] [PMID: 30977255]
[39]
Keating A. Mesenchymal stromal cells. Curr Opin Hematol 2006; 13(6): 419-25.
[http://dx.doi.org/10.1097/01.moh.0000245697.54887.6f] [PMID: 17053453]
[40]
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3(4): 393-403.
[http://dx.doi.org/10.1111/j.1365-2184.1970.tb00347.x] [PMID: 5523063]
[41]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Int Soc Cell Therap Pos Stat. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[42]
Anderson KM, Odell PM, Wilson PWF, Kannel WB. Cardiovascular disease risk profiles. Am Heart J 1991; 121(1 Pt 2): 293-8.
[http://dx.doi.org/10.1016/0002-8703(91)90861-B] [PMID: 1985385]
[43]
Fang R, Qiao S, Liu Y, et al. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts. Int J Nanomedicine 2015; 10: 4691-703.
[http://dx.doi.org/10.2147/IJN.S81451] [PMID: 26251592]
[44]
Li N, Pasha Z, Ashraf M. Reversal of ischemic cardiomyopathy with Sca-1+ stem cells modified with multiple growth factors. PLoS One 2014; 9(4): e93645.
[http://dx.doi.org/10.1371/journal.pone.0093645] [PMID: 24705272]
[45]
Padin-Iruegas ME, Misao Y, Davis ME, et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 2009; 120(10): 876-87.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.852285] [PMID: 19704095]
[46]
Zhang GW, Gu TX, Guan XY, et al. HGF and IGF-1 promote protective effects of allogeneic BMSC transplantation in rabbit model of acute myocardial infarction. Cell Prolif 2015; 48(6): 661-70.
[http://dx.doi.org/10.1111/cpr.12219] [PMID: 26466964]
[47]
Wu Q, Fang T, Lang H, et al. Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells. Int J Mol Med 2017; 39(4): 918-26.
[http://dx.doi.org/10.3892/ijmm.2017.2897] [PMID: 28259958]
[48]
Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010; 89(3): 219-29.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[49]
Puhaindran ME. Principles of wound healingDiabet Foot Probl. World Scientific Publishing Co 2008; pp. 395-402.
[http://dx.doi.org/10.1142/9789812791535_0028]
[50]
Fang CY, Wu CC, Fang CL, Chen WY, Chen CL. Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLoS One 2017; 12(6): e0178960.
[http://dx.doi.org/10.1371/journal.pone.0178960] [PMID: 28591207]
[51]
Zhu F, Li Y, Zhang J, et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 2013; 8(9): e74535.
[http://dx.doi.org/10.1371/journal.pone.0074535] [PMID: 24040275]
[52]
Krishna KA, Krishna KS, Berrocal R, Rao KS, Sambasiva Rao KR. Myocardial infarction and stem cells. J Pharm Bioallied Sci 2011; 3(2): 182-8.
[http://dx.doi.org/10.4103/0975-7406.80761] [PMID: 21687345]
[53]
Woodcock EA, Matkovich SJ. Cardiomyocytes structure, function and associated pathologies. Int J Biochem Cell Biol 2005; 37(9): 1746-51.
[http://dx.doi.org/10.1016/j.biocel.2005.04.011] [PMID: 15950518]
[54]
Arackal A, Alsayouri K. Histology, Heart. StatPearls Publishing 2020.
[55]
Cochain C, Channon KM, Silvestre JS. Angiogenesis in the infarcted myocardium. Antioxid Redox Signal 2013; 18(9): 1100-13.
[http://dx.doi.org/10.1089/ars.2012.4849] [PMID: 22870932]
[56]
Robich MP, Chu LM, Oyamada S, Sodha NR, Sellke FW. Myocardial therapeutic angiogenesis: A review of the state of development and future obstacles. Expert Rev Cardiovasc Ther 2011; 9(11): 1469-79.
[http://dx.doi.org/10.1586/erc.11.148] [PMID: 22059795]
[57]
Krijnen PAJ, Nijmeijer R, Meijer CJLM, Visser CA, Hack CE, Niessen HWM. Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 2002; 55(11): 801-11.
[http://dx.doi.org/10.1136/jcp.55.11.801] [PMID: 12401816]
[58]
Rodríguez M, Lucchesi BR, Schaper J. Apoptosis in myocardial infarction. Ann Med 2002; 34(6): 470-9.
[http://dx.doi.org/10.1080/078538902321012414] [PMID: 12523502]
[59]
Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki L-M. Apoptosis in human acute myocardial infarction. Circulation 1997; 95(2): 320-3.
[http://dx.doi.org/10.1161/01.CIR.95.2.320] [PMID: 9008443]
[60]
Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci 2017; 18(10): 18.
[http://dx.doi.org/10.3390/ijms18102087] [PMID: 28974046]
[61]
Dzobo K, Thomford NE, Senthebane DA, et al. Advances in regenerative medicine and tissue engineering: Innovation and transformation of medicine. Stem Cells Int 2018; 2018: 2495848.
[http://dx.doi.org/10.1155/2018/2495848] [PMID: 30154861]
[62]
Martin-Piedra MA, Garzon I, Oliveira AC, et al. Cell viability and proliferation capability of long-term human dental pulp stem cell cultures. Cytotherapy 2014; 16(2): 266-77.
[http://dx.doi.org/10.1016/j.jcyt.2013.10.016] [PMID: 24438904]
[63]
Landreneau RJ, Mack MJ, Magovern JA, et al. “Keyhole” coronary artery bypass surgery. Ann Surg 1996; 224(4): 453-9.
[http://dx.doi.org/10.1097/00000658-199610000-00004] [PMID: 8857850]
[64]
Malik TF, Tivakaran VS. Percutaneous Transluminal Coronary Angioplasty. PTCA 2019.
[65]
Morrison D. PCI versus CABG versus medical therapy in 2006. Minerva Cardioangiol 2006; 54(5): 643-72.
[PMID: 17019400]
[66]
Michaels AD, Chatterjee K. Cardiology patient pages. Angioplasty versus bypass surgery for coronary artery disease. Circulation 2002; 106(23): e187-90.
[http://dx.doi.org/10.1161/01.CIR.0000044747.37349.64] [PMID: 12460885]
[67]
Papatsoris AG, Karamouzis MV, Papavassiliou AG. Novel insights into the implication of the IGF-1 network in prostate cancer. Trends Mol Med 2005; 11(2): 52-5.
[http://dx.doi.org/10.1016/j.molmed.2004.12.005] [PMID: 15694866]
[68]
Wu W, Hu W, Kavanagh JJ, Hennighausen L, LeRoith D. Proteomics in cancer research. Int J Gynecol Cancer 2002; 12(5): 409-23.
[http://dx.doi.org/10.1136/ijgc-00009577-200209000-00001] [PMID: 12366655]
[69]
Bustin SA, Jenkins PJ. The growth hormone-insulin-like growth factor-I axis and colorectal cancer. Trends Mol Med 2001; 7(10): 447-54.
[http://dx.doi.org/10.1016/S1471-4914(01)02104-9] [PMID: 11597519]
[70]
Sachdev D, Hartell JS, Lee AV, Zhang X, Yee D. A dominant negative type I insulin-like growth factor receptor inhibits metastasis of human cancer cells. J Biol Chem 2004; 279(6): 5017-24.
[http://dx.doi.org/10.1074/jbc.M305403200] [PMID: 14615489]
[71]
Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 2014; 19(3): 407-17.
[http://dx.doi.org/10.1016/j.cmet.2014.02.006] [PMID: 24606898]
[72]
Laban C, Bustin SA, Jenkins PJ. The GH-IGF-I axis and breast cancer. Trends Endocrinol Metab 2003; 14(1): 28-34.
[http://dx.doi.org/10.1016/S1043-2760(02)00003-6] [PMID: 12475609]
[73]
Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mesenchymal stem cells: A promising candidate in regenerative medicine. Int J Biochem Cell Biol 2008; 40(5): 815-20.
[http://dx.doi.org/10.1016/j.biocel.2008.01.007] [PMID: 18295530]
[74]
Maqbool M, Cooper ME, Jandeleit-Dahm KAM. Cardiovascular disease and diabetic kidney disease. Semin Nephrol 2018; 38(3): 217-32.
[http://dx.doi.org/10.1016/j.semnephrol.2018.02.003] [PMID: 29753399]
[75]
Pálsson R, Patel UD. Cardiovascular complications of diabetic kidney disease. Adv Chronic Kidney Dis 2014; 21(3): 273-80.
[http://dx.doi.org/10.1053/j.ackd.2014.03.003] [PMID: 24780455]
[76]
Doorn J, van de Peppel J, van Leeuwen JPTM, Groen N, van Blitterswijk CA, de Boer J. Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials 2011; 32(26): 6089-98.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.010] [PMID: 21621835]
[77]
Filion TM, Skelly JD, Huang H, Greiner DL, Ayers DC, Song J. Impaired osteogenesis of T1DM bone marrow-derived stromal cells and periosteum-derived cells and their differential in-vitro responses to growth factor rescue. Stem Cell Res Ther 2017; 8(1): 65.
[http://dx.doi.org/10.1186/s13287-017-0521-6] [PMID: 28283030]
[78]
Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M. Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2014; 5(4): 103.
[http://dx.doi.org/10.1186/scrt491] [PMID: 25163769]
[79]
Hwang SJ, Cho TH, Kim IS. In vivo gene activity of human mesenchymal stem cells after scaffold-mediated local transplantation. Tissue Eng Part A 2014; 20(17-18): 2350-64.
[http://dx.doi.org/10.1089/ten.tea.2013.0507] [PMID: 24575828]
[80]
Kumar S, Ponnazhagan S. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone 2012; 50(4): 1012-8.
[http://dx.doi.org/10.1016/j.bone.2012.01.027] [PMID: 22342795]
[81]
Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 2012; 18(13-14): 1479-89.
[http://dx.doi.org/10.1089/ten.tea.2011.0325] [PMID: 22443121]
[82]
Qi Z, Xia P, Pan S, et al. Combined treatment with electrical stimulation and insulin-like growth factor-1 promotes bone regeneration in vitro. PLoS One 2018; 13(5): e0197006.
[http://dx.doi.org/10.1371/journal.pone.0197006] [PMID: 29746517]
[83]
Ikeda Y, Sakaue M, Chijimatsu R, et al. IGF-1 Gene Transfer to human synovial MSCs promotes their chondrogenic differentiation potential without induction of the hypertrophic phenotype. Stem Cells Int 2017; 2017: 5804147.
[http://dx.doi.org/10.1155/2017/5804147] [PMID: 28740513]
[84]
Chen W, Mo J, Du X, Zhang Z, Zhang W. Biomimetic dynamic membrane for aquatic dye removal. Water Res 2019; 151: 243-51.
[http://dx.doi.org/10.1016/j.watres.2018.11.078] [PMID: 30599283]
[85]
Zhang W, Liang W, Zhang Z, Hao T. Aerobic granular sludge (AGS) scouring to mitigate membrane fouling: Performance, hydrodynamic mechanism and contribution quantification model. Water Res 2021; 188: 116518.
[http://dx.doi.org/10.1016/j.watres.2020.116518] [PMID: 33137525]
[86]
Zhang W, Jiang F. Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size. Water Res 2019; 157: 445-53.
[http://dx.doi.org/10.1016/j.watres.2018.07.069] [PMID: 30981119]
[87]
Gan QF, Foo CN, Leong PP, Cheong SK. Incorporating regenerative medicine into rehabilitation programmes: A potential treatment for ankle sprain. Int J Ther Rehabil 2021; 28(2): 1-15.
[http://dx.doi.org/10.12968/ijtr.2019.0119]
[88]
Gan QF, Choy KW, Foo CN, Leong PP, Cheong SK. Incorporating insulin growth Factor-1 into regenerative and personalised medicine for musculoskeletal disorders: A systematic review. J Tissue Eng Regen Med 2021; 15(5): 419-41.
[http://dx.doi.org/10.1002/term.3192]
[89]
Higashi Y, Gautam S, Delafontaine P, Sukhanov S. IGF-1 and cardiovascular disease. Growth Horm IGF Res 2019; 45: 6-16.
[http://dx.doi.org/10.1016/j.ghir.2019.01.002] [PMID: 30735831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy