Review Article

Oxidative Stress: Meeting Multiple Targets in Pathogenesis of Vascular Endothelial Dysfunction

Author(s): Vardan Gupta, Anchal Garg, Ritu Tomar and Mandeep Kumar Arora*

Volume 23, Issue 9, 2022

Published on: 26 April, 2022

Page: [902 - 912] Pages: 11

DOI: 10.2174/1389450123666220303090413

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The vascular endothelium is the innermost lining of blood vessels, which maintains vasoconstriction and vasodilation. Loss of vascular tone is a hallmark for cardiovascular disorders. Numerous factors, such as over-activation of the renin-angiotensin-aldosterone system, kinases, growth factors, etc., play a crucial role in the induction and progression of vascular abrasion. Interestingly, dysregulation of these pathways either enhances the intensity of oxidative stress, or these pathways are affected by oxidative stress. Thus, oxidative stress has been considered a key culprit in the progression of vascular endothelial dysfunction. Oxidative stress induced by reactive oxygen and nitrogen species causes abnormal gene expression, alteration in signal transduction, and the activation of pathways, leading to induction and progression of vascular injury. In addition, numerous antioxidants have been noted to possess promising therapeutic potential in preventing the development of vascular endothelial dysfunction. Therefore, we have focused on current perspectives in oxidative stress signalling to evaluate common biological processes whereby oxidative stress plays a crucial role in the progression of vascular endothelial dysfunction.

Keywords: ROS generation, oxidative stress, vascular endothelial dysfunction, antioxidants, vasoconstriction, vasodilation.

Graphical Abstract
[1]
Park KH, Park WJ. Endothelial dysfunction: Clinical implications in cardiovascular disease and therapeutic approaches. J Korean Med Sci 2015; 30(9): 1213-25.
[http://dx.doi.org/10.3346/jkms.2015.30.9.1213] [PMID: 26339159]
[2]
Balakumar P, Kaur T, Singh M. Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicol 2008; 245(1-2): 49-64.
[http://dx.doi.org/10.1016/j.tox.2007.12.011] [PMID: 18242815]
[3]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017: 13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[4]
Arora MK, Singh UK. Oxidative stress: Meeting multiple targets in pathogenesis of diabetic nephropathy. Curr Drug Targets 2014; 15(5): 531-8.
[http://dx.doi.org/10.2174/1389450115666140321120635] [PMID: 24655140]
[5]
Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2018; 100: 1-19.
[http://dx.doi.org/10.1016/j.vph.2017.05.005] [PMID: 28579545]
[6]
Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev 2019; 99(1): 311-79.
[http://dx.doi.org/10.1152/physrev.00036.2017] [PMID: 30379623]
[7]
Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: Molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10(10): 1713-65.
[http://dx.doi.org/10.1089/ars.2008.2027] [PMID: 18707220]
[8]
Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005; 122(2): 221-33.
[http://dx.doi.org/10.1016/j.cell.2005.05.011] [PMID: 16051147]
[9]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[10]
Ago T, Kuroda J, Kamouchi M, Sadoshima J, Kitazono T. Pathophysiological roles of NADPH oxidase/nox family proteins in the vascular system. Review and perspective. Circ J 2011; 75(8): 1791-800.
[http://dx.doi.org/10.1253/circj.CJ-11-0388] [PMID: 21673456]
[11]
Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10(6): 453-71.
[http://dx.doi.org/10.1038/nrd3403] [PMID: 21629295]
[12]
Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 2006; 113(13): 1708-14.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.602532] [PMID: 16585403]
[13]
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009; 89(2): 481-534.
[http://dx.doi.org/10.1152/physrev.00042.2007] [PMID: 19342613]
[14]
Antoniades C, Shirodaria C, Leeson P, et al. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular su-peroxide production and endothelial nitric oxide synthase uncoupling: Implications for endothelial function in human atherosclerosis. Eur Heart J 2009; 30(9): 1142-50.
[http://dx.doi.org/10.1093/eurheartj/ehp061] [PMID: 19297385]
[15]
Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 2008; 275(13): 3278-89.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06489.x] [PMID: 18513323]
[16]
Vickneson K, George J. Xanthine oxidoreductase inhibitors. Handb Exp Pharmacol 2021; 264: 205-28.
[http://dx.doi.org/10.1007/164_2020_383] [PMID: 32789757]
[17]
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016; 2016: 1245049.
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[18]
Checa J, Aran JM. Reactive oxygen species: Drivers of physiological and pathological processes. J Inflamm Res 2020; 13: 1057-73.
[http://dx.doi.org/10.2147/JIR.S275595] [PMID: 33293849]
[19]
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: Key regulators in vascular health and diseases. Br J Pharmacol 2018; 175(8): 1279-92.
[http://dx.doi.org/10.1111/bph.13828] [PMID: 28430357]
[20]
Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood 2014; 123(5): 625-31.
[http://dx.doi.org/10.1182/blood-2013-09-512749] [PMID: 24300855]
[21]
Tsuneki H, Tokai E, Suzuki T, et al. Protective effects of coenzyme Q10 against angiotensin II-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol 2013; 701(1-3): 218-27.
[http://dx.doi.org/10.1016/j.ejphar.2012.12.027] [PMID: 23348709]
[22]
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative stress: A unifying paradigm in hypertension. Can J Cardiol 2020; 36(5): 659-70.
[http://dx.doi.org/10.1016/j.cjca.2020.02.081] [PMID: 32389339]
[23]
Lee SH, Fujioka S, Takahashi R, Oe T. Angiotensin II-induced oxidative stress in human endothelial cells: Modification of cellular molecules through lipid peroxidation. Chem Res Toxicol 2019; 32(7): 1412-22.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00110] [PMID: 31144504]
[24]
Roy B, Palaniyandi SS. A role for aldehyde dehydrogenase (ALDH) 2 in angiotensin II-mediated decrease in angiogenesis of coronary endothelial cells. Microvasc Res 2021; 135: 104133.
[http://dx.doi.org/10.1016/j.mvr.2021.104133] [PMID: 33428883]
[25]
Cholan PM, Cartland SP, Dang L, et al. TRAIL protects against endothelial dysfunction in vivo and inhibits angiotensin-II-induced oxidative stress in vascular endothelial cells in vitro. Free Radic Biol Med 2018; 126: 341-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.031] [PMID: 30165101]
[26]
Yang Y, Tian T, Wang Y, Li Z, Xing K, Tian G. SIRT6 protects vascular endothelial cells from angiotensin II-induced apoptosis and oxidative stress by promoting the activation of Nrf2/ARE signaling. Eur J Pharmacol 2019; 859: 172516.
[http://dx.doi.org/10.1016/j.ejphar.2019.172516] [PMID: 31265839]
[27]
Montezano AC, Cat AND, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep 2014; 16(6): 431.
[http://dx.doi.org/10.1007/s11906-014-0431-2] [PMID: 24760441]
[28]
Leibovitz E, Ebrahimian T, Paradis P, Schiffrin EL. Aldosterone induces arterial stiffness in absence of oxidative stress and endothelial dysfunction. J Hypertens 2009; 27(11): 2192-200.
[http://dx.doi.org/10.1097/HJH.0b013e328330a963] [PMID: 19654560]
[29]
Ferreira NS, Tostes RC, Paradis P, Schiffrin EL. Aldosterone, inflammation, immune system, and hypertension. Am J Hypertens 2021; 34(1): 15-27.
[http://dx.doi.org/10.1093/ajh/hpaa137] [PMID: 32820797]
[30]
Echeverría C, Montorfano I, Tapia P, Riedel C, Cabello-Verrugio C, Simon F. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2. Infect Immun 2014; 82(9): 3678-86.
[http://dx.doi.org/10.1128/IAI.02158-14] [PMID: 24935972]
[31]
Thuan DTB, Zayed H, Eid AH, et al. A potential link between oxidative stress and endothelial-to-mesenchymal transition in systemic sclerosis. Front Immunol 2018; 9: 1985.
[http://dx.doi.org/10.3389/fimmu.2018.01985] [PMID: 30283435]
[32]
He J, Sun Y, Jia Y, et al. Ganoderma triterpenes protect against hyperhomocysteinemia induced endothelial-mesenchymal transition via TGF-β signaling inhibition. Front Physiol 2019; 10: 192.
[http://dx.doi.org/10.3389/fphys.2019.00192] [PMID: 30890956]
[33]
Maleszewska M, Moonen JR, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology 2013; 218(4): 443-54.
[http://dx.doi.org/10.1016/j.imbio.2012.05.026] [PMID: 22739237]
[34]
Montorfano I, Becerra A, Cerro R, et al. Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. Lab Invest 2014; 94(10): 1068-82.
[http://dx.doi.org/10.1038/labinvest.2014.100] [PMID: 25068653]
[35]
Rocic P, Lucchesi PA. NAD(P)H oxidases and TGF-beta-induced cardiac fibroblast differentiation: Nox-4 gets Smad. Circ Res 2005; 97(9): 850-2.
[http://dx.doi.org/10.1161/01.RES.0000190403.87462.bf] [PMID: 16254216]
[36]
Das SJ, Lovicu FJ, Collinson EJ. Nox4 plays a role in TGF-β-dependent lens epithelial to mesenchymal transition. Invest Ophthalmol Vis Sci 2016; 57(8): 3665-73.
[http://dx.doi.org/10.1167/iovs.16-19114] [PMID: 27403995]
[37]
Feng W, Dell’Italia LJ, Sanders PW. Novel paradigms of salt and hypertension. J Am Soc Nephrol 2017; 28(5): 1362-9.
[http://dx.doi.org/10.1681/ASN.2016080927] [PMID: 28220030]
[38]
Das J, Ramani R, Suraju MO. Polyphenol compounds and PKC signaling. Biochim Biophys Acta 2016; 1860(10): 2107-21.
[http://dx.doi.org/10.1016/j.bbagen.2016.06.022] [PMID: 27369735]
[39]
Pricci F, Leto G, Amadio L, et al. Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med 2003; 35(6): 683-94.
[http://dx.doi.org/10.1016/S0891-5849(03)00401-5] [PMID: 12957660]
[40]
Zhang J, Wang YJ, Wang X, Xu L, Yang XC, Zhao WS. PKC-mediated endothelin-1 expression in endothelial cell promotes macrophage activation in atherogenesis. Am J Hypertens 2019; 32(9): 880-9.
[http://dx.doi.org/10.1093/ajh/hpz069] [PMID: 31111864]
[41]
Fontayne A, Dang PM, Gougerot-Pocidalo MA, El-Benna J. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: Effect on binding to p22phox and on NADPH oxidase activation. Biochem 2002; 41(24): 7743-50.
[http://dx.doi.org/10.1021/bi011953s] [PMID: 12056906]
[42]
Huang Y, Yan L, Rong S, Haller H, Kirch T. TNF-α induces endothelial dysfunction via PKC-ζ-dependent NADPH oxidase activation. J Huazhong Univ Sci Technolog Med Sci 2012; 32(5): 642-7.
[http://dx.doi.org/10.1007/s11596-012-1011-9] [PMID: 23073791]
[43]
Li H, Hergert SM, Schäfer SC, et al. Midostaurin upregulates eNOS gene expression and preserves eNOS function in the microcirculation of the mouse. Nitric Oxide 2005; 12(4): 231-6.
[http://dx.doi.org/10.1016/j.niox.2005.04.001] [PMID: 15890550]
[44]
Li H, Witte K, August M, et al. Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol 2006; 47(12): 2536-44.
[http://dx.doi.org/10.1016/j.jacc.2006.01.071] [PMID: 16781385]
[45]
Rui W, Guan L, Zhang F, Zhang W, Ding W. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol 2016; 36(1): 48-59.
[http://dx.doi.org/10.1002/jat.3143] [PMID: 25876056]
[46]
Ungvari Z, Orosz Z, Labinskyy N, et al. Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 2007; 293(1): H37-47.
[http://dx.doi.org/10.1152/ajpheart.01346.2006] [PMID: 17416599]
[47]
Pierce GL, Lesniewski LA, Lawson BR, Beske SD, Seals DR. Nuclear factor-kappaB activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circ 2009; 119(9): 1284-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.804294] [PMID: 19237660]
[48]
Feng L, Zhu MM, Zhang MH, et al. Protection of glycyrrhizic acid against AGEs-induced endothelial dysfunction through inhibiting RAGE/NF-κB pathway activation in human umbilical vein endothelial cells. J Ethnopharmacol 2013; 148(1): 27-36.
[http://dx.doi.org/10.1016/j.jep.2013.03.035] [PMID: 23528363]
[49]
Donato AJ, Pierce GL, Lesniewski LA, Seals DR. Role of NFkappaB in age-related vascular endothelial dysfunction in humans. Aging (Albany NY) 2009; 1(8): 678-80.
[http://dx.doi.org/10.18632/aging.100080] [PMID: 20157550]
[50]
Manea A, Tanase LI, Raicu M, Simionescu M. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem Biophys Res Commun 2010; 396(4): 901-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.019] [PMID: 20457132]
[51]
Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA. Reactive Oxygen Species (ROS), intimal thickening, and subclinical atherosclerotic disease. Front Cardiovasc Med 2019; 6: 89.
[http://dx.doi.org/10.3389/fcvm.2019.00089] [PMID: 31428618]
[52]
Manea A, Tanase LI, Raicu M, Simionescu M. Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2010; 30(1): 105-12.
[http://dx.doi.org/10.1161/ATVBAHA.109.193896] [PMID: 19834108]
[53]
Manea SA, Manea A, Heltianu C. Inhibition of JAK/STAT signaling pathway prevents high-glucose-induced increase in endothelin-1 synthesis in human endothelial cells. Cell Tissue Res 2010; 340(1): 71-9.
[http://dx.doi.org/10.1007/s00441-010-0936-1] [PMID: 20217138]
[54]
Liu Y, Xiao J, Zhao Y, et al. microRNA-216a protects against human retinal microvascular endothelial cell injury in diabetic retinopathy by suppressing the NOS2/JAK/STAT axis. Exp Mol Pathol 2020; 115: 104445.
[http://dx.doi.org/10.1016/j.yexmp.2020.104445] [PMID: 32335083]
[55]
Lopez-Sanz L, Bernal S, Recio C, et al. SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition. Lab Invest 2018; 98(10): 1276-90.
[http://dx.doi.org/10.1038/s41374-018-0043-6] [PMID: 29540859]
[56]
Manna SL, Lopez-Sanz L, Bernal S, et al. Antioxidant Effects of PS5, a Peptidomimetic of Suppressor of Cytokine Signaling 1, in Experimental Atherosclerosis. Antioxidants 2020; 9(8): 754.
[http://dx.doi.org/10.3390/antiox9080754] [PMID: 32824091]
[57]
Shimokawa H, Sunamura S, Satoh K. RhoA/Rho-kinase in the cardiovascular system. Circ Res 2016; 118(2): 352-66.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306532] [PMID: 26838319]
[58]
Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev 2013; 33(5): 911-33.
[http://dx.doi.org/10.1002/med.21270] [PMID: 22886693]
[59]
Tsai SH, Lu G, Xu X, Ren Y, Hein TW, Kuo L. Enhanced endothelin-1/Rho-kinase signalling and coronary microvascular dysfunction in hypertensive myocardial hypertrophy. Cardiovasc Res 2017; 113(11): 1329-37.
[http://dx.doi.org/10.1093/cvr/cvx103] [PMID: 28575410]
[60]
Shah DI, Singh M. Involvement of Rho-kinase in experimental vascular endothelial dysfunction. Mol Cell Biochem 2006; 283(1-2): 191-9.
[http://dx.doi.org/10.1007/s11010-006-2679-6] [PMID: 16444602]
[61]
Fazakas C, Nagaraj C, Zabini D, et al. Rho-kinase inhibition ameliorates dasatinib-induced endothelial dysfunction and pulmonary hy-pertension. Front Physiol 2018; 9: 537.
[http://dx.doi.org/10.3389/fphys.2018.00537] [PMID: 29867576]
[62]
Balcilar C, Ozakca-Gunduz I, Altan VM. Contributions of Rhokinase and AMP-related kinase signaling pathways to responses mediated by endothelium-derived contracting factors in diabetic rat aorta. Can J Physiol Pharmacol 2019; 97(7): 600-10.
[http://dx.doi.org/10.1139/cjpp-2018-0698] [PMID: 30785783]
[63]
Zhang H, Park Y, Wu J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond) 2009; 116(3): 219-30.
[http://dx.doi.org/10.1042/CS20080196] [PMID: 19118493]
[64]
Goodwin BL, Pendleton LC, Levy MM, Solomonson LP, Eichler DC. Tumor necrosis factor-alpha reduces argininosuccinate synthase expression and nitric oxide production in aortic endothelial cells. Am J Physiol Heart Circ Physiol 2007; 293(2): H1115-21.
[http://dx.doi.org/10.1152/ajpheart.01100.2006] [PMID: 17496212]
[65]
Yang S, Lin L, Chen JX, et al. Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. Am J Physiol Heart Circ Physiol 2007; 293(1): H142-51.
[http://dx.doi.org/10.1152/ajpheart.00783.2006] [PMID: 17322420]
[66]
Giles TD, Sander GE, Nossaman BD, Kadowitz PJ. Impaired vasodilation in the pathogenesis of hypertension: Focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich) 2012; 14(4): 198-205.
[http://dx.doi.org/10.1111/j.1751-7176.2012.00606.x] [PMID: 22458740]
[67]
Li S, Xu J, Yao W, et al. Sevoflurane pretreatment attenuates TNF-α-induced human endothelial cell dysfunction through activating eNOS/NO pathway. Biochem Biophys Res Commun 2015; 460(3): 879-86.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.126] [PMID: 25838201]
[68]
Dulai R, Perry M, Twycross-Lewis R, Morrissey D, Atzeni F, Greenwald S. The effect of tumor necrosis factor-α antagonists on arterial stiffness in rheumatoid arthritis: A literature review. Semin Arthritis Rheum 2012; 42(1): 1-8.
[http://dx.doi.org/10.1016/j.semarthrit.2012.02.002] [PMID: 22475245]
[69]
Maruhashi T, Kihara Y, Higashi Y. Bilirubin and endothelial function. J Atheroscler Thromb 2019; 26(8): 688-96.
[http://dx.doi.org/10.5551/jat.RV17035] [PMID: 31270300]
[70]
Mo J, Yang R, Li F, et al. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomed 2018; 42: 66-74.
[http://dx.doi.org/10.1016/j.phymed.2018.03.021] [PMID: 29655699]
[71]
Meydani M, Kwan P, Band M, et al. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet. Atherosclerosis 2014; 233(1): 196-205.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.12.006] [PMID: 24529144]
[72]
Bozaykut P, Karademir B, Yazgan B, et al. Effects of vitamin E on peroxisome proliferator-activated receptor γ and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis. Free Radic Biol Med 2014; 70: 174-81.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.02.017] [PMID: 24583459]
[73]
May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal 2013; 19(17): 2068-83.
[http://dx.doi.org/10.1089/ars.2013.5205] [PMID: 23581713]
[74]
Hipólito UV, Callera GE, Simplicio JA, Martinis BSD, Touyz RM, Tirapelli CR. Vitamin C prevents the endothelial dysfunction induced by acute ethanol intake. Life Sci 2015; 141: 99-107.
[http://dx.doi.org/10.1016/j.lfs.2015.09.006] [PMID: 26386369]
[75]
Mohebbati R, Abbasnezhad A. Effects of Nigella sativa on endothelial dysfunction in diabetes mellitus: A review. J Ethnopharmacol 2020; 252: 112585.
[http://dx.doi.org/10.1016/j.jep.2020.112585] [PMID: 31972323]
[76]
Kanagy NL, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol 2017; 312(5): C537-49.
[http://dx.doi.org/10.1152/ajpcell.00329.2016] [PMID: 28148499]
[77]
Greaney JL, Saunders EFH, Santhanam L, Alexander LM. Oxidative stress contributes to microvascular endothelial dysfunction in men and women with major depressive disorder. Circ Res 2019; 124(4): 564-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313764] [PMID: 30582458]
[78]
Martins TF, Palomino OM, Álvarez-Cilleros D, Martín MA, Ramos S, Goya L. Cocoa flavanols protect human endothelial cells from oxidative stress. Plant Foods Hum Nutr 2020; 75(2): 161-8.
[http://dx.doi.org/10.1007/s11130-020-00807-1] [PMID: 32185628]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy