Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

The Inflammatory Effect of Epigenetic Factors and Modifications in Depressive Disorder: A Review

Author(s): Keming Qi, Yi Yu, Jiangli Guan, Jiayuan Zhang, Wei Lu and Yicong Wei*

Volume 22, Issue 1, 2022

Published on: 02 June, 2022

Page: [15 - 30] Pages: 16

DOI: 10.2174/1871524922666220308144518

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Depressive disorder is one of the most common mental diseases and has become one of the three major causes of disability worldwide. Although some of the pathological mechanisms have been analyzed, the corresponding drug therapy has only achieved about 30% of curative effects. However, the pathological mechanism of depression is very complex, and the relationship between its complicated pathological mechanisms is still elusive. In recent years, more and more evidence shows that environmental stress induces stable changes in gene expression through the epigenetic mechanism which plays a vital role in the pathogenesis of the disease. Neuroinflammation is considered to be a key pathological mechanism of depression.

Objective: The aim of the study was to explore the relationship between epigenetic mechanism and neuroinflammation in the pathological process of depression.

Methods: In this paper, we review the crucial role of neuroinflammation in complex pathological mechanisms, especially its complex interrelationship with neurotransmitters, neuroendocrine, neurogenesis, and neuronal plasticity, which play a key role in the pathology of depression.

Results: The relationship between epigenetic mechanism and neuroinflammation in the pathological process of depression has been discussed, which mainly involves histone acetylation, histone methylation, DNA methylation, and non-coding RNA association.

Conclusion: This review will help to understand the role of epigenetic mechanisms in depression and its related inflammatory responses and provide direction and guidance for future research.

Keywords: Major depressive disorder, inflammation, neuroinflammation, histone modification, DNA methylation, non-coding RNA.

Graphical Abstract
[1]
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Bur-den of Disease Study 2017. Lancet, 2018, 392(10159), 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[2]
Lam, R.W.; McIntosh, D.; Wang, J.; Enns, M.W.; Kolivakis, T.; Michalak, E.E.; Sareen, J.; Song, W.Y.; Kennedy, S.H.; MacQueen, G.M.; Milev, R.V.; Parikh, S.V.; Ravindran, A.V. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 1. Disease burden and principles of care. Can. J. Psychiatry, 2016, 61(9), 510-523.
[http://dx.doi.org/10.1177/0706743716659416] [PMID: 27486151]
[3]
Ahern, E.; Semkovska, M. Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology, 2017, 31(1), 52-72.
[http://dx.doi.org/10.1037/neu0000319] [PMID: 27732039]
[4]
Kendler, K.S.; Gatz, M.; Gardner, C.O.; Pedersen, N.L. A Swedish national twin study of lifetime major depression. Am. J. Psychiatry, 2006, 163(1), 109-114.
[http://dx.doi.org/10.1176/appi.ajp.163.1.109] [PMID: 16390897]
[5]
Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; Alloza, C.; Shen, X.; Barbu, M.C.; Xu, E.Y.; Whalley, H.C.; Marioni, R.E.; Porteous, D.J.; Davies, G.; Deary, I.J.; Hemani, G.; Ber-ger, K.; Teismann, H.; Rawal, R.; Arolt, V.; Baune, B.T.; Dannlowski, U.; Domschke, K.; Tian, C.; Hinds, D.A.; Trzaskowski, M.; Byrne, E.M.; Ripke, S.; Smith, D.J.; Sullivan, P.F.; Wray, N.R.; Breen, G.; Lewis, C.M.; McIntosh, A.M. Genome-wide meta-analysis of depres-sion identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci., 2019, 22(3), 343-352.
[http://dx.doi.org/10.1038/s41593-018-0326-7] [PMID: 30718901]
[6]
Nivard, M.G.; Dolan, C.V.; Kendler, K.S.; Kan, K.J.; Willemsen, G.; van Beijsterveldt, C.E.; Lindauer, R.J.; van Beek, J.H.; Geels, L.M.; Bartels, M.; Middeldorp, C.M.; Boomsma, D.I. Stability in symptoms of anxiety and depression as a function of genotype and environ-ment: A longitudinal twin study from ages 3 to 63 years. Psychol. Med., 2015, 45(5), 1039-1049.
[http://dx.doi.org/10.1017/S003329171400213X] [PMID: 25187475]
[7]
Peña, C.J.; Nestler, E.J. Progress in epigenetics of depression. Prog. Mol. Biol. Transl. Sci., 2018, 157, 41-66.
[http://dx.doi.org/10.1016/bs.pmbts.2017.12.011] [PMID: 29933956]
[8]
Sun, H.; Kennedy, P.J.; Nestler, E.J. Epigenetics of the depressed brain: Role of histone acetylation and methylation. Neuropsychopharmacology, 2013, 38(1), 124-137.
[http://dx.doi.org/10.1038/npp.2012.73] [PMID: 22692567]
[9]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[10]
Suzuki, M.M.; Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet., 2008, 9(6), 465-476.
[http://dx.doi.org/10.1038/nrg2341] [PMID: 18463664]
[11]
Kriaucionis, S.; Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 2009, 324(5929), 929-930.
[http://dx.doi.org/10.1126/science.1169786] [PMID: 19372393]
[12]
Kaikkonen, M.U.; Adelman, K. Emerging roles of non-coding RNA transcription. Trends Biochem. Sci., 2018, 43(9), 654-667.
[http://dx.doi.org/10.1016/j.tibs.2018.06.002] [PMID: 30145998]
[13]
Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull., 2014, 140(3), 774-815.
[http://dx.doi.org/10.1037/a0035302] [PMID: 24417575]
[14]
Gassen, N.C.; Fries, G.R.; Zannas, A.S.; Hartmann, J.; Zschocke, J.; Hafner, K.; Carrillo-Roa, T.; Steinbacher, J.; Preißinger, S.N.; Hoeijmakers, L.; Knop, M.; Weber, F.; Kloiber, S.; Lucae, S.; Chrousos, G.P.; Carell, T.; Ising, M.; Binder, E.B.; Schmidt, M.V.; Rüegg, J.; Rein, T. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxe-tine. Sci. Signal., 2015, 8(404), ra119.
[http://dx.doi.org/10.1126/scisignal.aac7695] [PMID: 26602018]
[15]
Jiang, N.; Jingwei, L.; Wang, H.; Huang, H.; Wang, Q.; Zeng, G.; Li, S.; Liu, X. Ginsenoside 20(S)-protopanaxadiol attenuates depressive-like behaviour and neuroinflammation in chronic unpredictable mild stress-induced depressive rats. Behav. Brain Res., 2020, 393, 112710.
[http://dx.doi.org/10.1016/j.bbr.2020.112710] [PMID: 32464121]
[16]
Taufique, S.K.T.; Prabhat, A.; Kumar, V. Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids. Eur. J. Neurosci., 2018, 48(9), 3005-3018.
[http://dx.doi.org/10.1111/ejn.14157] [PMID: 30218624]
[17]
Liu, H.; Jiang, J.; Zhao, L. Protein arginine methyltransferase-1 deficiency restrains depression-like behavior of mice by inhibiting in-flammation and oxidative stress via Nrf-2. Biochem. Biophys. Res. Commun., 2019, 518(3), 430-437.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.032] [PMID: 31492498]
[18]
Luo, Y.; Kuang, S.; Xue, L.; Yang, J. The mechanism of 5-lipoxygenase in the impairment of learning and memory in rats subjected to chronic unpredictable mild stress. Physiol. Behav., 2016, 167, 145-153.
[http://dx.doi.org/10.1016/j.physbeh.2016.09.010] [PMID: 27640130]
[19]
Kv, A.; Madhana, R.M.; Js, I.C.; Lahkar, M.; Sinha, S.; Naidu, V.G.M. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav. Brain Res., 2018, 344, 73-84.
[http://dx.doi.org/10.1016/j.bbr.2018.02.009] [PMID: 29452193]
[20]
Zheng, Y.; Fan, W.; Zhang, X.; Dong, E. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regula-tion of BDNF expression in offspring hippocampus. Epigenetics, 2016, 11(2), 150-162.
[http://dx.doi.org/10.1080/15592294.2016.1146850] [PMID: 26890656]
[21]
Duman, E.A.; Canli, T. Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. Biol. Mood Anxiety Disord., 2015, 5(1), 2.
[http://dx.doi.org/10.1186/s13587-015-0017-x] [PMID: 25995833]
[22]
Weaver, I.C.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic pro-gramming by maternal behavior. Nat. Neurosci., 2004, 7(8), 847-854.
[http://dx.doi.org/10.1038/nn1276] [PMID: 15220929]
[23]
Jeon, S.W.; Kim, Y.K. The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J. Inflamm. Res., 2018, 11, 179-192.
[http://dx.doi.org/10.2147/JIR.S141033] [PMID: 29773951]
[24]
Baranyi, A.; Meinitzer, A.; Stepan, A.; Putz-Bankuti, C.; Breitenecker, R.J.; Stauber, R.; Kapfhammer, H.P.; Rothenhäusler, H.B. A biopsy-chosocial model of interferon-alpha-induced depression in patients with chronic hepatitis C infection. Psychother. Psychosom., 2013, 82(5), 332-340.
[http://dx.doi.org/10.1159/000348587] [PMID: 23942342]
[25]
Wichers, M.C.; Koek, G.H.; Robaeys, G.; Verkerk, R.; Scharpé, S.; Maes, M. IDO and interferon-alpha-induced depressive symptoms: A shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry, 2005, 10(6), 538-544.
[http://dx.doi.org/10.1038/sj.mp.4001600] [PMID: 15494706]
[26]
Maes, M.; Bonaccorso, S. Lower activities of serum peptidases predict higher depressive and anxiety levels following interferon-alpha-based immunotherapy in patients with hepatitis C. Acta Psychiatr. Scand., 2004, 109(2), 126-131.
[http://dx.doi.org/10.1046/j.0001-690X.2003.00230.x] [PMID: 14725594]
[27]
Capuron, L.; Gumnick, J.F.; Musselman, D.L.; Lawson, D.H.; Reemsnyder, A.; Nemeroff, C.B.; Miller, A.H. Neurobehavioral effects of interferon-alpha in cancer patients: Phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology, 2002, 26(5), 643-652.
[http://dx.doi.org/10.1016/S0893-133X(01)00407-9] [PMID: 11927189]
[28]
Simon, N.M.; McNamara, K.; Chow, C.W.; Maser, R.S.; Papakostas, G.I.; Pollack, M.H.; Nierenberg, A.A.; Fava, M.; Wong, K.K. A de-tailed examination of cytokine abnormalities in major depressive disorder. Eur. Neuropsychopharmacol., 2008, 18(3), 230-233.
[http://dx.doi.org/10.1016/j.euroneuro.2007.06.004] [PMID: 17681762]
[29]
Sutcigil, L.; Oktenli, C.; Musabak, U.; Bozkurt, A.; Cansever, A.; Uzun, O.; Sanisoglu, S.Y.; Yesilova, Z.; Ozmenler, N.; Ozsahin, A.; Sen-gul, A. Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin. Dev. Immunol., 2007, 2007, 76396.
[http://dx.doi.org/10.1155/2007/76396] [PMID: 18317531]
[30]
Piletz, J.E.; Halaris, A.; Iqbal, O.; Hoppensteadt, D.; Fareed, J.; Zhu, H.; Sinacore, J.; Devane, C.L. Pro-inflammatory biomakers in depres-sion: Treatment with venlafaxine. World J. Biol. Psychiatry, 2009, 10(4), 313-323.
[http://dx.doi.org/10.3109/15622970802573246] [PMID: 19921973]
[31]
Köhler, C.A.; Freitas, T.H.; Stubbs, B.; Maes, M.; Solmi, M.; Veronese, N.; de Andrade, N.Q.; Morris, G.; Fernandes, B.S.; Brunoni, A.R.; Herrmann, N.; Raison, C.L.; Miller, B.J.; Lanctôt, K.L.; Carvalho, A.F. Peripheral alterations in cytokine and chemokine levels after anti-depressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol. Neurobiol., 2018, 55(5), 4195-4206.
[PMID: 28612257]
[32]
Jacob, L.; Rockel, T.; Kostev, K. Depression risk in patients with rheumatoid arthritis in the United Kingdom. Rheumatol. Ther., 2017, 4(1), 195-200.
[http://dx.doi.org/10.1007/s40744-017-0058-2] [PMID: 28321833]
[33]
Na, K.S.; Lee, K.J.; Lee, J.S.; Cho, Y.S.; Jung, H.Y. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48, 79-85.
[http://dx.doi.org/10.1016/j.pnpbp.2013.09.006] [PMID: 24056287]
[34]
Lasselin, J.; Elsenbruch, S.; Lekander, M.; Axelsson, J.; Karshikoff, B.; Grigoleit, J.S.; Engler, H.; Schedlowski, M.; Benson, S. Mood disturbance during experimental endotoxemia: Predictors of state anxiety as a psychological component of sickness behavior. Brain Behav. Immun., 2016, 57, 30-37.
[http://dx.doi.org/10.1016/j.bbi.2016.01.003] [PMID: 26790758]
[35]
Schedlowski, M.; Engler, H.; Grigoleit, J.S. Endotoxin-induced experimental systemic inflammation in humans: A model to disentangle immune-to-brain communication. Brain Behav. Immun., 2014, 35, 1-8.
[http://dx.doi.org/10.1016/j.bbi.2013.09.015] [PMID: 24491305]
[36]
Dantzer, R.; O’Connor, J.C.; Lawson, M.A.; Kelley, K.W. Inflammation-associated depression: From serotonin to kynurenine. Psychoneu-roendocrino, 2011, 36(3), 426-436.
[http://dx.doi.org/10.1016/j.psyneuen.2010.09.012] [PMID: 21041030]
[37]
Hestad, K.A.; Engedal, K.; Whist, J.E.; Aukrust, P.; Farup, P.G.; Mollnes, T.E.; Ueland, T. Patients with depression display cytokine levels in serum and cerebrospinal fluid similar to patients with diffuse neurological symptoms without a defined diagnosis. Neuropsychiatr. Dis. Treat., 2016, 12, 817-822.
[http://dx.doi.org/10.2147/NDT.S101925] [PMID: 27110115]
[38]
Felger, J.C.; Miller, A.H. Cytokine effects on the basal ganglia and dopamine function: The subcortical source of inflammatory malaise. Front. Neuroendocrinol., 2012, 33(3), 315-327.
[http://dx.doi.org/10.1016/j.yfrne.2012.09.003] [PMID: 23000204]
[39]
Guillemin, G.J. Quinolinic acid, the inescapable neurotoxin. FEBS J., 2012, 279(8), 1356-1365.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08485.x] [PMID: 22248144]
[40]
Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol., 2016, 16(1), 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[41]
Réaux-Le Goazigo, A.; Van Steenwinckel, J.; Rostène, W.; Mélik Parsadaniantz, S. Current status of chemokines in the adult CNS. Prog. Neurobiol., 2013, 104, 67-92.
[http://dx.doi.org/10.1016/j.pneurobio.2013.02.001] [PMID: 23454481]
[42]
Guyon, A.; Banisadr, G.; Rovère, C.; Cervantes, A.; Kitabgi, P.; Melik-Parsadaniantz, S.; Nahon, J.L. Complex effects of stromal cell-derived factor-1 alpha on melanin-concentrating hormone neuron excitability. Eur. J. Neurosci., 2005, 21(3), 701-710.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03890.x] [PMID: 15733088]
[43]
O’Connor, J.C.; Lawson, M.A.; André, C.; Moreau, M.; Lestage, J.; Castanon, N.; Kelley, K.W.; Dantzer, R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry, 2009, 14(5), 511-522.
[http://dx.doi.org/10.1038/sj.mp.4002148] [PMID: 18195714]
[44]
Ogawa, S.; Fujii, T.; Koga, N.; Hori, H.; Teraishi, T.; Hattori, K.; Noda, T.; Higuchi, T.; Motohashi, N.; Kunugi, H. Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. J. Clin. Psychiatry, 2014, 75(9), e906-e915.
[http://dx.doi.org/10.4088/JCP.13r08908] [PMID: 25295433]
[45]
Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress. Anxiety, 2013, 30(4), 297-306.
[http://dx.doi.org/10.1002/da.22084] [PMID: 23468190]
[46]
Zhu, X.; Wang, X.; Xiao, J.; Liao, J.; Zhong, M.; Wang, W.; Yao, S. Evidence of a dissociation pattern in resting-state default mode net-work connectivity in first-episode, treatment-naive major depression patients. Biol. Psychiatry, 2012, 71(7), 611-617.
[http://dx.doi.org/10.1016/j.biopsych.2011.10.035] [PMID: 22177602]
[47]
Felger, J.C.; Li, L.; Marvar, P.J.; Woolwine, B.J.; Harrison, D.G.; Raison, C.L.; Miller, A.H. Tyrosine metabolism during interferon-alpha administration: Association with fatigue and CSF dopamine concentrations. Brain Behav. Immun., 2013, 31, 153-160.
[http://dx.doi.org/10.1016/j.bbi.2012.10.010] [PMID: 23072726]
[48]
Lauer, C.J.; Schreiber, W.; Modell, S.; Holsboer, F.; Krieg, J.C. The Munich vulnerability study on affective disorders: Overview of the cross-sectional observations at index investigation. J. Psychiatr. Res., 1998, 32(6), 393-401.
[http://dx.doi.org/10.1016/S0022-3956(98)00026-0] [PMID: 9844956]
[49]
Young, E.A.; Lopez, J.F.; Murphy-Weinberg, V.; Watson, S.J.; Akil, H. Mineralocorticoid receptor function in major depression. Arch. Gen. Psychiatry, 2003, 60(1), 24-28.
[http://dx.doi.org/10.1001/archpsyc.60.1.24] [PMID: 12511169]
[50]
Juruena, M.F.; Cleare, A.J.; Papadopoulos, A.S.; Poon, L.; Lightman, S.; Pariante, C.M. Different responses to dexamethasone and predni-solone in the same depressed patients. Psychopharmacology (Berl.), 2006, 189(2), 225-235.
[http://dx.doi.org/10.1007/s00213-006-0555-4] [PMID: 17016711]
[51]
Blotta, M.H.; DeKruyff, R.H.; Umetsu, D.T. Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J. Immunol., 1997, 158(12), 5589-5595.
[PMID: 9190905]
[52]
Ramírez, F.; Fowell, D.J.; Puklavec, M.; Simmonds, S.; Mason, D. Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J. Immunol., 1996, 156(7), 2406-2412.
[PMID: 8786298]
[53]
David, D.J.; Samuels, B.A.; Rainer, Q.; Wang, J.W.; Marsteller, D.; Mendez, I.; Drew, M.; Craig, D.A.; Guiard, B.P.; Guilloux, J.P.; Artymyshyn, R.P.; Gardier, A.M.; Gerald, C.; Antonijevic, I.A.; Leonardo, E.D.; Hen, R. Neurogenesis-dependent and -independent ef-fects of fluoxetine in an animal model of anxiety/depression. Neuron, 2009, 62(4), 479-493.
[http://dx.doi.org/10.1016/j.neuron.2009.04.017] [PMID: 19477151]
[54]
Sorrells, S.F.; Caso, J.R.; Munhoz, C.D.; Sapolsky, R.M. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron, 2009, 64(1), 33-39.
[http://dx.doi.org/10.1016/j.neuron.2009.09.032] [PMID: 19840546]
[55]
Sorrells, S.F.; Munhoz, C.D.; Manley, N.C.; Yen, S.; Sapolsky, R.M. Glucocorticoids increase excitotoxic injury and inflammation in the hippocampus of adult male rats. Neuroendocrinology, 2014, 100(2-3), 129-140.
[http://dx.doi.org/10.1159/000367849] [PMID: 25228100]
[56]
Pace, T.W.; Miller, A.H. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann. N. Y. Acad. Sci., 2009, 1179(1), 86-105.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04984.x] [PMID: 19906234]
[57]
Sheline, Y.I.; Sanghavi, M.; Mintun, M.A.; Gado, M.H. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J. Neurosci., 1999, 19(12), 5034-5043.
[http://dx.doi.org/10.1523/JNEUROSCI.19-12-05034.1999] [PMID: 10366636]
[58]
Bremner, J.D.; Narayan, M.; Anderson, E.R.; Staib, L.H.; Miller, H.L.; Charney, D.S. Hippocampal volume reduction in major depression. Am. J. Psychiatry, 2000, 157(1), 115-118.
[http://dx.doi.org/10.1176/ajp.157.1.115] [PMID: 10618023]
[59]
Eisch, A.J.; Petrik, D. Depression and hippocampal neurogenesis: a road to remission? Science, 2012, 338(6103), 72-75.
[http://dx.doi.org/10.1126/science.1222941] [PMID: 23042885]
[60]
Eyre, H.; Baune, B.T. Neuroplastic changes in depression: A role for the immune system. Psychoneuroendocrino, 2012, 37(9), 1397-1416.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.019] [PMID: 22525700]
[61]
Mahar, I.; Bambico, F.R.; Mechawar, N.; Nobrega, J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev., 2014, 38, 173-192.
[http://dx.doi.org/10.1016/j.neubiorev.2013.11.009] [PMID: 24300695]
[62]
Kim, Y.K.; Na, K.S.; Myint, A.M.; Leonard, B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 277-284.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.008] [PMID: 26111720]
[63]
Smitha, J.S.; Roopa, R.; Sagar, B.K.; Kutty, B.M.; Andrade, C. Images in electroconvulsive therapy: ECS dose-dependently increases cell proliferation in the subgranular region of the rat hippocampus. J. ECT, 2014, 30(3), 193-194.
[http://dx.doi.org/10.1097/YCT.0000000000000076] [PMID: 24901429]
[64]
Moylan, S.; Maes, M.; Wray, N.R.; Berk, M. The neuroprogressive nature of major depressive disorder: Pathways to disease evolution and resistance, and therapeutic implications. Mol. Psychiatry, 2013, 18(5), 595-606.
[http://dx.doi.org/10.1038/mp.2012.33] [PMID: 22525486]
[65]
Ming, G.L.; Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci., 2005, 28(1), 223-250.
[http://dx.doi.org/10.1146/annurev.neuro.28.051804.101459] [PMID: 16022595]
[66]
DeCarolis, N.A.; Eisch, A.J. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology, 2010, 58(6), 884-893.
[http://dx.doi.org/10.1016/j.neuropharm.2009.12.013] [PMID: 20060007]
[67]
Bowen, K.K.; Dempsey, R.J.; Vemuganti, R. Adult interleukin-6 knockout mice show compromised neurogenesis. Neuroreport, 2011, 22(3), 126-130.
[http://dx.doi.org/10.1097/WNR.0b013e3283430a44] [PMID: 21266900]
[68]
Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depres-sion. Biol. Psychiatry, 2010, 67(5), 446-457.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[69]
Wu, M.D.; Hein, A.M.; Moravan, M.J.; Shaftel, S.S.; Olschowka, J.A.; O’Banion, M.K. Adult murine hippocampal neurogenesis is inhibited by sustained IL-1β and not rescued by voluntary running. Brain Behav. Immun., 2012, 26(2), 292-300.
[http://dx.doi.org/10.1016/j.bbi.2011.09.012] [PMID: 21983279]
[70]
Monje, M.L.; Toda, H.; Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science, 2003, 302(5651), 1760-1765.
[http://dx.doi.org/10.1126/science.1088417] [PMID: 14615545]
[71]
Miller, R.J.; Rostene, W.; Apartis, E.; Banisadr, G.; Biber, K.; Milligan, E.D.; White, F.A.; Zhang, J. Chemokine action in the nervous sys-tem. J. Neurosci., 2008, 28(46), 11792-11795.
[http://dx.doi.org/10.1523/JNEUROSCI.3588-08.2008] [PMID: 19005041]
[72]
Tran, P.B.; Banisadr, G.; Ren, D.; Chenn, A.; Miller, R.J. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J. Comp. Neurol., 2007, 500(6), 1007-1033.
[http://dx.doi.org/10.1002/cne.21229] [PMID: 17183554]
[73]
Turbic, A.; Leong, S.Y.; Turnley, A.M. Chemokines and inflammatory mediators interact to regulate adult murine neural precursor cell proliferation, survival and differentiation. PLoS One, 2011, 6(9), e25406.
[http://dx.doi.org/10.1371/journal.pone.0025406] [PMID: 21966521]
[74]
Piccinin, S.; Di Angelantonio, S.; Piccioni, A.; Volpini, R.; Cristalli, G.; Fredholm, B.B.; Limatola, C.; Eusebi, F.; Ragozzino, D. CX3CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes. J. Neuroimmunol., 2010, 224(1-2), 85-92.
[http://dx.doi.org/10.1016/j.jneuroim.2010.05.012] [PMID: 20570369]
[75]
Bachstetter, A.D.; Morganti, J.M.; Jernberg, J.; Schlunk, A.; Mitchell, S.H.; Brewster, K.W.; Hudson, C.E.; Cole, M.J.; Harrison, J.K.; Bick-ford, P.C.; Gemma, C. Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol. Aging, 2011, 32(11), 2030-2044.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.11.022] [PMID: 20018408]
[76]
Meng, L.; Bai, X.; Zheng, Y.; Chen, D.; Zheng, Y. Altered expression of norepinephrine transporter participate in hypertension and depression through regulated TNF-α and IL-6. Clin. Exp. Hypertens., 2020, 42(2), 181-189.
[http://dx.doi.org/10.1080/10641963.2019.1601205] [PMID: 30957546]
[77]
Mahajan, G.J.; Vallender, E.J.; Garrett, M.R.; Challagundla, L.; Overholser, J.C.; Jurjus, G.; Dieter, L.; Syed, M.; Romero, D.G.; Benghuzzi, H.; Stockmeier, C.A. Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 82, 177-186.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.017] [PMID: 29175309]
[78]
Dudek, K.A.; Dion-Albert, L.; Lebel, M.; LeClair, K.; Labrecque, S.; Tuck, E.; Ferrer Perez, C.; Golden, S.A.; Tamminga, C.; Turecki, G.; Mechawar, N.; Russo, S.J.; Menard, C. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc. Natl. Acad. Sci. USA, 2020, 117(6), 3326-3336.
[http://dx.doi.org/10.1073/pnas.1914655117] [PMID: 31974313]
[79]
Yamawaki, Y.; Yoshioka, N.; Nozaki, K.; Ito, H.; Oda, K.; Harada, K.; Shirawachi, S.; Asano, S.; Aizawa, H.; Yamawaki, S.; Kanematsu, T.; Akagi, H. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res., 2018, 1680, 13-38.
[http://dx.doi.org/10.1016/j.brainres.2017.12.004] [PMID: 29229502]
[80]
Wei, Y.B.; Liu, J.J.; Villaescusa, J.C.; Åberg, E.; Brené, S.; Wegener, G.; Mathé, A.A.; Lavebratt, C. Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression. Transl. Psychiatry, 2016, 6(8), e869.
[http://dx.doi.org/10.1038/tp.2016.136] [PMID: 27529677]
[81]
Nasca, C.; Xenos, D.; Barone, Y.; Caruso, A.; Scaccianoce, S.; Matrisciano, F.; Battaglia, G.; Mathé, A.A.; Pittaluga, A.; Lionetto, L.; Sim-maco, M.; Nicoletti, F. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc. Natl. Acad. Sci. USA, 2013, 110(12), 4804-4809.
[http://dx.doi.org/10.1073/pnas.1216100110] [PMID: 23382250]
[82]
Nasca, C.; Bigio, B.; Zelli, D.; de Angelis, P.; Lau, T.; Okamoto, M.; Soya, H.; Ni, J.; Brichta, L.; Greengard, P.; Neve, R.L.; Lee, F.S.; McEwen, B.S. Role of the Astroglial Glutamate exchanger xCT in ventral hippocampus in resilience to stress. Neuron, 2017, 96(2), 402-413.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.09.020] [PMID: 29024663]
[83]
Rodriguez-Zas, S.L.; Wu, C.; Southey, B.R.; O’Connor, J.C.; Nixon, S.E.; Garcia, R.; Zavala, C.; Lawson, M.; McCusker, R.H.; Romanova, E.V.; Sweedler, J.V.; Kelley, K.W.; Dantzer, R. Disruption of microglia histone acetylation and protein pathways in mice exhibiting in-flammation-associated depression-like symptoms. Psychoneuroendocrino, 2018, 97, 47-58.
[http://dx.doi.org/10.1016/j.psyneuen.2018.06.024] [PMID: 30005281]
[84]
Arioz, B.I.; Tastan, B.; Tarakcioglu, E.; Tufekci, K.U.; Olcum, M.; Ersoy, N.; Bagriyanik, A.; Genc, K.; Genc, S. Melatonin Attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front. Immunol., 2019, 10, 1511.
[http://dx.doi.org/10.3389/fimmu.2019.01511] [PMID: 31327964]
[85]
Liu, L.; Zhang, Q.; Cai, Y.; Sun, D.; He, X.; Wang, L.; Yu, D.; Li, X.; Xiong, X.; Xu, H.; Yang, Q.; Fan, X. Resveratrol counteracts lipopol-ysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget, 2016, 7(35), 56045-56059.
[http://dx.doi.org/10.18632/oncotarget.11178] [PMID: 27517628]
[86]
Liu, T.; Ma, Y.; Zhang, R.; Zhong, H.; Wang, L.; Zhao, J.; Yang, L.; Fan, X. Resveratrol ameliorates estrogen deficiency-induced depres-sion- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology (Berl.), 2019, 236(4), 1385-1399.
[http://dx.doi.org/10.1007/s00213-018-5148-5] [PMID: 30607478]
[87]
Yu, H.; Zhang, F.; Guan, X. Baicalin reverse depressive-like behaviors through regulation SIRT1-NF-kB signaling pathway in olfactory bulbectomized rats. Phytother. Res., 2019, 33(5), 1480-1489.
[http://dx.doi.org/10.1002/ptr.6340] [PMID: 30848526]
[88]
Tang, X.P.; Guo, X.H.; Geng, D.; Weng, L.J. d-Limonene protects PC12 cells against corticosterone-induced neurotoxicity by activating the AMPK pathway. Environ. Toxicol. Pharmacol., 2019, 70, 103192.
[http://dx.doi.org/10.1016/j.etap.2019.05.001] [PMID: 31103492]
[89]
Duan, C.M.; Zhang, J.R.; Wan, T.F.; Wang, Y.; Chen, H.S.; Liu, L. SRT2104 attenuates chronic unpredictable mild stress-induced depres-sive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav. Brain Res., 2020, 378, 112296.
[http://dx.doi.org/10.1016/j.bbr.2019.112296] [PMID: 31618623]
[90]
Chen, L.X.; Qi, Z.; Shao, Z.J.; Li, S.S.; Qi, Y.L.; Gao, K.; Liu, S.X.; Li, Z.; Sun, Y.S.; Li, P.Y. Study on antidepressant activity of pseudo-ginsenoside HQ on depression-like behavior in mice. Molecules, 2019, 24(5), E870.
[http://dx.doi.org/10.3390/molecules24050870] [PMID: 30823679]
[91]
Tong, Y.; Fu, H.; Xia, C.; Song, W.; Li, Y.; Zhao, J.; Zhang, X.; Gao, X.; Yong, J.; Liu, Q.; Yang, C.; Wang, H. Astragalin Exerted Antide-pressant-like Action through SIRT1 Signaling Modulated NLRP3 Inflammasome Deactivation. ACS Chem. Neurosci., 2020, 11(10), 1495-1503.
[http://dx.doi.org/10.1021/acschemneuro.0c00156] [PMID: 32364698]
[92]
Jiang, N.; Lv, J.; Wang, H.; Huang, H.; Wang, Q.; Lu, C.; Zeng, G.; Liu, X.M. Ginsenoside Rg1 ameliorates chronic social defeat stress-induced depressive-like behaviors and hippocampal neuroinflammation. Life Sci., 2020, 252, 117669.
[http://dx.doi.org/10.1016/j.lfs.2020.117669] [PMID: 32298740]
[93]
Yang, L.; Wang, J.; Wang, D.; Hu, G.; Liu, Z.; Yan, D.; Serikuly, N.; Alpyshov, E.T.; Demin, K.A.; Strekalova, T.; de Abreu, M.S.; Song, C.; Kalueff, A.V. Delayed behavioral and genomic responses to acute combined stress in zebrafish, potentially relevant to PTSD and other stress-related disorders: Focus on neuroglia, neuroinflammation, apoptosis and epigenetic modulation. Behav. Brain Res., 2020, 389, 112644.
[http://dx.doi.org/10.1016/j.bbr.2020.112644] [PMID: 32344037]
[94]
Correa, F.; Mallard, C.; Nilsson, M.; Sandberg, M. Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant de-fence in astrocytes: Restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β. Neurobiol. Dis., 2011, 44(1), 142-151.
[http://dx.doi.org/10.1016/j.nbd.2011.06.016] [PMID: 21757005]
[95]
Huang, C.; Wang, P.; Xu, X.; Zhang, Y.; Gong, Y.; Hu, W.; Gao, M.; Wu, Y.; Ling, Y.; Zhao, X.; Qin, Y.; Yang, R.; Zhang, W. The ketone body metabolite β-hydroxybutyrate induces an antidepression-associated ramification of microglia via HDACs inhibition-triggered Akt-small RhoGTPase activation. Glia, 2018, 66(2), 256-278.
[http://dx.doi.org/10.1002/glia.23241] [PMID: 29058362]
[96]
Nagy, C.; Torres-Platas, S.G.; Mechawar, N.; Turecki, G. Repression of astrocytic connexins in cortical and subcortical brain regions and prefrontal enrichment of H3K9me3 in depression and suicide. Int. J. Neuropsychopharmacol., 2017, 20(1), 50-57.
[PMID: 27516431]
[97]
Liu, J.; Dupree, J.L.; Gacias, M.; Frawley, R.; Sikder, T.; Naik, P.; Casaccia, P. Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J. Neurosci., 2016, 36(3), 957-962.
[http://dx.doi.org/10.1523/JNEUROSCI.3608-15.2016] [PMID: 26791223]
[98]
Wang, H.T.; Huang, F.L.; Hu, Z.L.; Zhang, W.J.; Qiao, X.Q.; Huang, Y.Q.; Dai, R.P.; Li, F.; Li, C.Q. Early-life social isolation-induced depressive-like behavior in rats results in microglial activation and neuronal histone methylation that are mitigated by minocycline. Neurotox. Res., 2017, 31(4), 505-520.
[http://dx.doi.org/10.1007/s12640-016-9696-3] [PMID: 28092020]
[99]
Wang, R.; Wang, W.; Xu, J.; Liu, D.; Jiang, H.; Pan, F. Dynamic effects of early adolescent stress on depressive-like behaviors and expres-sion of cytokines and JMJD3 in the prefrontal cortex and hippocampus of rats. Front. Psychiatry, 2018, 9, 471.
[http://dx.doi.org/10.3389/fpsyt.2018.00471] [PMID: 30364220]
[100]
Wang, R.; Wang, W.; Xu, J.; Liu, D.; Wu, H.; Qin, X.; Jiang, H.; Pan, F. Jmjd3 is involved in the susceptibility to depression induced by maternal separation via enhancing the neuroinflammation in the prefrontal cortex and hippocampus of male rats. Exp. Neurol., 2020, 328, 113254.
[http://dx.doi.org/10.1016/j.expneurol.2020.113254] [PMID: 32084453]
[101]
Zill, P.; Baghai, T.C.; Schüle, C.; Born, C.; Früstück, C.; Büttner, A.; Eisenmenger, W.; Varallo-Bedarida, G.; Rupprecht, R.; Möller, H.J.; Bondy, B. DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLoS One, 2012, 7(7), e40479.
[http://dx.doi.org/10.1371/journal.pone.0040479] [PMID: 22808171]
[102]
Edvinsson, Å.; Bränn, E.; Hellgren, C.; Freyhult, E.; White, R.; Kamali-Moghaddam, M.; Olivier, J.; Bergquist, J.; Boström, A.E.; Schiöth, H.B.; Skalkidou, A.; Cunningham, J.L.; Sundström-Poromaa, I. Lower inflammatory markers in women with antenatal depression brings the M1/M2 balance into focus from a new direction. Psychoneuroendocrino, 2017, 80, 15-25.
[http://dx.doi.org/10.1016/j.psyneuen.2017.02.027] [PMID: 28292683]
[103]
Wang, Q.; Roy, B.; Turecki, G.; Shelton, R.C.; Dwivedi, Y. Role of complex epigenetic switching in tumor necrosis factor-α upregulation in the prefrontal cortex of suicide subjects. Am. J. Psychiatry, 2018, 175(3), 262-274.
[http://dx.doi.org/10.1176/appi.ajp.2017.16070759] [PMID: 29361849]
[104]
Kahl, K.G.; Georgi, K.; Bleich, S.; Muschler, M.; Hillemacher, T.; Hilfiker-Kleinert, D.; Schweiger, U.; Ding, X.; Kotsiari, A.; Frieling, H. Altered DNA methylation of glucose transporter 1 and glucose transporter 4 in patients with major depressive disorder. J. Psychiatr. Res., 2016, 76, 66-73.
[http://dx.doi.org/10.1016/j.jpsychires.2016.02.002] [PMID: 26919485]
[105]
Uddin, M.; Koenen, K.C.; Aiello, A.E.; Wildman, D.E.; de los Santos, R.; Galea, S. Epigenetic and inflammatory marker profiles associat-ed with depression in a community-based epidemiologic sample. Psychol. Med., 2011, 41(5), 997-1007.
[http://dx.doi.org/10.1017/S0033291710001674] [PMID: 20836906]
[106]
Ryan, J.; Pilkington, L.; Neuhaus, K.; Ritchie, K.; Ancelin, M.L.; Saffery, R. Investigating the epigenetic profile of the inflammatory gene IL-6 in late-life depression. BMC Psychiatry, 2017, 17(1), 354.
[http://dx.doi.org/10.1186/s12888-017-1515-8] [PMID: 29070016]
[107]
Wang, J.; Hodes, G.E.; Zhang, H.; Zhang, S.; Zhao, W.; Golden, S.A.; Bi, W.; Menard, C.; Kana, V.; Leboeuf, M.; Xie, M.; Bregman, D.; Pfau, M.L.; Flanigan, M.E.; Esteban-Fernández, A.; Yemul, S.; Sharma, A.; Ho, L.; Dixon, R.; Merad, M.; Han, M.H.; Russo, S.J.; Pasinet-ti, G.M. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat. Commun., 2018, 9(1), 477.
[http://dx.doi.org/10.1038/s41467-017-02794-5] [PMID: 29396460]
[108]
Kuan, P.F.; Waszczuk, M.A.; Kotov, R.; Marsit, C.J.; Guffanti, G.; Gonzalez, A.; Yang, X.; Koenen, K.; Bromet, E.; Luft, B.J. An epige-nome-wide DNA methylation study of PTSD and depression in World Trade Center responders. Transl. Psychiatry, 2017, 7(6), e1158.
[http://dx.doi.org/10.1038/tp.2017.130] [PMID: 28654093]
[109]
McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci., 2009, 12(3), 342-348.
[http://dx.doi.org/10.1038/nn.2270] [PMID: 19234457]
[110]
Labonte, B.; Yerko, V.; Gross, J.; Mechawar, N.; Meaney, M.J.; Szyf, M. Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) ex-pression and methylation in suicide completers with a history of childhood abuse. Biol. Psychiatry, 2012, 72(1), 41-48.
[111]
Clive, M.L.; Boks, M.P.; Vinkers, C.H.; Osborne, L.M.; Payne, J.L.; Ressler, K.J.; Smith, A.K.; Wilcox, H.C.; Kaminsky, Z. Discovery and replication of a peripheral tissue DNA methylation biosignature to augment a suicide prediction model. Clin. Epigenetics, 2016, 8(1), 113.
[http://dx.doi.org/10.1186/s13148-016-0279-1] [PMID: 27822318]
[112]
Belzeaux, R.; Bergon, A.; Jeanjean, V.; Loriod, B.; Formisano-Tréziny, C.; Verrier, L.; Loundou, A.; Baumstarck-Barrau, K.; Boyer, L.; Gall, V.; Gabert, J.; Nguyen, C.; Azorin, J.M.; Naudin, J.; Ibrahim, E.C. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl. Psychiatry, 2012, 2(11), e185.
[http://dx.doi.org/10.1038/tp.2012.112] [PMID: 23149449]
[113]
Hung, Y.Y.; Wu, M.K.; Tsai, M.C.; Huang, Y.L.; Kang, H.Y. Aberrant expression of intracellular let-7e, mir-146a, and mir-155 correlates with severity of depression in patients with major depressive disorder and is ameliorated after antidepressant treatment. Cells-Basel., 2019, 8(7), 8070647.
[http://dx.doi.org/10.3390/cells8070647]
[114]
Belzeaux, R.; Lin, C.W.; Ding, Y.; Bergon, A.; Ibrahim, E.C.; Turecki, G.; Tseng, G.; Sibille, E. Predisposition to treatment response in major depressive episode: A peripheral blood gene coexpression network analysis. J. Psychiatr. Res., 2016, 81, 119-126.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.009] [PMID: 27438688]
[115]
An, T.; Zhang, J.; Ma, Y.; Lian, J.; Wu, Y.X.; Lv, B.H.; Ma, M.H.; Meng, J.H.; Zhou, Y.T.; Zhang, Z.Y.; Liu, Q.; Gao, S.H.; Jiang, G.J. Relationships of Non-coding RNA with diabetes and depression. Sci. Rep., 2019, 9(1), 10707.
[http://dx.doi.org/10.1038/s41598-019-47077-9] [PMID: 31341180]
[116]
Wang, M.; Guo, J.; Dong, L.N.; Wang, J.P. Cerebellar fastigial nucleus stimulation in a chronic unpredictable mild stress rat model reduces post-stroke depression by suppressing brain inflammation via the microRNA-29c/TNFRSF1A signaling pathway. Med. Sci. Monit., 2019, 25, 5594-5605.
[http://dx.doi.org/10.12659/MSM.911835] [PMID: 31352465]
[117]
Li, M.; Shao, H.; Zhang, X.; Qin, B. Hesperidin alleviates lipopolysaccharide-induced neuroinflammation in mice by promoting the miR-NA-132 Pathway. Inflammation, 2016, 39(5), 1681-1689.
[http://dx.doi.org/10.1007/s10753-016-0402-7] [PMID: 27378528]
[118]
Fonken, L.K.; Gaudet, A.D.; Gaier, K.R.; Nelson, R.J.; Popovich, P.G. MicroRNA-155 deletion reduces anxiety- and depressive-like be-haviors in mice. Psychoneuroendocrino, 2016, 63, 362-369.
[http://dx.doi.org/10.1016/j.psyneuen.2015.10.019] [PMID: 26555429]
[119]
Sun, X.H.; Song, M.F.; Song, H.D.; Wang, Y.W.; Luo, M.J.; Yin, L.M. miR 155 mediates inflammatory injury of hippocampal neuronal cells via the activation of microglia. Mol. Med. Rep., 2019, 19(4), 2627-2635.
[http://dx.doi.org/10.3892/mmr.2019.9917] [PMID: 30720115]
[120]
Sell, S.L.; Boone, D.R.; Weisz, H.A.; Cardenas, C.; Willey, H.E.; Bolding, I.J.; Micci, M.A.; Falduto, M.T.; Torres, K.E.O.; DeWitt, D.S.; Prough, D.S.; Hellmich, H.L. MicroRNA profiling identifies a novel compound with antidepressant properties. PLoS One, 2019, 14(8), e0221163.
[http://dx.doi.org/10.1371/journal.pone.0221163] [PMID: 31442236]
[121]
Jia, K.K.; Pan, S.M.; Ding, H.; Liu, J.H.; Zheng, Y.J.; Wang, S.J.; Pan, Y.; Kong, L.D. Chaihu-shugan san inhibits inflammatory response to improve insulin signaling in liver and prefrontal cortex of CUMS rats with glucose intolerance. Biomed. Pharmacother., 2018, 103, 1415-1428.
[http://dx.doi.org/10.1016/j.biopha.2018.04.171] [PMID: 29864926]
[122]
Tang, C.Z.; Yang, J.T.; Liu, Q.H.; Wang, Y.R.; Wang, W.S. Up-regulated miR-192-5p expression rescues cognitive impairment and re-stores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway. FASEB J., 2019, 33(1), 606-618.
[http://dx.doi.org/10.1096/fj.201800210RR] [PMID: 30118321]
[123]
Pearson-Leary, J.; Eacret, D.; Chen, R.; Takano, H.; Nicholas, B.; Bhatnagar, S. Inflammation and vascular remodeling in the ventral hip-pocampus contributes to vulnerability to stress. Transl. Psychiatry, 2017, 7(6), e1160.
[http://dx.doi.org/10.1038/tp.2017.122] [PMID: 28654094]
[124]
Dwivedi, Y.; Roy, B.; Lugli, G.; Rizavi, H.; Zhang, H.; Smalheiser, N.R. Chronic corticosterone-mediated dysregulation of microRNA net-work in prefrontal cortex of rats: Relevance to depression pathophysiology. Transl. Psychiatry, 2015, 5(11), e682.
[http://dx.doi.org/10.1038/tp.2015.175] [PMID: 26575223]
[125]
Satyanarayanan, S.K.; Shih, Y.H.; Wen, Y.R.; Palani, M.; Lin, Y.W.; Su, H. Gałecki, P.; Su, K.P. miR-200a-3p modulates gene expression in comorbid pain and depression: Molecular implication for central sensitization. Brain Behav. Immun., 2019, 82, 230-238.
[http://dx.doi.org/10.1016/j.bbi.2019.08.190] [PMID: 31479730]
[126]
Liao, D.; Chen, Y.; Guo, Y.; Wang, C.; Liu, N.; Gong, Q.; Fu, Y.; Fu, Y.; Cao, L.; Yao, D.; Jiang, P. Salvianolic acid B improves chronic mild stress-induced depressive behaviors in rats: involvement of AMPK/SIRT1 signaling pathway. J. Inflamm. Res., 2020, 13, 195-206.
[http://dx.doi.org/10.2147/JIR.S249363] [PMID: 32494183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy