Review Article

喷他脒九十年:喷脒及其类似物的开发与应用

卷 29, 期 26, 2022

发表于: 12 April, 2022

页: [4602 - 4609] 页: 8

弟呕挨: 10.2174/0929867329666220314121446

价格: $65

conference banner
摘要

喷他脒是FDA批准的一种治疗多种原虫感染的人类药物,最初于20世纪30年代末合成得到,并于20世纪40年代首次被报道可以治疗寄生虫病。经过 90 年的缓慢发展,喷他脒及其衍生物已远远超越抗菌剂,包括但不限于 DNA 小沟配体、侧膜蛋白 1 跨膜结构域 5 的 PPI(蛋白质-蛋白质相互作用)调节剂 ,以及 SARS-CoV-2 3a 通道的阻断剂。 这篇小型综述重点介绍了喷他脒及其类似物的开发和应用,旨在为未来几十年进一步开发喷他脒衍生物提供见解。

关键词: 喷他脒,抗菌药物,DNA小沟配体,SARS-CoV-2, 3a通道,PPIs抑制剂,脒。

[1]
Leoung, G.S.; Feigal, D.W., Jr; Montgomery, A.B.; Corkery, K.; Wardlaw, L.; Adams, M.; Busch, D.; Gordon, S.; Jacobson, M.A.; Volberding, P.A. Aerosolized pentamidine for prophylaxis against Pneumocystis carinii pneumonia. The San Francisco community prophylaxis trial. N. Engl. J. Med., 1990, 323(12), 769-775.
[http://dx.doi.org/10.1056/NEJM199009203231201] [PMID: 1975426]
[2]
Nguewa, P.A.; Fuertes, M.A.; Cepeda, V.; Iborra, S.; Carrión, J.; Valladares, B.; Alonso, C.; Pérez, J.M. Pentamidine is an antiparasitic and apoptotic drug that selectively modifies ubiquitin. Chem. Biodivers., 2005, 2(10), 1387-1400.
[http://dx.doi.org/10.1002/cbdv.200590111] [PMID: 17191940]
[3]
Kovacs, J.A.; Masur, H. Evolving health effects of Pneumocystis: One hundred years of progress in diagnosis and treatment. JAMA, 2009, 301(24), 2578-2585.
[http://dx.doi.org/10.1001/jama.2009.880] [PMID: 19549975]
[4]
Nok, A.J. Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis. Parasitol. Res., 2003, 90(1), 71-79.
[http://dx.doi.org/10.1007/s00436-002-0799-9] [PMID: 12743807]
[5]
Singh, S.; Sivakumar, R. Challenges and new discoveries in the treatment of leishmaniasis. J. Infect. Chemother., 2004, 10(6), 307-315.
[http://dx.doi.org/10.1007/s10156-004-0348-9] [PMID: 15614453]
[6]
Bray, P.G.; Barrett, M.P.; Ward, S.A.; de Koning, H.P. Pentamidine uptake and resistance in pathogenic protozoa: Past, present and future. Trends Parasitol., 2003, 19(5), 232-239.
[http://dx.doi.org/10.1016/S1471-4922(03)00069-2] [PMID: 12763430]
[7]
Jung, H.J.; Suh, S.I.; Suh, M.H.; Baek, W.K.; Park, J.W. Pentamidine reduces expression of hypoxia-inducible factor-1α in DU145 and MDA-MB-231 cancer cells. Cancer Lett., 2011, 303(1), 39-46.
[http://dx.doi.org/10.1016/j.canlet.2011.01.008] [PMID: 21316841]
[8]
Dorlo, T.P.; Kager, P.A. Pentamidine dosage: A base/salt confusion. PLoS Negl. Trop. Dis., 2008, 2(5), e225.
[http://dx.doi.org/10.1371/journal.pntd.0000225] [PMID: 18509543]
[9]
Li, W.; Schäfer, A.; Kulkarni, S.S.; Liu, X.; Martinez, D.R.; Chen, C.; Sun, Z.; Leist, S.R.; Drelich, A.; Zhang, L.; Ura, M.L.; Berezuk, A.; Chittori, S.; Leopold, K.; Mannar, D.; Srivastava, S.S.; Zhu, X.; Peterson, E.C.; Tseng, C.T.; Mellors, J.W.; Falzarano, D.; Subramaniam, S.; Baric, R.S.; Dimitrov, D.S. High potency of a bivalent human VH domain in SARS-CoV-2 animal models. Cell, 2020, 183(2), 429-441.e16.
[http://dx.doi.org/10.1016/j.cell.2020.09.007] [PMID: 32941803]
[10]
Hassan, A.O.; Kafai, N.M.; Dmitriev, I.P.; Fox, J.M.; Smith, B.K.; Harvey, I.B.; Chen, R.E.; Winkler, E.S.; Wessel, A.W.; Case, J.B.; Kashentseva, E.; McCune, B.T.; Bailey, A.L.; Zhao, H.; VanBlargan, L.A.; Dai, Y.N.; Ma, M.; Adams, L.J.; Shrihari, S.; Danis, J.E.; Gralinski, L.E.; Hou, Y.J.; Schäfer, A.; Kim, A.S.; Keeler, S.P.; Weiskopf, D.; Baric, R.S.; Holtzman, M.J.; Fremont, D.H.; Curiel, D.T.; Diamond, M.S. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell, 2020, 183(1), 169-184.e13.
[http://dx.doi.org/10.1016/j.cell.2020.08.026] [PMID: 32931734]
[11]
Jha, T.K.; Sharma, V.K. Pentamidine-induced diabetes mellitus. Trans. R. Soc. Trop. Med. Hyg., 1984, 78(2), 252-253.
[http://dx.doi.org/10.1016/0035-9203(84)90289-X] [PMID: 6464116]
[12]
Murdoch, J.K. Pentamidine and hypoglycemia. Ann. Intern. Med., 1983, 99(6), 879.
[http://dx.doi.org/10.7326/0003-4819-99-6-879_1] [PMID: 6651038]
[13]
Leen, C.L.; Mandal, B.K. Rash due to nebulised pentamidine. Lancet, 1988, 2(8622), 1250-1251.
[http://dx.doi.org/10.1016/S0140-6736(88)90841-0] [PMID: 2903979]
[14]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[15]
Paul, M.; Durand, R.; Boulard, Y.; Fusaï, T.; Fernandez, C.; Rivollet, D.; Deniau, M.; Astier, A. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J. Drug Target., 1998, 5(6), 481-490.
[http://dx.doi.org/10.3109/10611869808997874] [PMID: 9783679]
[16]
Kramp, K.L.; DeWitt, K.; Flora, J.W.; Muddiman, D.C.; Slunt, K.M.; Houston, T.A. Derivatives of pentamidine designed to target the Leishmania lipophosphoglycan. Tetrahedron Lett., 2005, 46(4), 695-698.
[http://dx.doi.org/10.1016/j.tetlet.2004.11.112]
[17]
Clement, B.; Bürenheide, A.; Rieckert, W.; Schwarz, J. Diacetyldiamidoximeester of pentamidine, a prodrug for treatment of protozoal diseases: Synthesis, in vitro and in vivo biotransformation. ChemMedChem, 2006, 1(11), 1260-1267.
[http://dx.doi.org/10.1002/cmdc.200600079] [PMID: 17001612]
[18]
Mayer, C.D.; Bracher, F. Cytotoxic ring A-modified steroid analogues derived from Grundmann’s ketone. Eur. J. Med. Chem., 2011, 46(8), 3227-3236.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.036] [PMID: 21570162]
[19]
Farahat, A.A.; Ismail, M.A.; Kumar, A.; Wenzler, T.; Brun, R.; Paul, A.; Wilson, W.D.; Boykin, D.W. Indole and benzimidazole bichalcophenes: Synthesis, DNA binding and antiparasitic activity. Eur. J. Med. Chem., 2018, 143, 1590-1596.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.056] [PMID: 29126729]
[20]
Duszenko, M.; Ferguson, M.A.; Lamont, G.S.; Rifkin, M.R.; Cross, G.A. Cysteine eliminates the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro. J. Exp. Med., 1985, 162(4), 1256-1263.
[http://dx.doi.org/10.1084/jem.162.4.1256] [PMID: 4045385]
[21]
Sands, M.; Kron, M.A.; Brown, R.B. Pentamidine: A review. Rev. Infect. Dis., 1985, 7(5), 625-634.
[http://dx.doi.org/10.1093/clinids/7.5.625] [PMID: 3903942]
[22a]
a) Fusai, T.; Deniau, M.; Durand, R.; Bories, C.; Paul, M.; Rivollet, D.; Astier, A.; Houin, R. Action of pentamidine-bound nanoparticles against Leishmania on an in vivo model. Parasite, 1994, 1(4), 319-324.
[http://dx.doi.org/10.1051/parasite/1994014319] [PMID: 9140499]
b) Yorke W. Recent work on the chemotherapy of protozoal infections. Trans. R. Soc. Trop. Med. Hyg., 1940, 33(5), 463-476.
[http://dx.doi.org/10.1016/S0035-9203(40)90029-3]
[23]
Peretti, E.; Miletto, I.; Stella, B.; Rocco, F.; Berlier, G.; Arpicco, S. Strategies to obtain encapsulation and controlled release of pentamidine in mesoporous silica nanoparticles. Pharmaceutics, 2018, 10(4), E195.
[http://dx.doi.org/10.3390/pharmaceutics10040195] [PMID: 30347763]
[24]
Jannin, J.; Cattand, P. Treatment and control of human African trypanosomiasis. Curr. Opin. Infect. Dis., 2004, 17(6), 565-571.
[http://dx.doi.org/10.1097/00001432-200412000-00009] [PMID: 15640711]
[25]
Mathis, A.M.; Holman, J.L.; Sturk, L.M.; Ismail, M.A.; Boykin, D.W.; Tidwell, R.R.; Hall, J.E. Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes. Antimicrob. Agents Chemother., 2006, 50(6), 2185-2191.
[http://dx.doi.org/10.1128/AAC.00192-06] [PMID: 16723581]
[26]
Lanteri, C.A.; Stewart, M.L.; Brock, J.M.; Alibu, V.P.; Meshnick, S.R.; Tidwell, R.R.; Barrett, M.P. Roles for the Trypanosoma brucei P2 transporter in DB75 uptake and resistance. Mol. Pharmacol., 2006, 70(5), 1585-1592.
[http://dx.doi.org/10.1124/mol.106.024653] [PMID: 16912218]
[27]
Gale, R.P.; Chapel, H.M.; Bunch, C.; Rai, K.R.; Foon, K.; Courter, S.G.; Tait, D. Intravenous immunoglobulin for the prevention of infection in chronic lymphocytic leukemia. A randomized, controlled clinical trial. N. Engl. J. Med., 1988, 319(14), 902-907.
[http://dx.doi.org/10.1056/NEJM198810063191403] [PMID: 2901668]
[28]
Alston, T.A. Inhibition of cholinesterases by pentamidine. Lancet, 1988, 2(8625), 1423.
[http://dx.doi.org/10.1016/S0140-6736(88)90612-5] [PMID: 2904548]
[29]
Heley, A. Aerosolised pentamidine treatment at home. Lancet, 1987, 2(8567), 1092.
[http://dx.doi.org/10.1016/S0140-6736(87)91523-6] [PMID: 2890004]
[30]
Tanious, F.; Wilson, W.D.; Wang, L.; Kumar, A.; Boykin, D.W.; Marty, C.; Baldeyrou, B.; Bailly, C. Cooperative dimerization of a heterocyclic diamidine determines sequence-specific DNA recognition. Biochemistry, 2003, 42(46), 13576-13586.
[http://dx.doi.org/10.1021/bi034852y] [PMID: 14622004]
[31]
Laughlin, S.; Wang, S.; Kumar, A.; Farahat, A.A.; Boykin, D.W.; Wilson, W.D. Resolution of mixed site DNA complexes with dimer-forming minor-groove binders by using electrospray ionization mass spectrometry: Compound structure and DNA sequence effects. Chemistry, 2015, 21(14), 5528-5539.
[http://dx.doi.org/10.1002/chem.201406322] [PMID: 25703690]
[32]
Sánchez, M.I.; Vázquez, O.; Vázquez, M.E.; Mascareñas, J.L. Light-controlled DNA binding of bisbenzamidines. Chem. Commun. (Camb.), 2011, 47(39), 11107-11109.
[http://dx.doi.org/10.1039/c1cc13355a] [PMID: 21909542]
[33]
Berg, R.W.; Riisager, A.; Fehrmann, R. Formation of an ion-pair molecule with a single NH(+)...Cl(-) hydrogen bond: Raman spectra of 1,1,3,3-tetramethylguanidinium chloride in the solid state, in solution, and in the vapor phase. J. Phys. Chem. A, 2008, 112(37), 8585-8592.
[http://dx.doi.org/10.1021/jp803597j] [PMID: 18714951]
[34]
Lucas, J.M.S. The chemotherapy of experimental babesiasis in mice and splenectomized calves. Res. Vet. Sci., 1960, 1(3), 218-225.
[http://dx.doi.org/10.1016/S0034-5288(18)34999-3]
[35]
Ashley, J.N.; Berg, S.S.; Lucas, J.M. 3:3′-diamidinocarbanilide: a new drug active against Babesial infections. Nature, 1960, 185(4711), 461.
[http://dx.doi.org/10.1038/185461a0] [PMID: 18990808]
[36]
Worrell, B.T.; Malik, J.A.; Fokin, V.V. Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science, 2013, 340(6131), 457-460.
[http://dx.doi.org/10.1126/science.1229506] [PMID: 23558174]
[37]
Scala, A.; Piperno, A.; Micale, N.; Mineo, P.G.; Abbadessa, A.; Risoluti, R.; Castelli, G.; Bruno, F.; Vitale, F.; Cascio, A.; Grassi, G. “Click” on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(8), 2778-2785.
[http://dx.doi.org/10.1002/jbm.b.34058] [PMID: 29219244]
[38]
Young, L.S.; Rickinson, A.B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer, 2004, 4(10), 757-768.
[http://dx.doi.org/10.1038/nrc1452] [PMID: 15510157]
[39]
Wang, Y. B.; Peng, Y. H.; Zhang, B.; Zhang, X. Z.; Li, H. Y.; Wilson, A. J.; Mineev, K. S.; Wang, X. H. Targeting trimeric transmembrane domain 5 of oncogenic latent membrane protein 1 using a computationally designed peptide. Chem. Sci., 2019, 10(32), 7584-7590.
[http://dx.doi.org/10.1039/C9SC02474C]
[40]
Wang, X.; Saludes, J.P.; Zhao, T.X.; Csakai, A.; Fiorini, Z.; Chavez, S.A.; Li, J.; Lee, G.I.; Varga, K.; Yin, H. Targeting the lateral interactions of transmembrane domain 5 of Epstein-Barr virus latent membrane protein 1. Biochim. Biophys. Acta, 2012, 1818(9), 2282-2289.
[http://dx.doi.org/10.1016/j.bbamem.2012.05.013] [PMID: 22609737]
[41]
Sammond, D.W.; Joce, C.; Takeshita, R.; McQuate, S.E.; Ghosh, N.; Martin, J.M.; Yin, H. Transmembrane peptides used to investigate the homo-oligomeric interface and binding hotspot of latent membrane protein 1. Biopolymers, 2011, 95(11), 772-784.
[http://dx.doi.org/10.1002/bip.21672] [PMID: 21560118]
[42]
Zhang, B.; Wang, Y.; Lin, C.; Li, H.; Wang, X.; Peng, Y.; Mineev, K.S.; Wilson, A.J.; Wang, H.; Wang, X. Targeting the transmembrane domain 5 of latent membrane protein 1 using small molecule modulators. Eur. J. Med. Chem., 2021, 214, 113210.
[http://dx.doi.org/10.1016/j.ejmech.2021.113210] [PMID: 33550183]
[43]
Scott, C.; Griffin, S. Viroporins: structure, function and potential as antiviral targets. J. Gen. Virol., 2015, 96(8), 2000-2027.
[http://dx.doi.org/10.1099/vir.0.000201] [PMID: 26023149]
[44]
Singh Tomar, P.P.; Arkin, I.T. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem. Biophys. Res. Commun., 2020, 530(1), 10-14.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.206] [PMID: 32828269]
[45]
Tomar, P.P.S.; Krugliak, M.; Arkin, I.T. Blockers of the SARS-CoV-2 3a channel identified by targeted drug repurposing. Viruses, 2021, 13(3), 532.
[http://dx.doi.org/10.3390/v13030532] [PMID: 33807095]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy