Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Recent Investigations on the Functional Role of Cerebellar Neural Networks in Motor Functions & Nonmotor Functions -Neurodegeneration

Author(s): Narasimha M. Beeraka, Vladimir N. Nikolenko*, Zakirov F. Khaidarovich, Oganesyan M. Valikovna, Rizaeva N. Aliagayevna, Zharashueva L. Arturovna, Krasilnikov A. Alexandrovich, Liudmila M. Mikhaleva and Mikhail Y. Sinelnikov*

Volume 20, Issue 10, 2022

Published on: 08 June, 2022

Page: [1865 - 1878] Pages: 14

DOI: 10.2174/1570159X20666220310121441

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The cerebellum is a well-established primary brain center in charge of controlling sensorimotor functions and non-motor functions. Recent reports depicted the significance of cerebellum in higher-order cognitive functions, including emotion-processing, language, reward-related behavior, working memory, and social behavior. As it can influence diverse behavioral patterns, any defects in cerebellar functions could invoke neuropsychiatric diseases as indicated by the incidence of alexithymia and induce alterations in emotional and behavioral patterns. Furthermore, its defects can trigger motor diseases, such as ataxia and Parkinson’s disease (PD). In this review, we have extensively discussed the role of cerebellum in motor and non-motor functions and how the cerebellum malfunctions in relation to the neural circuit wiring as it could impact brain function and behavioral outcomes in patients with neuropsychiatric diseases. Relevant data regarding cerebellar non-motor functions have been vividly described, along with anatomy and physiology of these functions. In addition to the defects in basal ganglia, the lack of activity in motor related regions of the cerebellum could be associated with the severity of motor symptoms. All together, this review delineates the importance of cerebellar involvement in patients with PD and unravels a crucial link for various clinical aspects of PD with specific cerebellar sub-regions.

Keywords: Cerebellum, emotions, behavior, motor and non-motor functions, cognition, neurodegeneration.

Graphical Abstract
[1]
Gill, J.S.; Sillitoe, R.V. Functional outcomes of cerebellar malformations. Front. Cell. Neurosci., 2019, 13, 441.
[http://dx.doi.org/10.3389/fncel.2019.00441] [PMID: 31636540]
[2]
Manto, M.; Bower, J.M.; Conforto, A.B.; Delgado-García, J.M.; da Guarda, S.N.F.; Gerwig, M.; Habas, C.; Hagura, N.; Ivry, R.B.; Mariën, P.; Molinari, M.; Naito, E.; Nowak, D.A.; Oulad Ben Taib, N.; Pelisson, D.; Tesche, C.D.; Tilikete, C.; Timmann, D. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. Cerebellum, 2012, 11(2), 457-487.
[http://dx.doi.org/10.1007/s12311-011-0331-9] [PMID: 22161499]
[3]
Perciavalle, V.; Apps, R.; Bracha, V.; Delgado-García, J.M.; Gibson, A.R.; Leggio, M.; Carrel, A.J.; Cerminara, N.; Coco, M.; Gruart, A.; Sánchez-Campusano, R. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum, 2013, 12(5), 738-757.
[http://dx.doi.org/10.1007/s12311-013-0464-0] [PMID: 23564049]
[4]
Lang, E.J.; Apps, R.; Bengtsson, F.; Cerminara, N.L.; De Zeeuw, C.I.; Ebner, T.J.; Heck, D.H.; Jaeger, D.; Jörntell, H.; Kawato, M.; Otis, T.S.; Ozyildirim, O.; Popa, L.S.; Reeves, A.M.; Schweighofer, N.; Sugihara, I.; Xiao, J. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper. Cerebellum, 2017, 16(1), 230-252.
[http://dx.doi.org/10.1007/s12311-016-0787-8] [PMID: 27193702]
[5]
Koziol, L.F.; Budding, D.; Andreasen, N.; D’Arrigo, S.; Bulgheroni, S.; Imamizu, H.; Ito, M.; Manto, M.; Marvel, C.; Parker, K.; Pezzulo, G.; Ramnani, N.; Riva, D.; Schmahmann, J.; Vandervert, L.; Yamazaki, T. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum, 2014, 13(1), 151-177.
[http://dx.doi.org/10.1007/s12311-013-0511-x] [PMID: 23996631]
[6]
Mariën, P.; Ackermann, H.; Adamaszek, M.; Barwood, C.H.; Beaton, A.; Desmond, J.; De Witte, E.; Fawcett, A.J.; Hertrich, I.; Küper, M.; Leggio, M.; Marvel, C.; Molinari, M.; Murdoch, B.E.; Nicolson, R.I.; Schmahmann, J.D.; Stoodley, C.J.; Thürling, M.; Timmann, D.; Wouters, E.; Ziegler, W. Consensus paper: Language and the cerebellum: an ongoing enigma. Cerebellum, 2014, 13(3), 386-410.
[PMID: 24318484]
[7]
Baumann, O.; Borra, R.J.; Bower, J.M.; Cullen, K.E.; Habas, C.; Ivry, R.B.; Leggio, M.; Mattingley, J.B.; Molinari, M.; Moulton, E.A.; Paulin, M.G.; Pavlova, M.A.; Schmahmann, J.D.; Sokolov, A.A. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum, 2015, 14(2), 197-220.
[http://dx.doi.org/10.1007/s12311-014-0627-7] [PMID: 25479821]
[8]
Schmahmann, J.D. An emerging concept. The cerebellar contribution to higher function. Arch. Neurol., 1991, 48(11), 1178-1187.
[http://dx.doi.org/10.1001/archneur.1991.00530230086029] [PMID: 1953406]
[9]
Schmahmann, J.D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci., 2004, 16(3), 367-378.
[http://dx.doi.org/10.1176/jnp.16.3.367] [PMID: 15377747]
[10]
Cerminara, N.L.; Lang, E.J.; Sillitoe, R.V.; Apps, R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat. Rev. Neurosci., 2015, 16(2), 79-93.
[http://dx.doi.org/10.1038/nrn3886] [PMID: 25601779]
[11]
Apps, R.; Hawkes, R.; Aoki, S.; Bengtsson, F.; Brown, A.M.; Chen, G.; Ebner, T.J.; Isope, P.; Jörntell, H.; Lackey, E.P.; Lawrenson, C.; Lumb, B.; Schonewille, M.; Sillitoe, R.V.; Spaeth, L.; Sugihara, I.; Valera, A.; Voogd, J.; Wylie, D.R.; Ruigrok, T.J.H. Cerebellar modules and their role as operational cerebellar processing units. Cerebellum, 2018, 17(5), 654-682.
[http://dx.doi.org/10.1007/s12311-018-0952-3] [PMID: 29876802]
[12]
Stern, P. Neuroscience: In search of new concepts. Science, 2017, 358, 464-465.
[13]
Leshinskaya, A.; Caramazza, A. For a cognitive neuroscience of concepts: Moving beyond the grounding issue. Psychon. Bull. Rev., 2016, 23(4), 991-1001.
[http://dx.doi.org/10.3758/s13423-015-0870-z] [PMID: 27294420]
[14]
Ren, F. Influence of cognitive neuroscience on contemporary philosophy of science. Transl. Neurosci., 2019, 10, 37-43.
[http://dx.doi.org/10.1515/tnsci-2019-0007] [PMID: 31098310]
[15]
Yuan, P.; Raz, N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci. Biobehav. Rev., 2014, 42, 180-192.
[http://dx.doi.org/10.1016/j.neubiorev.2014.02.005] [PMID: 24568942]
[16]
Ball, G.; Stokes, P.R.; Rhodes, R.A.; Bose, S.K.; Rezek, I.; Wink, A-M.; Lord, L-D.; Mehta, M.A.; Grasby, P.M.; Turkheimer, F.E. Executive functions and prefrontal cortex: a matter of persistence? Front. Syst. Neurosci., 2011, 5, 3.
[http://dx.doi.org/10.3389/fnsys.2011.00003] [PMID: 21286223]
[17]
Reeber, S.L.; Otis, T.S.; Sillitoe, R.V. New roles for the cerebellum in health and disease. Front. Syst. Neurosci., 2013, 7, 83.
[http://dx.doi.org/10.3389/fnsys.2013.00083] [PMID: 24294192]
[18]
Lawrenson, C.; Bares, M.; Kamondi, A. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front. Neural Circuits, 2013, 6, 116.
[19]
Klein, A.P.; Ulmer, J.L.; Quinet, S.A.; Mathews, V.; Mark, L.P. Nonmotor functions of the cerebellum: an introduction. AJNR Am. J. Neuroradiol., 2016, 37(6), 1005-1009.
[http://dx.doi.org/10.3174/ajnr.A4720] [PMID: 26939633]
[20]
Barkley, R.A. The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol. Rev., 2001, 11(1), 1-29.
[http://dx.doi.org/10.1023/A:1009085417776] [PMID: 11392560]
[21]
Schmahmann, J.D. A brief history of the cerebellum. In: Essentials of cerebellum and cerebellar disorders; Springer, 2016, pp. 5-20.
[http://dx.doi.org/10.1007/978-3-319-24551-5_2]
[22]
Glickstein, M.; Strata, P.; Voogd, J. Cerebellum: history. Neuroscience, 2009, 162(3), 549-559.
[http://dx.doi.org/10.1016/j.neuroscience.2009.02.054] [PMID: 19272426]
[23]
Manto, M.; Huisman, T.A.G.M. The cerebellum from the fetus to the elderly: history, advances, and future challenges. Handb. Clin. Neurol., 2018, 155, 407-413.
[http://dx.doi.org/10.1016/B978-0-444-64189-2.00027-5] [PMID: 29891075]
[24]
Voogd, J.; Koehler, P.J. Historic notes on anatomic, physiologic, and clinical research on the cerebellum. Handb. Clin. Neurol., 2018, 154, 3-26.
[http://dx.doi.org/10.1016/B978-0-444-63956-1.00001-1] [PMID: 29903448]
[25]
Ashizawa, T.; Xia, G. Ataxia. Continuum (Minneap. Minn.), 2016, 22, 1208-1226.
[http://dx.doi.org/10.1212/CON.0000000000000362] [PMID: 27495205]
[26]
Vožeh, F. Jan Evangelista Purkyně and the cerebellum then and now. Physiol. Res., 2015, 64(Suppl. 5), S567-S584.
[http://dx.doi.org/10.33549/physiolres.933231] [PMID: 26674295]
[27]
Koeppen, A.H. The neuropathology of the adult cerebellum. Handb. Clin. Neurol., 2018, 154, 129-149.
[http://dx.doi.org/10.1016/B978-0-444-63956-1.00008-4] [PMID: 29903436]
[28]
Argyropoulos, G.P.; van Dun, K.; Adamaszek, M.; Leggio, M.; Manto, M.; Masciullo, M.; Molinari, M.; Stoodley, C.; Van Overwalle, F.; Ivry, R. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum, 2020, 19, 102-125.
[PMID: 31522332]
[29]
Vožeh, F. Cerebellum—from JE Purkyně up to contemporary research. Cerebellum, 2017, 16(3), 691-694.
[http://dx.doi.org/10.1007/s12311-016-0835-4] [PMID: 27858255]
[30]
Thair, H.; Holloway, A.; Newport, R.; Smith, A. Transcranial direct current stimulation (tDCS): A beginner’s guide for design and implementation. Front. Neurosci., 2017, 11, 641.
[http://dx.doi.org/10.3389/fnins.2017.00641] [PMID: 29213226]
[31]
Szameitat, A.J.; Schubert, T.; Müller, K.; Von Cramon, D.Y. Localization of executive functions in dual-task performance with fMRI. J. Cogn. Neurosci., 2002, 14(8), 1184-1199.
[http://dx.doi.org/10.1162/089892902760807195] [PMID: 12495525]
[32]
Bellebaum, C.; Daum, I. Cerebellar involvement in executive control. Cerebellum, 2007, 6(3), 184-192.
[http://dx.doi.org/10.1080/14734220601169707] [PMID: 17786814]
[33]
D’Angelo, E. Physiology of the cerebellum. Handb. Clin. Neurol., 2018, 154, 85-108.
[http://dx.doi.org/10.1016/B978-0-444-63956-1.00006-0] [PMID: 29903454]
[34]
Diedrichsen, J.; King, M.; Hernandez-Castillo, C.; Sereno, M.; Ivry, R.B. Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. Neuron, 2019, 102(5), 918-928.
[http://dx.doi.org/10.1016/j.neuron.2019.04.021] [PMID: 31170400]
[35]
Reeber, S.L.; White, J.J.; George-Jones, N.A.; Sillitoe, R.V. Architecture and development of olivocerebellar circuit topography. Front. Neural Circuits, 2013, 6, 115.
[http://dx.doi.org/10.3389/fncir.2012.00115] [PMID: 23293588]
[36]
Sathyanesan, A.; Zhou, J.; Scafidi, J.; Heck, D.H.; Sillitoe, R.V.; Gallo, V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat. Rev. Neurosci., 2019, 20(5), 298-313.
[http://dx.doi.org/10.1038/s41583-019-0152-2] [PMID: 30923348]
[37]
Herndon, R.M. The fine structure of the Purkinje cell. J. Cell Biol., 1963, 18, 167-180.
[http://dx.doi.org/10.1083/jcb.18.1.167] [PMID: 13953993]
[38]
Glickstein, M.; Voogd, J. Lodewijk Bolk and the comparative anatomy of the cerebellum. Trends Neurosci., 1995, 18(5), 206-210.
[http://dx.doi.org/10.1016/0166-2236(95)93903-B] [PMID: 7610489]
[39]
Voogd, J.; Glickstein, M. The anatomy of the cerebellum. Trends Cogn. Sci., 1998, 2(9), 307-313.
[http://dx.doi.org/10.1016/S1364-6613(98)01210-8] [PMID: 21227226]
[40]
Oberdick, J.; Sillitoe, R.V. Cerebellar zones: history, development, and function. Cerebellum, 2011, 10(3), 301-306.
[http://dx.doi.org/10.1007/s12311-011-0306-x] [PMID: 21822545]
[41]
Ruigrok, T.J. Ins and outs of cerebellar modules. Cerebellum, 2011, 10(3), 464-474.
[http://dx.doi.org/10.1007/s12311-010-0164-y] [PMID: 20232190]
[42]
Sotelo, C.; Alvarado-Mallart, R.M. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature, 1987, 327(6121), 421-423.
[http://dx.doi.org/10.1038/327421a0] [PMID: 3587363]
[43]
Buffo, A.; Rossi, F. Origin, lineage and function of cerebellar glia. Prog. Neurobiol., 2013, 109, 42-63.
[http://dx.doi.org/10.1016/j.pneurobio.2013.08.001] [PMID: 23981535]
[44]
Goertzen, A.; Veh, R.W. Fañanas cells-the forgotten cerebellar glia cell type: Immunocytochemistry reveals two potassium channel-related polypeptides, Kv2.2 and Calsenilin (KChIP3) as potential marker proteins. Glia, 2018, 66(10), 2200-2208.
[http://dx.doi.org/10.1002/glia.23478] [PMID: 30151916]
[45]
Wizeman, J.W.; Guo, Q.; Wilion, E.M.; Li, J.Y. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. eLife, 2019, 8, e42388.
[http://dx.doi.org/10.7554/eLife.42388] [PMID: 30735127]
[46]
Derouesné, C. Qu’est-ce qu’une émotion? Une introduction à l’étude des émotions. Gériatr. Psychol. Neuropsychiatr. Vieil., 2011, 9(1), 69-81.
[PMID: 21586380]
[47]
Strata, P.; Scelfo, B.; Sacchetti, B. Involvement of cerebellum in emotional behavior. Physiol. Res., 2011, 60(Suppl. 1), S39-S48.
[http://dx.doi.org/10.33549/physiolres.932169] [PMID: 21777033]
[48]
Blatt, G.J.; Oblak, A.L.; Schmahmann, J.D. Cerebellar connections with limbic circuits: Anatomy and functional implicationsHandbook of the cerebellum and cerebellar disorders; , 2013, pp. 479-496.
[49]
Moreno-Rius, J. The cerebellum in fear and anxiety-related disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 85, 23-32.
[http://dx.doi.org/10.1016/j.pnpbp.2018.04.002] [PMID: 29627508]
[50]
Lange, I.; Kasanova, Z.; Goossens, L.; Leibold, N.; De Zeeuw, C.I.; van Amelsvoort, T.; Schruers, K. The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neurosci. Biobehav. Rev., 2015, 59, 83-91.
[http://dx.doi.org/10.1016/j.neubiorev.2015.09.019] [PMID: 26441374]
[51]
Utz, A.; Thürling, M.; Ernst, T.M.; Hermann, A.; Stark, R.; Wolf, O.T.; Timmann, D.; Merz, C.J. Cerebellar vermis contributes to the extinction of conditioned fear. Neurosci. Lett., 2015, 604, 173-177.
[http://dx.doi.org/10.1016/j.neulet.2015.07.026] [PMID: 26219987]
[52]
Strata, P. The emotional cerebellum. Cerebellum, 2015, 14(5), 570-577.
[http://dx.doi.org/10.1007/s12311-015-0649-9] [PMID: 25626523]
[53]
Ernst, T.M.; Brol, A.E.; Gratz, M.; Ritter, C.; Bingel, U.; Schlamann, M.; Maderwald, S.; Quick, H.H.; Merz, C.J.; Timmann, D. The cerebellum is involved in processing of predictions and prediction errors in a fear conditioning paradigm. eLife, 2019, 8, e46831.
[http://dx.doi.org/10.7554/eLife.46831] [PMID: 31464686]
[54]
Leaton, R. Fear and the cerebellum. Mol. Psychiatry, 2003, 8(5), 461-462.
[http://dx.doi.org/10.1038/sj.mp.4001286] [PMID: 12808422]
[55]
Sakakibara, R. The cerebellum seems not a ‘little brain’ for the autonomic nervous system. Clin. Neurophysiol., 2019, 130(1), 160.
[http://dx.doi.org/10.1016/j.clinph.2018.08.021] [PMID: 30219271]
[56]
Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A review of emotion recognition using physiological signals. Sensors (Basel), 2018, 18(7), 2074.
[http://dx.doi.org/10.3390/s18072074] [PMID: 29958457]
[57]
Yang, D.; Alsadoon, A.; Prasad, P.C.; Singh, A.K.; Elchouemi, A. An emotion recognition model based on facial recognition in virtual learning environment. Procedia Comput. Sci., 2018, 125, 2-10.
[http://dx.doi.org/10.1016/j.procs.2017.12.003]
[58]
Tarnowski, P.; Kołodziej, M.; Majkowski, A.; Rak, R.J. Emotion recognition using facial expressions. Procedia Comput. Sci., 2017, 108, 1175-1184.
[http://dx.doi.org/10.1016/j.procs.2017.05.025]
[59]
Ferretti, V.; Papaleo, F. Understanding others: Emotion recognition in humans and other animals. Genes Brain Behav., 2019, 18(1), e12544.
[PMID: 30549185]
[60]
Sokolov, A.A. The cerebellum in social cognition. Front. Cell. Neurosci., 2018, 12, 145.
[http://dx.doi.org/10.3389/fncel.2018.00145]
[61]
Hoche, F.; Guell, X.; Sherman, J.C.; Vangel, M.G.; Schmahmann, J.D. Cerebellar contribution to social cognition. Cerebellum, 2016, 15(6), 732-743.
[http://dx.doi.org/10.1007/s12311-015-0746-9] [PMID: 26585120]
[62]
Qi, Z.; An, Y.; Zhang, M.; Li, H-J.; Lu, J. Altered cerebro-cerebellar limbic network in AD spectrum: a resting-state fMRI study. Front. Neural Circuits, 2019, 13, 72.
[http://dx.doi.org/10.3389/fncir.2019.00072] [PMID: 31780903]
[63]
Boothe, A.C. Resting state functional connectivity of the limbic cerebellum in ASD: vermis lobules IV, VII, and IX; The University of Texas at Austin, 2019.
[64]
Adamaszek, M.; D’Agata, F.; Steele, C.J.; Sehm, B.; Schoppe, C.; Strecker, K.; Woldag, H.; Hummelsheim, H.; Kirkby, K.C. Comparison of visual and auditory emotion recognition in patients with cerebellar and Parkinson’s disease. Soc. Neurosci., 2019, 14(2), 195-207.
[http://dx.doi.org/10.1080/17470919.2018.1434089] [PMID: 29375013]
[65]
Gold, A.K.; Toomey, R. The role of cerebellar impairment in emotion processing: a case study. Cerebellum Ataxias, 2018, 5, 11.
[http://dx.doi.org/10.1186/s40673-018-0090-1] [PMID: 30345063]
[66]
Stoodley, C.J. The cerebellum and neurodevelopmental disorders. Cerebellum, 2016, 15(1), 34-37.
[http://dx.doi.org/10.1007/s12311-015-0715-3] [PMID: 26298473]
[67]
Ferrucci, R.; Giannicola, G.; Rosa, M.; Fumagalli, M.; Boggio, P.S.; Hallett, M.; Zago, S.; Priori, A. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn. Emotion, 2012, 26(5), 786-799.
[http://dx.doi.org/10.1080/02699931.2011.619520] [PMID: 22077643]
[68]
Fusar-Poli, P.; Placentino, A.; Carletti, F.; Landi, P.; Allen, P.; Surguladze, S.; Benedetti, F.; Abbamonte, M.; Gasparotti, R.; Barale, F.; Perez, J.; McGuire, P.; Politi, P. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci., 2009, 34(6), 418-432.
[PMID: 19949718]
[69]
Lin, L.C.; Qu, Y.; Telzer, E.H. Intergroup social influence on emotion processing in the brain. Proc. Natl. Acad. Sci. USA, 2018, 115(42), 10630-10635.
[http://dx.doi.org/10.1073/pnas.1802111115] [PMID: 30282742]
[70]
Green, M.J.; Waldron, J.H.; Coltheart, M. Emotional context processing is impaired in schizophrenia. Cogn. Neuropsychiatry, 2007, 12(3), 259-280.
[http://dx.doi.org/10.1080/13546800601051847] [PMID: 17453905]
[71]
Zhang, L.; Fan, H.; Wang, S.; Li, H. The effect of emotional arousal on inhibition of return among youth with depressive tendency. Front. Psychol., 2019, 10, 1487.
[http://dx.doi.org/10.3389/fpsyg.2019.01487] [PMID: 31312156]
[72]
Zinchenko, A.; Obermeier, C.; Kanske, P.; Schröger, E.; Villringer, A.; Kotz, S.A. The influence of negative emotion on cognitive and emotional control remains intact in aging. Front. Aging Neurosci., 2017, 9, 349.
[http://dx.doi.org/10.3389/fnagi.2017.00349] [PMID: 29163132]
[73]
Smith, R.; Parr, T.; Friston, K.J. Simulating emotions: An active inference model of emotional state inference and emotion concept learning. Front. Psychol., 2019, 10, 2844.
[http://dx.doi.org/10.3389/fpsyg.2019.02844] [PMID: 31920873]
[74]
Vergallito, A.; Mattavelli, G.; Gerfo, E.L.; Anzani, S.; Rovagnati, V.; Speciale, M.; Vinai, P.; Vinai, P.; Vinai, L.; Lauro, L.J.R. Explicit and implicit responses of seeing own vs . Others’ emotions: An electromyographic study on the neurophysiological and cognitive basis of the self-mirroring technique. Front. Psychol., 2020, 11, 433.
[http://dx.doi.org/10.3389/fpsyg.2020.00433] [PMID: 32296363]
[75]
Stoodley, C.J.; Schmahmann, J.D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 2010, 46(7), 831-844.
[http://dx.doi.org/10.1016/j.cortex.2009.11.008] [PMID: 20152963]
[76]
Snow, W.M.; Stoesz, B.M.; Anderson, J.E. The cerebellum in emotional processing: Evidence from human and non-human animals. AIMS Neurosci., 2014, 1(1), 96-119.
[http://dx.doi.org/10.3934/Neuroscience.2014.1.96]
[77]
Park, I.S.; Lee, N.J.; Rhyu, I.J. Roles of the declive, folium, and tuber cerebellar vermian lobules in sportspeople. J. Clin. Neurol., 2018, 14(1), 1-7.
[http://dx.doi.org/10.3988/jcn.2018.14.1.1] [PMID: 29141275]
[78]
Sidtis, J.J.; Ahn, J.S.; Gomez, C.; Sidtis, D. Speech characteristics associated with three genotypes of ataxia. J. Commun. Disord., 2011, 44(4), 478-492.
[http://dx.doi.org/10.1016/j.jcomdis.2011.03.002] [PMID: 21592489]
[79]
Teive, H.A.G.; Arruda, W.O. Cognitive dysfunction in spinocerebellar ataxias. Dement. Neuropsychol., 2009, 3(3), 180-187.
[http://dx.doi.org/10.1590/S1980-57642009DN30300002] [PMID: 29213626]
[80]
Schwartze, M.; Kotz, S.A. Contributions of cerebellar event-based temporal processing and preparatory function to speech perception. Brain Lang., 2016, 161, 28-32.
[http://dx.doi.org/10.1016/j.bandl.2015.08.005] [PMID: 26362972]
[81]
Mariën, P.; Manto, M. Cerebellum as a master-piece for linguistic predictability. Cerebellum, 2018, 17(2), 101-103.
[http://dx.doi.org/10.1007/s12311-017-0894-1] [PMID: 29071518]
[82]
van Dun, K.; Vandenborre, D.; Mariën, P. Cerebellum and Writing. In: The Linguistic Cerebellum; Elsevier, 2016, pp. 149-198.
[http://dx.doi.org/10.1016/B978-0-12-801608-4.00008-6]
[83]
Hertrich, I.; Mathiak, K.; Ackermann, H. The role of the cerebellum in speech perception and language comprehension. In: The linguistic cerebellum; Elsevier, 2016, pp. 33-50.
[http://dx.doi.org/10.1016/B978-0-12-801608-4.00002-5]
[84]
Srivastava, P. The cerebellum: Learning movement, language, and social skills. Indian J. Med. Res., 2015, 141, 847-848.
[http://dx.doi.org/10.4103/0971-5916.160740]
[85]
Ang, C.; Zhang, J.; Chu, M.; Li, H.; Tian, M.; Feng, X.; Zhang, M.; Liu, L.; Meng, X.; Ding, G. Intrinsic cerebro-cerebellar functional connectivity reveals the function of cerebellum VI in reading-related skills. Front. Psychol., 2020, 11, 420.
[http://dx.doi.org/10.3389/fpsyg.2020.00420] [PMID: 32265778]
[86]
Riès, S.K.; Dronkers, N.F.; Knight, R.T. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval. Ann. N. Y. Acad. Sci., 2016, 1369(1), 111-131.
[http://dx.doi.org/10.1111/nyas.12993] [PMID: 26766393]
[87]
Guell, X.; Hoche, F.; Schmahmann, J.D. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum, 2015, 14(1), 50-58.
[http://dx.doi.org/10.1007/s12311-014-0630-z] [PMID: 25503825]
[88]
De Smet, H.J.; Paquier, P.; Verhoeven, J.; Mariën, P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang., 2013, 127(3), 334-342.
[http://dx.doi.org/10.1016/j.bandl.2012.11.001] [PMID: 23333152]
[89]
Lin, D.D.; Kleinman, J.T.; Wityk, R.J.; Gottesman, R.F.; Hillis, A.E.; Lee, A.W.; Barker, P.B. Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging. AJNR Am. J. Neuroradiol., 2009, 30(4), 710-715.
[http://dx.doi.org/10.3174/ajnr.A1435] [PMID: 19193758]
[90]
Nicolson, R.I.; Fawcett, A.J.; Dean, P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci., 2001, 24(9), 508-511.
[http://dx.doi.org/10.1016/S0166-2236(00)01896-8] [PMID: 11506881]
[91]
Nicolson, R.I.; Fawcett, A.J. Development of dyslexia: The delayed neural commitment framework. Front. Behav. Neurosci., 2019, 13, 112.
[http://dx.doi.org/10.3389/fnbeh.2019.00112] [PMID: 31178705]
[92]
Bryant, B.R.; Bryant, D.P.; Shih, M.; Seok, S. Assistive technology and supports provision: A selective review of the literature and proposed areas of application. Exceptionality, 2010, 18, 203-213.
[http://dx.doi.org/10.1080/09362835.2010.513925]
[93]
Peterburs, J.; Blevins, L.C.; Sheu, Y-S.; Desmond, J.E. Cerebellar contributions to sequence prediction in verbal working memory. Brain Struct. Funct., 2019, 224(1), 485-499.
[http://dx.doi.org/10.1007/s00429-018-1784-0] [PMID: 30390152]
[94]
Arsenault, J.S.; Buchsbaum, B.R. Distributed neural representations of phonological features during speech perception. J. Neurosci., 2015, 35(2), 634-642.
[http://dx.doi.org/10.1523/JNEUROSCI.2454-14.2015] [PMID: 25589757]
[95]
Ashburn, S.M.; Flowers, D.L.; Napoliello, E.M.; Eden, G.F. Cerebellar function in children with and without dyslexia during single word processing. Hum. Brain Mapp., 2020, 41(1), 120-138.
[http://dx.doi.org/10.1002/hbm.24792] [PMID: 31597004]
[96]
Richards, T.L.; Berninger, V.W. Abnormal fMRI connectivity in children with dyslexia during a phoneme task: Before but not after treatment. J. Neurolinguist., 2008, 21(4), 294-304.
[http://dx.doi.org/10.1016/j.jneuroling.2007.07.002] [PMID: 19079567]
[97]
van Ermingen-Marbach, M.; Grande, M.; Pape-Neumann, J.; Sass, K.; Heim, S. Distinct neural signatures of cognitive subtypes of dyslexia with and without phonological deficits. Neuroimage Clin., 2013, 2, 477-490.
[http://dx.doi.org/10.1016/j.nicl.2013.03.010] [PMID: 24936406]
[98]
Cruz-Rodrigues, C.; Barbosa, T.; Toledo-Piza, C.M.; Miranda, M.C.; Bueno, O.F.A. Neuropsychological characteristics of dyslexic children. Psicol. Reflex. Crit., 2014, 27, 539-546.
[http://dx.doi.org/10.1590/1678-7153.201427315]
[99]
Takahashi, E.; Hayashi, E.; Schmahmann, J.D.; Grant, P.E. Development of cerebellar connectivity in human fetal brains revealed by high angular resolution diffusion tractography. Neuroimage, 2014, 96, 326-333.
[http://dx.doi.org/10.1016/j.neuroimage.2014.03.022] [PMID: 24650603]
[100]
Phillips, J.R., Jr; Hewedi, D.H.; Eissa, A.M.; Moustafa, A.A. The cerebellum and psychiatric disorders. Front. Public Health, 2015, 3, 66.
[http://dx.doi.org/10.3389/fpubh.2015.00066] [PMID: 26000269]
[101]
Baldaçara, L.; Borgio, J.G.F.; Lacerda, A.L.; Jackowski, A.P. Cerebellum and psychiatric disorders. Rev. Bras. Psiquiatr., 2008, 30(3), 281-289.
[http://dx.doi.org/10.1590/S1516-44462008000300016] [PMID: 18833430]
[102]
Middleton, F.A.; Strick, P.L. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 1994, 266(5184), 458-461.
[http://dx.doi.org/10.1126/science.7939688] [PMID: 7939688]
[103]
Ueland, T.; Øie, M.; Inge Landrø, N.; Rund, B.R. Cognitive functioning in adolescents with schizophrenia spectrum disorders. Psychiatry Res., 2004, 126(3), 229-239.
[http://dx.doi.org/10.1016/j.psychres.2004.02.014] [PMID: 15157749]
[104]
Konarski, J.Z.; McIntyre, R.S.; Grupp, L.A.; Kennedy, S.H. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J. Psychiatry Neurosci., 2005, 30(3), 178-186.
[PMID: 15944742]
[105]
Shinn, A.K.; Baker, J.T.; Lewandowski, K.E.; Öngür, D.; Cohen, B.M. Aberrant cerebellar connectivity in motor and association networks in schizophrenia. Front. Hum. Neurosci., 2015, 9, 134.
[http://dx.doi.org/10.3389/fnhum.2015.00134] [PMID: 25852520]
[106]
Ebisch, S.J.; Mantini, D.; Northoff, G.; Salone, A.; De Berardis, D.; Ferri, F.; Ferro, F.M.; Di Giannantonio, M.; Romani, G.L.; Gallese, V. Altered brain long-range functional interactions underlying the link between aberrant self-experience and self-other relationship in first-episode schizophrenia. Schizophr. Bull., 2014, 40(5), 1072-1082.
[http://dx.doi.org/10.1093/schbul/sbt153] [PMID: 24191160]
[107]
Ferri, F.; Costantini, M.; Salone, A.; Ebisch, S.; De Berardis, D.; Mazzola, V.; Arciero, G.; Ferro, F.M.; Di Giannantonio, M.; Romani, G.L.; Gallese, V. Binding action and emotion in first-episode schizophrenia. Psychopathology, 2014, 47(6), 394-407.
[http://dx.doi.org/10.1159/000366133] [PMID: 25277690]
[108]
Biederman, J. Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry, 2005, 57(11), 1215-1220.
[http://dx.doi.org/10.1016/j.biopsych.2004.10.020] [PMID: 15949990]
[109]
Biederman, J.; Faraone, S.V. Attention-deficit hyperactivity disorder. Lancet, 2005, 366(9481), 237-248.
[http://dx.doi.org/10.1016/S0140-6736(05)66915-2] [PMID: 16023516]
[110]
Rajan, S.; McKee, M.; Rangarajan, S.; Bangdiwala, S.; Rosengren, A.; Gupta, R.; Kutty, V.R.; Wielgosz, A.; Lear, S.; AlHabib, K.F.; Co, H.U.; Lopez-Jaramillo, P.; Avezum, A.; Seron, P.; Oguz, A.; Kruger, I.M.; Diaz, R.; Nafiza, M.N.; Chifamba, J.; Yeates, K.; Kelishadi, R.; Sharief, W.M.; Szuba, A.; Khatib, R.; Rahman, O.; Iqbal, R.; Bo, H.; Yibing, Z.; Wei, L.; Yusuf, S. Association of symptoms of depression with cardiovascular disease and mortality in low-, middle-, and high-income countries. JAMA Psychiatry, 2020, 77(10), 1052-1063.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.1351] [PMID: 32520341]
[111]
Qiu, A.; Crocetti, D.; Adler, M.; Mahone, E.M.; Denckla, M.B.; Miller, M.I.; Mostofsky, S.H. Basal ganglia volume and shape in children with attention deficit hyperactivity disorder. Am. J. Psychiatry, 2009, 166(1), 74-82.
[http://dx.doi.org/10.1176/appi.ajp.2008.08030426] [PMID: 19015232]
[112]
Valera, E.M.; Faraone, S.V.; Murray, K.E.; Seidman, L.J. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry, 2007, 61(12), 1361-1369.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.011] [PMID: 16950217]
[113]
Ivanov, I.; Murrough, J.W.; Bansal, R.; Hao, X.; Peterson, B.S. Cerebellar morphology and the effects of stimulant medications in youths with attention deficit-hyperactivity disorder. Neuropsychopharmacology, 2014, 39(3), 718-726.
[http://dx.doi.org/10.1038/npp.2013.257] [PMID: 24077064]
[114]
Townsend, J.; Courchesne, E.; Covington, J.; Westerfield, M.; Harris, N.S.; Lyden, P.; Lowry, T.P.; Press, G.A. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J. Neurosci., 1999, 19(13), 5632-5643.
[http://dx.doi.org/10.1523/JNEUROSCI.19-13-05632.1999] [PMID: 10377369]
[115]
American Psychiatric Association. A. Diagnostic and statistical manual of mental disorders; American Psychiatric Association: Washington, DC, 1980, p. 3.
[116]
Wang, S.S.H.; Kloth, A.D.; Badura, A. The cerebellum, sensitive periods, and autism. Neuron, 2014, 83(3), 518-532.
[http://dx.doi.org/10.1016/j.neuron.2014.07.016] [PMID: 25102558]
[117]
Skefos, J.; Cummings, C.; Enzer, K.; Holiday, J.; Weed, K.; Levy, E.; Yuce, T.; Kemper, T.; Bauman, M. Regional alterations in purkinje cell density in patients with autism. PLoS One, 2014, 9(2), e81255.
[http://dx.doi.org/10.1371/journal.pone.0081255] [PMID: 24586223]
[118]
Brambilla, P.; Barale, F.; Caverzasi, E.; Soares, J.C. Anatomical MRI findings in mood and anxiety disorders. Epidemiol. Psichiatr. Soc., 2002, 11(2), 88-99.
[http://dx.doi.org/10.1017/S1121189X00005558] [PMID: 12212470]
[119]
Jurjus, G.J.; Weiss, K.M.; Jaskiw, G.E. Schizophrenia-like psychosis and cerebellar degeneration. Schizophr. Res., 1994, 12(2), 183-184.
[http://dx.doi.org/10.1016/0920-9964(94)90076-0] [PMID: 8043529]
[120]
Monkul, E.S.; Hatch, J.P.; Sassi, R.B.; Axelson, D.; Brambilla, P.; Nicoletti, M.A.; Keshavan, M.S.; Ryan, N.D.; Birmaher, B.; Soares, J.C. MRI study of the cerebellum in young bipolar patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(3), 613-619.
[http://dx.doi.org/10.1016/j.pnpbp.2007.09.016] [PMID: 18272276]
[121]
Mills, N.P.; Delbello, M.P.; Adler, C.M.; Strakowski, S.M. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am. J. Psychiatry, 2005, 162(8), 1530-1532.
[http://dx.doi.org/10.1176/appi.ajp.162.8.1530] [PMID: 16055777]
[122]
Sepede, G.; Chiacchiaretta, P.; Gambi, F.; Di Iorio, G.; De Berardis, D.; Ferretti, A.; Perrucci, M.G.; Di Giannantonio, M. Bipolar disorder with and without a history of psychotic features: fMRI correlates of sustained attention. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 98, 109817-109817.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109817] [PMID: 31756418]
[123]
Critchley, H.D.; Corfield, D.R.; Chandler, M.P.; Mathias, C.J.; Dolan, R.J. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J. Physiol., 2000, 523(Pt 1), 259-270.
[http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00259.x] [PMID: 10673560]
[124]
Sakai, Y.; Kumano, H.; Nishikawa, M.; Sakano, Y.; Kaiya, H.; Imabayashi, E.; Ohnishi, T.; Matsuda, H.; Yasuda, A.; Sato, A.; Diksic, M.; Kuboki, T. Cerebral glucose metabolism associated with a fear network in panic disorder. Neuroreport, 2005, 16(9), 927-931.
[http://dx.doi.org/10.1097/00001756-200506210-00010] [PMID: 15931063]
[125]
De Berardis, D.; Fornaro, M.; Orsolini, L.; Ventriglio, A.; Vellante, F.; Di Giannantonio, M. Emotional dysregulation in adolescents: implications for the development of severe psychiatric disorders, substance abuse, and suicidal ideation and behaviors. Brain Sci., 2020, 10(9), 591.
[http://dx.doi.org/10.3390/brainsci10090591] [PMID: 32858969]
[126]
Schweizer, S.; Gotlib, I.H.; Blakemore, S-J. The role of affective control in emotion regulation during adolescence. Emotion, 2020, 20(1), 80-86.
[http://dx.doi.org/10.1037/emo0000695] [PMID: 31961183]
[127]
Compas, B.E.; Jaser, S.S.; Bettis, A.H.; Watson, K.H.; Gruhn, M.A.; Dunbar, J.P.; Williams, E.; Thigpen, J.C. Coping, emotion regulation, and psychopathology in childhood and adolescence: A meta-analysis and narrative review. Psychol. Bull., 2017, 143(9), 939-991.
[http://dx.doi.org/10.1037/bul0000110] [PMID: 28616996]
[128]
Sifneos, P.E.; Apfel-Savitz, R.; Frankel, F.H. The phenomenon of ‘alexithymia’. Observations in neurotic and psychosomatic patients. Psychother. Psychosom., 1977, 28(1-4), 47-57.
[http://dx.doi.org/10.1159/000287043] [PMID: 609697]
[129]
De Berardis, D.; Vellante, F.; Fornaro, M.; Anastasia, A.; Olivieri, L.; Rapini, G.; Serroni, N.; Orsolini, L.; Valchera, A.; Carano, A.; Tomasetti, C.; Varasano, P.A.; Pressanti, G.L.; Bustini, M.; Pompili, M.; Serafini, G.; Perna, G.; Martinotti, G.; Di Giannantonio, M. Alexithymia, suicide ideation, affective temperaments and homocysteine levels in drug naïve patients with post-traumatic stress disorder: an exploratory study in the everyday ‘real world’ clinical practice. Int. J. Psychiatry Clin. Pract., 2020, 24(1), 83-87.
[http://dx.doi.org/10.1080/13651501.2019.1699575] [PMID: 31829763]
[130]
Serafini, G.; De Berardis, D.; Valchera, A.; Canepa, G.; Geoffroy, P.A.; Pompili, M.; Amore, M. Alexithymia as a possible specifier of adverse outcomes: Clinical correlates in euthymic unipolar individuals. J. Affect. Disord., 2020, 263, 428-436.
[http://dx.doi.org/10.1016/j.jad.2019.10.046] [PMID: 31969274]
[131]
Taylor, G.J. Alexithymia: concept, measurement, and implications for treatment. Am. J. Psychiatry, 1984, 141(6), 725-732.
[http://dx.doi.org/10.1176/ajp.141.6.725] [PMID: 6375397]
[132]
Taylor, P. The Return of the Multi-Generational Family Household; Pew Research Center, 2010.
[133]
Meza-Concha, N.; Arancibia, M.; Salas, F.; Behar, R.; Salas, G.; Silva, H.; Escobar, R. Towards a neurobiological understanding of alexithymia. Medwave, 2017, 17(4), e6960.
[http://dx.doi.org/10.5867/medwave.2017.04.6960] [PMID: 28622282]
[134]
Reeves, R.R.; Johnson-Walker, D. Alexithymia: Should this personality disorder be considered during treatment of patients with mental illness? J. Psychosoc. Nurs. Ment. Health Serv., 2015, 53(8), 25-29.
[http://dx.doi.org/10.3928/02793695-20150720-04] [PMID: 26268478]
[135]
Orzechowska, A.; Denys, K.; Gałecki, P. Alexithymia-definition, causes and participation in the etiology of diseases. Pol. Merkuriusz Lek., 2014, 37(218), 128-133.
[PMID: 25252451]
[136]
Tolmunen, T.; Heliste, M.; Lehto, S.M.; Hintikka, J.; Honkalampi, K.; Kauhanen, J. Stability of alexithymia in the general population: an 11-year follow-up. Compr. Psychiatry, 2011, 52(5), 536-541.
[http://dx.doi.org/10.1016/j.comppsych.2010.09.007] [PMID: 21081227]
[137]
Laricchiuta, D.; Petrosini, L.; Picerni, E.; Cutuli, D.; Iorio, M.; Chiapponi, C.; Caltagirone, C.; Piras, F.; Spalletta, G. The embodied emotion in cerebellum: a neuroimaging study of alexithymia. Brain Struct. Funct., 2015, 220(4), 2275-2287.
[http://dx.doi.org/10.1007/s00429-014-0790-0] [PMID: 24841618]
[138]
Sepede, G.; De Berardis, D.; Campanella, D.; Perrucci, M.G.; Ferretti, A.; Salerno, R.M.; Di Giannantonio, M.; Romani, G.L.; Gambi, F. Neural correlates of negative emotion processing in bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 60, 1-10.
[http://dx.doi.org/10.1016/j.pnpbp.2015.01.016] [PMID: 25661850]
[139]
De Berardis, D.; Fornaro, M.; Orsolini, L. Editorial: “No words for feelings, yet!” exploring alexithymia, disorder of affect regulation, and the “mind-body” connection. Front. Psychiatry, 2020, 11, 593462.
[http://dx.doi.org/10.3389/fpsyt.2020.593462] [PMID: 33061929]
[140]
Stoodley, C.J.; Valera, E.M.; Schmahmann, J.D. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage, 2012, 59(2), 1560-1570.
[http://dx.doi.org/10.1016/j.neuroimage.2011.08.065] [PMID: 21907811]
[141]
Guo, C.C.; Tan, R.; Hodges, J.R.; Hu, X.; Sami, S.; Hornberger, M. Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain, 2016, 139(Pt 5), 1527-1538.
[http://dx.doi.org/10.1093/brain/aww003] [PMID: 26912642]
[142]
Dickson, D.W.; Wertkin, A.; Mattiace, L.A.; Fier, E.; Kress, Y.; Davies, P.; Yen, S-H. Ubiquitin immunoelectron microscopy of dystrophic neurites in cerebellar senile plaques of Alzheimer’s disease. Acta Neuropathol., 1990, 79(5), 486-493.
[http://dx.doi.org/10.1007/BF00296107] [PMID: 2158201]
[143]
Mattiace, L.A.; Davies, P.; Yen, S-H.; Dickson, D.W. Microglia in cerebellar plaques in Alzheimer’s disease. Acta Neuropathol., 1990, 80(5), 493-498.
[http://dx.doi.org/10.1007/BF00294609] [PMID: 2251906]
[144]
Chen, J.; Cohen, M.L.; Lerner, A.J.; Yang, Y.; Herrup, K. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol. Neurodegener., 2010, 5, 60.
[http://dx.doi.org/10.1186/1750-1326-5-60] [PMID: 21172027]
[145]
Mahoney, C.J.; Downey, L.E.; Ridgway, G.R.; Beck, J.; Clegg, S.; Blair, M.; Finnegan, S.; Leung, K.K.; Yeatman, T.; Golden, H.; Mead, S.; Rohrer, J.D.; Fox, N.C.; Warren, J.D. Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions. Alzheimers Res. Ther., 2012, 4(5), 41.
[http://dx.doi.org/10.1186/alzrt144] [PMID: 23006986]
[146]
Whitwell, J.L.; Weigand, S.D.; Boeve, B.F.; Senjem, M.L.; Gunter, J.L.; DeJesus-Hernandez, M.; Rutherford, N.J.; Baker, M.; Knopman, D.S.; Wszolek, Z.K.; Parisi, J.E.; Dickson, D.W.; Petersen, R.C.; Rademakers, R.; Jack, C.R., Jr; Josephs, K.A. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain, 2012, 135(Pt 3), 794-806.
[http://dx.doi.org/10.1093/brain/aws001] [PMID: 22366795]
[147]
Lewis, M.M.; Galley, S.; Johnson, S.; Stevenson, J.; Huang, X.; McKeown, M.J. The role of the cerebellum in the pathophysiology of Parkinson’s disease. Can. J. Neurol. Sci., 2013, 40(3), 299-306.
[http://dx.doi.org/10.1017/S0317167100014232] [PMID: 23603164]
[148]
Solstrand Dahlberg, L.; Lungu, O.; Doyon, J. Cerebellar Contribution to Motor and Non-motor Functions in Parkinson’s Disease: A Meta-Analysis of fMRI Findings. Front. Neurol., 2020, 11, 127.
[http://dx.doi.org/10.3389/fneur.2020.00127] [PMID: 32174883]
[149]
Pfeiffer, R.F. Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat. Disord., 2016, 22(Suppl. 1), S119-S122.
[http://dx.doi.org/10.1016/j.parkreldis.2015.09.004] [PMID: 26372623]
[150]
Rana, A.Q.; Ahmed, U.S.; Chaudry, Z.M.; Vasan, S. Parkinson’s disease: a review of non-motor symptoms. Expert Rev. Neurother., 2015, 15(5), 549-562.
[http://dx.doi.org/10.1586/14737175.2015.1038244] [PMID: 25936847]
[151]
van Eijsden, P.; Veldink, J.H.; Linn, F.H.; Scheltens, P.; Biessels, G.J. Progressive dementia and mesiotemporal atrophy on brain MRI: neurosyphilis mimicking pre-senile Alzheimer’s disease? Eur. J. Neurol., 2008, 15(2), e14-e15.
[http://dx.doi.org/10.1111/j.1468-1331.2007.02018.x] [PMID: 18093152]
[152]
Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol., 2006, 5(3), 235-245.
[http://dx.doi.org/10.1016/S1474-4422(06)70373-8] [PMID: 16488379]
[153]
Hinnell, C.; Chaudhuri, K.R. The effect of non-motor symptoms on quality of life in Parkinson’s disease. Eur. Neurol. Rev., 2009, 4, 29-33.
[http://dx.doi.org/10.17925/ENR.2009.04.02.29]
[154]
Obeso, J.A.; Rodríguez-Oroz, M.C.; Rodríguez, M.; Lanciego, J.L.; Artieda, J.; Gonzalo, N.; Olanow, C.W. Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci., 2000, 23(10)(Suppl.), S8-S19.
[http://dx.doi.org/10.1016/S1471-1931(00)00028-8] [PMID: 11052215]
[155]
Alexander, G.E.; Crutcher, M.D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci., 1990, 13(7), 266-271.
[http://dx.doi.org/10.1016/0166-2236(90)90107-L] [PMID: 1695401]
[156]
O’Doherty, J.P.; Dayan, P.; Friston, K.; Critchley, H.; Dolan, R.J. Temporal difference models and reward-related learning in the human brain. Neuron, 2003, 38(2), 329-337.
[http://dx.doi.org/10.1016/S0896-6273(03)00169-7] [PMID: 12718865]
[157]
Narabayashi, H.; Maeda, T.; Yokochi, F. Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. Appl. Neurophysiol., 1987, 50(1-6), 330-337.
[PMID: 3329871]
[158]
Ebner, T.J.; Pasalar, S. Cerebellum predicts the future motor state. Cerebellum, 2008, 7(4), 583-588.
[http://dx.doi.org/10.1007/s12311-008-0059-3] [PMID: 18850258]
[159]
Peterburs, J.; Desmond, J.E. The role of the human cerebellum in performance monitoring. Curr. Opin. Neurobiol., 2016, 40, 38-44.
[http://dx.doi.org/10.1016/j.conb.2016.06.011] [PMID: 27372055]
[160]
Suldo, S.M.; McMahan, M.M.; Chappel, A.M.; Loker, T. Relationships between perceived school climate and adolescent mental health across genders. School Ment. Health, 2012, 4, 69-80.
[http://dx.doi.org/10.1007/s12310-012-9073-1]
[161]
Caligiore, D.; Pezzulo, G.; Miall, R.C.; Baldassarre, G. The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities. Neurosci. Biobehav. Rev., 2013, 37(10 Pt 2), 2504-2515.
[http://dx.doi.org/10.1016/j.neubiorev.2013.07.016] [PMID: 23911926]
[162]
Houk, J.C.; Wise, S.P. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb. Cortex, 1995, 5(2), 95-110.
[http://dx.doi.org/10.1093/cercor/5.2.95] [PMID: 7620294]
[163]
Izawa, J.; Rane, T.; Donchin, O.; Shadmehr, R. Motor adaptation as a process of reoptimization. J. Neurosci., 2008, 28(11), 2883-2891.
[http://dx.doi.org/10.1523/JNEUROSCI.5359-07.2008] [PMID: 18337419]
[164]
Izawa, J.; Shadmehr, R. Learning from sensory and reward prediction errors during motor adaptation. PLOS Comput. Biol., 2011, 7(3), e1002012.
[http://dx.doi.org/10.1371/journal.pcbi.1002012] [PMID: 21423711]
[165]
Huang, C.; Mattis, P.; Tang, C.; Perrine, K.; Carbon, M.; Eidelberg, D. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage, 2007, 34(2), 714-723.
[http://dx.doi.org/10.1016/j.neuroimage.2006.09.003] [PMID: 17113310]
[166]
Eckert, T.; Tang, C.; Eidelberg, D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol., 2007, 6(10), 926-932.
[http://dx.doi.org/10.1016/S1474-4422(07)70245-4] [PMID: 17884682]
[167]
Huang, C.; Mattis, P.; Perrine, K.; Brown, N.; Dhawan, V.; Eidelberg, D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology, 2008, 70(16 Pt 2), 1470-1477.
[http://dx.doi.org/10.1212/01.wnl.0000304050.05332.9c] [PMID: 18367705]
[168]
Mentis, M.J.; Dhawan, V.; Nakamura, T.; Ghilardi, M.F.; Feigin, A.; Edwards, C.; Ghez, C.; Eidelberg, D. Enhancement of brain activation during trial-and-error sequence learning in early PD. Neurology, 2003, 60(4), 612-619.
[http://dx.doi.org/10.1212/01.WNL.0000044154.92143.DC] [PMID: 12601101]
[169]
Yu, H.; Sternad, D.; Corcos, D.M.; Vaillancourt, D.E. Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage, 2007, 35(1), 222-233.
[http://dx.doi.org/10.1016/j.neuroimage.2006.11.047] [PMID: 17223579]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy