Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Promising Effects of Naringenin and Melatonin against Hepatic Encephalopathy Impairments Induced by Bile Duct Ligation in Male Rats

Author(s): Elahe Karami Raviz, Fatemeh Noormand, Ali Sharifzadeh Kermani, Ali Galedari, Khadijeh Esmaeilpour, Marzieh Maneshian, Taj Pari Kalantaripour, Shahriar Dabiri and Majid Asadi-Shekaari*

Volume 22, Issue 1, 2022

Published on: 19 April, 2022

Page: [31 - 38] Pages: 8

DOI: 10.2174/1871524922666220314123052

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Bile duct ligation (BDL) is used for evaluating the protective effects of different agents with anti-inflammatory and antioxidant properties against the liver and brain damages. Naringenin (N) and melatonin (M) are used as protectants in various models of diseases.

Aims: In the current research, the combinational effects of these well-known anti-inflammatory and antioxidants agents were investigated against cerebral injuries induced by BDL in male rats.

Methods: The animals were distributed into the following groups: Sham, BDL + Vehicle and BDL+ N + M. Neuronal damages were evaluated using biochemical, motor behavioral tasks and morphological assessments.

Results: Based on the data, BDL resulted in decreasing locomotor activity, which was reversed by N and M. Morphological study confirmed that BDL led to neurodegeneration in the cortex of the rats, and the N and M treatment preserved cortical neurons. In addition, immunohistochemical (IHC) study of the rat cortex showed that BDL resulted in increasing the activated astrocytes, and the N and M treatment reduced the number of activated cells.

Conclusion: These results obviously depicted combinational therapy with N and M to exert positive effects in the BDL rats, probably due to their synergistic anti-inflammatory and antioxidant activities.

Keywords: Bile duct ligation, naringenin, melatonin, open field, anti-oxidant, anti-inflammatory, rat.

Graphical Abstract
[1]
Collie, A. Cognition in liver disease. Liver Int., 2005, 25(1), 1-8.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01012.x] [PMID: 15698392]
[2]
Magen, I.; Avraham, Y.; Ackerman, Z.; Vorobiev, L.; Mechoulam, R.; Berry, E.M. Cannabidiol ameliorates cognitive and motor impair-ments in mice with bile duct ligation. J. Hepatol., 2009, 51(3), 528-534.
[http://dx.doi.org/10.1016/j.jhep.2009.04.021] [PMID: 19596476]
[3]
Rodrigo, R.; Cauli, O.; Gomez-Pinedo, U.; Agusti, A.; Hernandez-Rabaza, V.; Garcia-Verdugo, J.M.; Felipo, V. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology, 2010, 139(2), 675-684.
[http://dx.doi.org/10.1053/j.gastro.2010.03.040] [PMID: 20303348]
[4]
Haque, A.; Polcyn, R.; Matzelle, D.; Banik, N.L. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegen-eration, and neuroprotection. Brain Sci., 2018, 8(2), 33.
[http://dx.doi.org/10.3390/brainsci8020033] [PMID: 29463007]
[5]
Srodulski, S.; Sharma, S.; Bachstetter, A.B.; Brelsfoard, J.M.; Pascual, C.; Xie, X.S.; Saatman, K.E.; Van Eldik, L.J.; Despa, F. Neuroin-flammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol. Neurodegener., 2014, 9(1), 30.
[http://dx.doi.org/10.1186/1750-1326-9-30] [PMID: 25149184]
[6]
Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: An overview. Pharm. Biol., 2016, 54(12), 3203-3210.
[http://dx.doi.org/10.1080/13880209.2016.1216131] [PMID: 27564838]
[7]
Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J.; Vitamin, E. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA parkinson’s disease model. BioMed Res. Int., 2019, 2019(14), 2382563.
[http://dx.doi.org/10.1155/2019/2382563] [PMID: 31111044]
[8]
Nouri, Z.; Fakhri, S.; El-Senduny, F.F.; Sanadgol, N.; Abd-ElGhani, G.E.; Farzaei, M.H.; Chen, J.T. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules, 2019, 9(11), 690.
[http://dx.doi.org/10.3390/biom9110690] [PMID: 31684142]
[9]
Faramarzpour, M.; Parizi, M.; Shahpar, A.; Esmaeilpour, K.; Kalantaripour, T.P.; Zihayat, B.; Asadi-Shekaari, M. Pretreatment with naringenin ameliorates bile duct ligation induced injuries in male rats. Biointerface Res. Appl. Chem., 2020, 10(1), 4821-4824.
[http://dx.doi.org/10.33263/BRIAC101.821824]
[10]
Macchi, M.M.; Bruce, J.N. Human pineal physiology and functional significance of melatonin. Front. Neuroendocrinol., 2004, 25(3-4), 177-195.
[http://dx.doi.org/10.1016/j.yfrne.2004.08.001] [PMID: 15589268]
[11]
Hsu, M.H.; Chen, Y.C.; Sheen, J.M.; Li, S.W.; Huang, L.T. Melatonin prevented spatial deficits and increases in brain asymmetric dime-thylarginine in young bile duct ligation rats. Neuroreport, 2018, 29(7), 541-546.
[http://dx.doi.org/10.1097/WNR.0000000000000972] [PMID: 29384993]
[12]
Huang, L.T.; Tiao, M.M.; Tain, Y.L.; Chen, C.C.; Hsieh, C.S. Melatonin ameliorates bile duct ligation-induced systemic oxidative stress and spatial memory deficits in developing rats. Pediatr. Res., 2009, 65(2), 176-180.
[http://dx.doi.org/10.1203/PDR.0b013e31818d5bc7] [PMID: 19047958]
[13]
Babaee, A.; Eftekhar-Vaghefi, S.H.; Asadi-Shekaari, M.; Shahrokhi, N.; Soltani, S.D.; Malekpour-Afshar, R.; Basiri, M. Melatonin treat-ment reduces astrogliosis and apoptosis in rats with traumatic brain injury. Iran. J. Basic Med. Sci., 2015, 18(9), 867-872.
[PMID: 26523219]
[14]
Paglia, D.; Valentine, W. GPX biodiagnostic kit. J. Lab. Clin. Med., 1967, 70, 158-169.
[PMID: 6066618]
[15]
Kruger, N.J. The bradford method for protein quantitation. The protein protocols handbook; Springer, 2009, pp. 17-24.
[http://dx.doi.org/10.1007/978-1-59745-198-7_4]
[16]
Golshani, M.; Basiri, M.; Shabani, M.; Aghaei, I.; Asadi-Shekaari, M. Effects of erythropoietin on bile duct ligation-induced neuro-inflammation in male rats. AIMS Neurosci., 2019, 6(2), 43-53.
[http://dx.doi.org/10.3934/Neuroscience.2019.2.43]
[17]
Schliess, F.; Görg, B.; Häussinger, D. Pathogenetic interplay between osmotic and oxidative stress: The hepatic encephalopathy paradigm. Biol. Chem., 2006, 387(10-11), 1363-1370.
[http://dx.doi.org/10.1515/BC.2006.171] [PMID: 17081108]
[18]
Dhanda, S.; Kaur, S.; Sandhir, R. Preventive effect of N-acetyl-L-cysteine on oxidative stress and cognitive impairment in hepatic en-cephalopathy following bile duct ligation. Free Radic. Biol. Med., 2013, 56, 204-215.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.017] [PMID: 23044263]
[19]
Noormand, F.; Kermani, A.S.; Raviz, E.K.; Esmaeilpour, K.; Golshani, M.; Bashiri, H.; Kalantaripour, T.P.; Asadi-Shekaari, M. Investigat-ing the neuroprotective effects of resveratrol on encephalopathy induced by bile duct ligation in male rats. Biointerface Res. Appl. Chem., 2020, 10(3), 5512-5515.
[http://dx.doi.org/10.33263/BRIAC0103.512515]
[20]
Zhang, Y.; Liu, B.; Chen, X.; Zhang, N.; Li, G.; Zhang, L.H.; Tan, L.Y. Naringenin ameliorates behavioral dysfunction and neurological deficits in a d-galactose-induced aging mouse model through activation of PI3K/Akt/Nrf2 pathway. Rejuvenation Res., 2017, 20(6), 462-472.
[http://dx.doi.org/10.1089/rej.2017.1960] [PMID: 28622086]
[21]
Montilla, P.; Cruz, A.; Padillo, F.J.; Túnez, I.; Gascon, F.; Muñoz, M.C.; Gómez, M.; Pera, C. Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. J. Pineal Res., 2001, 31(2), 138-144.
[http://dx.doi.org/10.1034/j.1600-079x.2001.310207.x] [PMID: 11555169]
[22]
Reiter, R.J. Oxidative damage in the central nervous system: Protection by melatonin. Prog. Neurobiol., 1998, 56(3), 359-384.
[http://dx.doi.org/10.1016/S0301-0082(98)00052-5] [PMID: 9770244]
[23]
Reiter, R.; Tang, L.; Garcia, J.J.; Muñoz-Hoyos, A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci., 1997, 60(25), 2255-2271.
[http://dx.doi.org/10.1016/S0024-3205(97)00030-1] [PMID: 9194681]
[24]
Hadjihambi, A.; Harrison, I.F.; Costas-Rodríguez, M.; Vanhaecke, F.; Arias, N.; Gallego-Durán, R.; Mastitskaya, S.; Hosford, P.S.; Olde Damink, S.W.M.; Davies, N.; Habtesion, A.; Lythgoe, M.F.; Gourine, A.V.; Jalan, R. Impaired brain glymphatic flow in experimental he-patic encephalopathy. J. Hepatol., 2019, 70(1), 40-49.
[http://dx.doi.org/10.1016/j.jhep.2018.08.021] [PMID: 30201461]
[25]
Lachmann, V.; Görg, B.; Bidmon, H.J.; Keitel, V.; Häussinger, D. Precipitants of hepatic encephalopathy induce rapid astrocyte swelling in an oxidative stress dependent manner. Arch. Biochem. Biophys., 2013, 536(2), 143-151.
[http://dx.doi.org/10.1016/j.abb.2013.05.004] [PMID: 23707757]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy