Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Development in Fluorescent Probes for Copper Ion Detection

Author(s): Mukhtiar Ali, Najma Memon, Manthar Ali Mallah, Abdul Sami Channa, Rashmi Gaur and Ye Jiahai*

Volume 22, Issue 10, 2022

Published on: 14 March, 2022

Page: [835 - 854] Pages: 20

DOI: 10.2174/1568026622666220225153703

Price: $65

conference banner
Abstract

Copper is the third most common heavy metal and an indispensable component of life. Variations of body copper levels, both structural and cellular, are related to a number of disorders; consequently, the pathophysiological importance of copper ions demands the development of sensitivity and selection for detecting these organisms in biological systems. In recent years, the area of fluorescent sensors for detecting copper metal ions has seen revolutionary advances. Consequently, closely related fields have raised awareness of several diseases linked to copper fluctuations. Further developments in this field of analysis could pave the way for new and innovative treatments to combat these diseases. This review reports on recent progress in the advancement of three fields of fluorescent probes; chemodosimeters, near IR fluorescent probes, and ratiometric fluorescent probes. Methods used to develop these fluorescent probes and the mechanisms that govern their reaction to specific analytes and their applications in studying biological systems, are also given.

Keywords: Fluorescent probes, Copper ion, Chemodosimeters, Ratiometric fluorescent, Analytes, Metals.

Graphical Abstract
[1]
Yin, J.; Hu, Y.; Yoon, J. Fluorescent probes and bioimaging: Alkali metals, alkaline earth metals and pH. Chem. Soc. Rev., 2015, 44(14), 4619-4644.
[http://dx.doi.org/10.1039/C4CS00275J] [PMID: 25317749]
[2]
Stillman, M. Biological inorganic chemistry. Structure and reactivity. Edited by Ivano Bertini, Harry B. Gray, Edward I. Stiefel and Joan S. Valentine. Angewandte Chemie International ed, 2007, 46(46), 8741-8742.
[http://dx.doi.org/10.1002/anie.200785504]
[3]
Gladyshev, V.N.; Zhang, Y. Comparative genomics analysis of the metallomes. Met. Ions Life Sci., 2013, 12, 529-580.
[http://dx.doi.org/10.1007/978-94-007-5561-1_16] [PMID: 23595683]
[4]
Pham, A.N.; Xing, G.; Miller, C.J.; Waite, T.D. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal., 2013, 301, 54-64.
[http://dx.doi.org/10.1016/j.jcat.2013.01.025]
[5]
Verwilst, P.; Sunwoo, K.; Kim, J.S. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem. Commun. (Camb.), 2015, 51(26), 5556-5571.
[http://dx.doi.org/10.1039/C4CC10366A] [PMID: 25647245]
[6]
Iron, R.; Anemia, D.; As, N.; Of, A. F.; Deficiency, C. Deficiency, “Adult clinical symposium recalcitrant iron deficiency anemia and. 2021.
[7]
Qin, L.Y.; Zhang, R.C.; Liang, Y.D.; Wu, L.C.; Zhang, Y.J.; Mu, Z.L.; Deng, P.; Yang, L.L.; Zhou, Z.; Yu, Z.P. Concentrations and health risks of heavy metals in five major marketed marine bivalves from three coastal cities in Guangxi, China. Ecotoxicol. Environ. Saf., 2021, 223, 112562.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112562] [PMID: 34332248]
[8]
Tan, P.Y.; Soma Roy, M. Dietary copper and selenium are associated with insulin resistance in overweight and obese Malaysian adults. Nutr. Res., 2021, 93, 38-47.
[http://dx.doi.org/10.1016/j.nutres.2021.06.008] [PMID: 34358885]
[9]
Lall, S.P. Chapter 6 - The minerals Hardy R.W.S.J.B.T.-F.N. Academic Press, 2022, pp. 469-554.
[10]
Surowka, A.D.; Czyzycki, M.; Ziomber-Lisiak, A.; Migliori, A.; Szczerbowska-Boruchowska, M. On 2D-FTIR-XRF microscopy- A step forward correlative tissue studies by infrared and hard X-ray radiation. Ultramicroscopy, 2022, 232, 113408.
[http://dx.doi.org/10.1016/j.ultramic.2021.113408] [PMID: 34706307]
[11]
Wang, S.; Ren, W.X.; Hou, J.T.; Won, M.; An, J.; Chen, X.; Shu, J.; Kim, J.S. Fluorescence imaging of pathophysiological microenvironments. Chem. Soc. Rev., 2021, 50(16), 8887-8902.
[http://dx.doi.org/10.1039/D1CS00083G] [PMID: 34195735]
[12]
McRae, R.; Bagchi, P.; Sumalekshmy, S.; Fahrni, C.J. In situ imaging of metals in cells and tissues. Chem. Rev., 2009, 109(10), 4780-4827.
[http://dx.doi.org/10.1021/cr900223a] [PMID: 19772288]
[13]
Kaur, K.; Saini, R.; Kumar, A.; Luxami, V.; Kaur, N.; Singh, P.; Kumar, S. Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord. Chem. Rev., 2012, 256(17-18), 1992-2028.
[http://dx.doi.org/10.1016/j.ccr.2012.04.013]
[14]
Wu, D.; Chen, L.; Lee, W.; Ko, G.; Yin, J.; Yoon, J. Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord. Chem. Rev., 2018, 354, 74-97.
[http://dx.doi.org/10.1016/j.ccr.2017.06.011]
[15]
Park, S.H.; Kwon, N.; Lee, J.H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev., 2020, 49(1), 143-179.
[http://dx.doi.org/10.1039/C9CS00243J] [PMID: 31750471]
[16]
Carter, K. P.; Young, A. M.; Palmer, A. E. Fluorescent sensors for measuring metal ions in living systems. 2014, 114(8), 4564-601.
[http://dx.doi.org/10.1021/cr400546e]
[17]
Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev., 2017, 46(23), 7097-7472.
[18]
Chowdhury, S.; Rooj, B.; Dutta, A.; Mandal, U. Review on recent advances in metal ions sensing using different fluorescent probes. 2018, 28(4), 999-1021.
[http://dx.doi.org/10.1007/s10895-018-2263-y]
[19]
Saleem, M.; Rafiq, M.; Hanif, M.; Shaheen, M.A.; Seo, S.Y. A brief review on fluorescent copper sensor based on conjugated organic dyes. J. Fluoresc., 2018, 28(1), 97-165.
[http://dx.doi.org/10.1007/s10895-017-2178-z]
[20]
Yang, J. Rational design of pyrrole derivatives with aggregation-induced phosphorescence characteristics for time-resolved and two-photon luminescence imaging. Nat. Commun., 2021, 1-8.
[http://dx.doi.org/10.1038/s41467-021-25174-6]
[21]
Taylor, A.T.; Lai, E.P.C. Current state of laser-induced fluorescence spectroscopy for designing biochemical sensors. Chemosensors (Basel), 2021, 9(10), 275.
[http://dx.doi.org/10.3390/chemosensors9100275]
[22]
Mlcs, T. Introduction to Fluorescence; 1-26.
[23]
Fort, C.; Bardet, P.M. Efficient photobleaching of rhodamine 6G by a single UV pulse. Appl. Opt., 2021, 60(22), 6342-6350.
[http://dx.doi.org/10.1364/AO.431209] [PMID: 34612867]
[24]
de Silva, A.P.; Moody, T.S.; Wright, G.D. Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst (Lond.), 2009, 134(12), 2385-2393.
[http://dx.doi.org/10.1039/b912527m] [PMID: 19918605]
[25]
Skorjanc, T.; Shetty, D.; Valant, M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens., 2021, 6(4), 1461-1481.
[http://dx.doi.org/10.1021/acssensors.1c00183] [PMID: 33825458]
[26]
Huang, Q.; Guo, Q.; Lan, J.; You, J. Tuning the dual emission of keto/enol forms of excited-state intramolecular proton transfer (ESIPT) emitters via intramolecular charge transfer (ICT). Dyes Pigments, 2021, 193, 109497.
[http://dx.doi.org/10.1016/j.dyepig.2021.109497]
[27]
Das, A.; Danao, A.; Banerjee, S.; Raj, A.M.; Sharma, G.; Prabhakar, R.; Srinivasan, V.; Ramamurthy, V.; Sen, P. Dynamics of anthracene excimer formation within a water-soluble nanocavity at room temperature. J. Am. Chem. Soc., 2021, 143(4), 2025-2036.
[http://dx.doi.org/10.1021/jacs.0c12169] [PMID: 33471537]
[28]
Sedgwick, A.C.; Wu, L.; Han, H.H.; Bull, S.D.; He, X.P.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev., 2018, 47(23), 8842-8880.
[http://dx.doi.org/10.1039/C8CS00185E] [PMID: 30361725]
[29]
Yang, Z.; Sharma, A.; Qi, J.; Peng, X.; Lee, D.Y.; Hu, R.; Lin, D.; Qu, J.; Kim, J.S. Super-resolution fluorescent materials: An insight into design and bioimaging applications. Chem. Soc. Rev., 2016, 45(17), 4651-4667.
[http://dx.doi.org/10.1039/C5CS00875A] [PMID: 27296269]
[30]
Li, J.; Yim, D.; Jang, W-D.; Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev., 2017, 46(9), 2437-2458.
[http://dx.doi.org/10.1039/C6CS00619A] [PMID: 27711665]
[31]
Yan, J.; Lee, S.; Zhang, A.; Yoon, J. Self-immolative colorimetric, fluorescent and chemiluminescent chemosensors. Chem. Soc. Rev., 2018, 47(18), 6900-6916.
[http://dx.doi.org/10.1039/C7CS00841D] [PMID: 30175338]
[32]
Kowser, Z.; Rayhan, U.; Akther, T.; Redshaw, C.; Yamato, T. A brief review on novel pyrene based fluorometric and colorimetric chemosensors for the detection of Cu2+. Mater. Chem. Front., 2021, 5(5), 2173-2200.
[http://dx.doi.org/10.1039/D0QM01008A]
[33]
Falcone, E.; Okafor, M.; Vitale, N.; Raibaut, L.; Sour, A.; Faller, P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord. Chem. Rev., 2021, 433, 213727.
[http://dx.doi.org/10.1016/j.ccr.2020.213727]
[34]
Chae, M.Y.; Czarnik, A.W. Fluorometric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling. J. Am. Chem. Soc., 1992, 114(24), 9704-9705.
[http://dx.doi.org/10.1021/ja00050a085]
[35]
Dujols, V.; Ford, F.; Czarnik, A.W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc., 1997, 119(31), 7386-7387.
[http://dx.doi.org/10.1021/ja971221g]
[36]
Nam, Kim Kyoung; Choi, Myung-gil; Noh, Jae-Hyun; Ahn, Sangdoo; Jang, Seok-kyu Bull. Korean Chem. Soc., 29(3), 571-574.
[37]
Yu, M.; Shi, M.; Chen, Z.; Li, F.; Li, X.; Gao, Y. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging. 2008, 6892-6900.
[38]
Kumar, M.; Kumar, N.; Bhalla, V.; Sharma, P.R.; Kaur, T. Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org. Lett., 2012, 14(1), 406-409.
[http://dx.doi.org/10.1021/ol203186b] [PMID: 22172077]
[39]
Xie, P.; Guo, F.; Li, D.; Liu, X.; Liu, L.A. Cu2+ chemodosimeter based on amplified fluorescence in the red region. J. Lumin., 2011, 131(1), 104-108.
[http://dx.doi.org/10.1016/j.jlumin.2010.09.021]
[40]
Kim, M.H.; Jang, H.H.; Yi, S.; Chang, S-K.; Han, M.S. Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions. Chem. Commun. (Camb.), 2009, (32), 4838-4840.
[http://dx.doi.org/10.1039/b908638b] [PMID: 19652798]
[41]
Zhou, Z.; Li, N.; Tong, A. A new coumarin-based fluorescence turn-on chemodosimeter for Cu2+ in water. Anal. Chim. Acta, 2011, 702(1), 81-86.
[http://dx.doi.org/10.1016/j.aca.2011.06.041] [PMID: 21819863]
[42]
Qi, X.; Jun, E.J.; Xu, L.; Kim, S.J.; Hong, J.S.; Yoon, Y.J.; Yoon, J. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: Cooperative selectivity enhancement toward Cu2+. J. Org. Chem., 2006, 71(7), 2881-2884.
[http://dx.doi.org/10.1021/jo052542a] [PMID: 16555847]
[43]
Huang, L.; Hou, F.P.; Xi, P.; Bai, D.; Xu, M.; Li, Z.; Xie, G.; Shi, Y.; Liu, H.; Zeng, Z. A rhodamine-based “turn-on” fluorescent chemodosimeter for Cu2+ and its application in living cell imaging. J. Inorg. Biochem., 2011, 105(6), 800-805.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.02.012] [PMID: 21497578]
[44]
Ozmen, P.; Demir, Z.; Karagoz, B. An easy way to prepare reusable rhodamine-based chemosensor for selective detection of Cu2+ and Hg2+ ions. Eur. Polym. J., 2022, 162, 110922.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110922]
[45]
Xiang, Y.; Tong, A. Ratiometric and selective fluorescent chemodosimeter for Cu(II) by Cu(II)-induced oxidation. Luminescence, 2008, 23(1), 28-31.
[http://dx.doi.org/10.1002/bio.1012] [PMID: 18175362]
[46]
Guo, Z.; Wang, X.; Wei, P.; Gao, Y.; Li, Q. Highly selective fluorescent probe for the detection of copper (II) and its application in live cell imaging. J. Anal. Methods Chem., 2019, 2019, 8130767.
[http://dx.doi.org/10.1155/2019/8130767] [PMID: 31236305]
[47]
Schwarze, T.; Sperlich, E.; Müller, T.; Kelling, A.; Holdt, H-J. Synthesis efforts of acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis(dialkylamino)maleonitriles as fluorescent probes for cations and a new colorimetric copper(II) chemodosimeter. Helv. Chim. Acta, 2021, 104(6), e2100028.
[http://dx.doi.org/10.1002/hlca.202100028]
[48]
Lin, W.; Long, L.; Chen, B.; Tan, W.; Gao, W. Fluorescence turn-on detection of Cu2+ in water samples and living cells based on the unprecedented copper-mediated dihydrorosamine oxidation reaction. Chem. Commun. (Camb.), 2010, 46(8), 1311-1313.
[http://dx.doi.org/10.1039/b919531a] [PMID: 20449287]
[49]
Taki, M.; Iyoshi, S.; Ojida, A.; Hamachi, I.; Yamamoto, Y. Development of highly sensitive fluorescent probes for detection of intracellular copper(I) in living systems. J. Am. Chem. Soc., 2010, 132(17), 5938-5939.
[http://dx.doi.org/10.1021/ja100714p] [PMID: 20377254]
[50]
Shi, Z.; Tang, X.; Zhou, X.; Cheng, J.; Han, Q.; Zhou, J.A.; Wang, B.; Yang, Y.; Liu, W.; Bai, D. A highly selective fluorescence “turn-on” probe for Cu(II) based on reaction and its imaging in living cells. Inorg. Chem., 2013, 52(21), 12668-12673.
[http://dx.doi.org/10.1021/ic401865e] [PMID: 24116882]
[51]
Kim, H.J.; Lee, S.J.; Park, S.Y.; Jung, J.H.; Kim, J.S. Detection of CuII by a chemodosimeter-functionalized monolayer on mesoporous silica. Adv. Mater., 2008, 20(17), 3229-3234.
[http://dx.doi.org/10.1002/adma.200800246]
[52]
Liu, Z.; Lin, L-R.; Huang, R-B.; Zheng, L-S. 1-(2-methoxybenzylidene)-4-phenylthiosemicarbazide as OFF-ON fluorescent chemodosimeter for detection of Cu2+ in acetonitrile-water binary solvents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(4), 1212-1215.
[http://dx.doi.org/10.1016/j.saa.2008.03.027] [PMID: 18448384]
[53]
Basu, A.; Das, G. Oxidative cyclization of thiosemicarbazone: An optical and turn-on fluorescent chemodosimeter for Cu(II). Dalton Trans., 2011, 40(12), 2837-2843.
[http://dx.doi.org/10.1039/c0dt01549k] [PMID: 21305090]
[54]
Li, A-F.; He, H.; Ruan, Y.B.; Wen, Z.C.; Zhao, J.S.; Jiang, Q.J.; Jiang, Y.B. Oxidative cyclization of N-acylhydrazones. Development of highly selective turn-on fluorescent chemodosimeters for Cu2+. Org. Biomol. Chem., 2009, 7(1), 193-200.
[http://dx.doi.org/10.1039/B811612A] [PMID: 19081963]
[55]
Wang, D.; Shiraishi, Y.; Hirai, T. A BODIPY-based fluorescent chemodosimeter for Cu(II) driven by an oxidative dehydrogenation mechanism. Chem. Commun. (Camb.), 2011, 47(9), 2673-2675.
[http://dx.doi.org/10.1039/c0cc04069j] [PMID: 21234464]
[56]
Ajayakumar, G.; Sreenath, K.; Gopidas, K.R. Phenothiazine attached Ru(bpy)(3)2+ derivative as highly selective “turn-ON” luminescence chemodosimeter for Cu2+. Dalton Trans., 2009, (7), 1180-1186.
[http://dx.doi.org/10.1039/B813765J] [PMID: 19322489]
[57]
Wu, W.; Min, S.; Tong, Q.; Wang, J.; Hu, J.; Dhamsaniya, A.; Shah, A.K.; Mehta, V.P.; Dong, B.; Song, B. Highly sensitive and selective ‘turn-off’ fluorescent probes based on coumarin for detection of Cu2+. Colloid Interface Sci. Commun., 2021, 43, 100451.
[http://dx.doi.org/10.1016/j.colcom.2021.100451]
[58]
Qian, G.; Wang, Z.Y. Near-infrared organic compounds and emerging applications. Chem. Asian J., 2010, 5(5), 1006-1029.
[http://dx.doi.org/10.1002/asia.200900596] [PMID: 20352644]
[59]
Escobedo, J.O.; Rusin, O.; Lim, S.; Strongin, R.M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol., 2010, 14(1), 64-70.
[http://dx.doi.org/10.1016/j.cbpa.2009.10.022] [PMID: 19926332]
[60]
Hilderbrand, S.A.; Weissleder, R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol., 2010, 14(1), 71-79.
[http://dx.doi.org/10.1016/j.cbpa.2009.09.029] [PMID: 19879798]
[61]
Chai, X.; Zhu, W.; Meng, Q.; Wang, T. Si-rhodamine based water-soluble fluorescent probe for bioimaging of Cu+. Chin. Chem. Lett., 2020, 32(1), 210-213.
[62]
Cao, X.; Lin, W.; Wan, W. Development of a near-infrared fluorescent probe for imaging of endogenous Cu+ in live cells. Chem. Commun. (Camb.), 2012, 48(50), 6247-6249.
[http://dx.doi.org/10.1039/c2cc32114a] [PMID: 22595897]
[63]
Hirayama, T.; Van de Bittner, G.C.; Gray, L.W.; Lutsenko, S.; Chang, C.J. Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2228-2233.
[http://dx.doi.org/10.1073/pnas.1113729109] [PMID: 22308360]
[64]
Maity, D.; Raj, A.; Karthigeyan, D.; Kundu, T.K.; Govindaraju, T. A switch-on near-infrared fluorescence-ready probe for Cu(I): Live cell imaging. Supramol. Chem., 2015, 27(9), 589-594.
[http://dx.doi.org/10.1080/10610278.2015.1041953]
[65]
Li, Z.; Xu, Y.; Xu, H.; Cui, M.; Liu, T.; Ren, X.; Sun, J.; Deng, D.; Gu, Y.; Wang, P. A dicyanomethylene-4H-pyran-based fluorescence probe with high selectivity and sensitivity for detecting copper (II) and its bioimaging in living cells and tissue. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 244, 118819.
[http://dx.doi.org/10.1016/j.saa.2020.118819] [PMID: 32846303]
[66]
Karaoglu, K. A new chromenylium-cyanine chemosensor for switch-ON near-infrared copper (II) sensing. J. Mol. Struct., 2020, 1205, 127640.
[http://dx.doi.org/10.1016/j.molstruc.2019.127640]
[67]
Hanmeng, O.; Chailek, N.; Charoenpanich, A.; Phuekvilai, P.; Yookongkaew, N.; Sanmanee, N.; Sirirak, J.; Swanglap, P.; Wanichacheva, N. Cu2+-selective NIR fluorescence sensor based on heptamethine cyanine in aqueous media and its application. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 240, 118606.
[http://dx.doi.org/10.1016/j.saa.2020.118606] [PMID: 32629406]
[68]
Aydin, Z.; Yan, B.; Wei, Y.; Guo, M. A novel near-infrared turn-on and ratiometric fluorescent probe capable of copper(II) ion determination in living cells. Chem. Commun. (Camb.), 2020, 56(45), 6043-6046.
[http://dx.doi.org/10.1039/D0CC01481H] [PMID: 32427230]
[69]
Xue, X.; Fang, H.; Chen, H.; Zhang, C.; Zhu, C.; Bai, Y.; He, W.; Guo, Z. In vivo fluorescence imaging for Cu2+ in live mice by a new NIR fluorescent sensor. Dyes Pigments, 2016, 130, 116-121.
[http://dx.doi.org/10.1016/j.dyepig.2016.03.017]
[70]
Shi, W-J.; Liu, J-Y.; Ng, D.K.P. A highly selective colorimetric and fluorescent probe for Cu2+ and Hg2+ ions based on a distyryl BODIPY with two bis(1,2,3-triazole)amino receptors. Chem. Asian J., 2012, 7(1), 196-200.
[http://dx.doi.org/10.1002/asia.201100598] [PMID: 22028246]
[71]
Xie, X.; Qin, Y. A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions. Sens. Actuators B Chem., 2011, 156(1), 213-217.
[http://dx.doi.org/10.1016/j.snb.2011.04.020]
[72]
Zhu, W.; Huang, X.; Guo, Z.; Wu, X.; Yu, H.; Tian, H. A novel NIR fluorescent turn-on sensor for the detection of pyrophosphate anion in complete water system. Chem. Commun. (Camb.), 2012, 48(12), 1784-1786.
[http://dx.doi.org/10.1039/c2cc16902a] [PMID: 22218364]
[73]
Chen, X.; Nam, S.W.; Kim, G.H.; Song, N.; Jeong, Y.; Shin, I.; Kim, S.K.; Kim, J.; Park, S.; Yoon, J. A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. Chem. Commun. (Camb.), 2010, 46(47), 8953-8955.
[http://dx.doi.org/10.1039/c0cc03398g] [PMID: 20976329]
[74]
Cao, X.; Lin, W.; He, L. A near-infrared fluorescence turn-on sensor for sulfide anions. Org. Lett., 2011, 13(17), 4716-4719.
[http://dx.doi.org/10.1021/ol201932c] [PMID: 21809838]
[75]
Li, P.; Duan, X.; Chen, Z.; Liu, Y.; Xie, T.; Fang, L.; Li, X.; Yin, M.; Tang, B. A near-infrared fluorescent probe for detecting copper(II) with high selectivity and sensitivity and its biological imaging applications. Chem. Commun. (Camb.), 2011, 47(27), 7755-7757.
[http://dx.doi.org/10.1039/c1cc11885d] [PMID: 21617817]
[76]
Li, Y.; Sun, M.; Zhang, K.; Zhang, Y.; Yan, Y.; Lei, K.; Wu, L.; Yu, H.; Wang, S. A near-infrared fluorescent probe for Cu2+ in living cells based on coordination effect. Sens. Actuators B Chem., 2017, 243, 36-42.
[http://dx.doi.org/10.1016/j.snb.2016.11.118]
[77]
Goswami, S.; Sen, D.; Das, N.K.; Hazra, G. Highly selective colorimetric fluorescence sensor for Cu2+: Cation-induced ‘switching on’ of fluorescence due to excited state internal charge transfer in the red/near-infrared region of emission spectra. Tetrahedron Lett., 2010, 51(42), 5563-5566.
[http://dx.doi.org/10.1016/j.tetlet.2010.08.048]
[78]
Wu, X.; Guo, Z.; Wu, Y.; Zhu, S.; James, T.D.; Zhu, W. Near-infrared colorimetric and fluorescent Cu(2+) sensors based on indoline-benzothiadiazole derivatives via formation of radical cations. ACS Appl. Mater. Interfaces, 2013, 5(22), 12215-12220.
[http://dx.doi.org/10.1021/am404491f] [PMID: 24215096]
[79]
Shen, Y.; Zheng, W.; Yao, Y.; Wang, D.; Lv, G.; Li, C. Phenoxazine-based near-infrared fluorescent probes for the specific detection of copper (II) ions in living cells. Chem. Asian J., 2020, 15(18), 2864-2867.
[http://dx.doi.org/10.1002/asia.202000783] [PMID: 32720435]
[80]
Zhang, H.; Feng, L.; Jiang, Y.; Wong, Y.T.; He, Y.; Zheng, G.; He, J.; Tan, Y.; Sun, H.; Ho, D. A reaction-based near-infrared fluorescent sensor for Cu(2+) detection in aqueous buffer and its application in living cells and tissues imaging. Biosens. Bioelectron., 2017, 94, 24-29.
[http://dx.doi.org/10.1016/j.bios.2017.02.037] [PMID: 28242495]
[81]
Liu, Y.; Su, Q.; Chen, M.; Dong, Y.; Shi, Y.; Feng, W.; Wu, Z.Y.; Li, F. Near-infrared upconversion chemodosimeter for in vivo detection of Cu(2+) in Wilson Disease. Adv. Mater., 2016, 28(31), 6625-6630.
[http://dx.doi.org/10.1002/adma.201601140] [PMID: 27185083]
[82]
Liu, K.; Shang, H.; Meng, F.; Liu, Y.; Lin, W. A novel near-infrared fluorescent platform with good photostability and the application for a reaction-based Cu(2+) probe in living cells. Talanta, 2016, 147, 193-198.
[http://dx.doi.org/10.1016/j.talanta.2015.09.052] [PMID: 26592595]
[83]
Wang, B.; Cui, X.; Zhang, Z.; Chai, X.; Ding, H.; Wu, Q.; Guo, Z.; Wang, T. A six-membered-ring incorporated Si-rhodamine for imaging of copper(ii) in lysosomes. Org. Biomol. Chem., 2016, 14(28), 6720-6728.
[http://dx.doi.org/10.1039/C6OB00894A] [PMID: 27314426]
[84]
Wang, P.; Yao, K.; Fu, J.; Chang, Y.; Li, B.; Xu, K. Novel fluorescent probes for relay detection copper/citrate ion and application in cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 211, 9-17.
[http://dx.doi.org/10.1016/j.saa.2018.11.038] [PMID: 30502583]
[85]
Jin, X.; Wu, X.; Zhang, F.; Zhao, H.; Zhong, W.; Cao, Y.; Ma, X.; Leng, X.; Zhou, H.; She, M. Cu2+/ATP reversible ratiometric fluorescent probe through strip, hydrogel, and nanofiber, and its application in living cells and edaphic ecological safety assessment. Dyes Pigments, 2020, 182, 108677.
[http://dx.doi.org/10.1016/j.dyepig.2020.108677]
[86]
Jin, X. Fluorescent sensing film decorated with ratiometric probe for visual and recyclable monitoring of Cu2. Spectrochim. Acta Part A Mol. Biomol. Spectrosc, 2020, 119217.
[87]
Tang, J.; Ma, S.; Zhang, D.; Liu, Y.; Zhao, Y.; Ye, Y. Highly sensitive and fast responsive ratiometric fluorescent probe for Cu2+ based on a naphthalimide-rhodamine dyad and its application in living cell imaging. Sens. Actuators B Chem., 2016, 236, 109-115.
[http://dx.doi.org/10.1016/j.snb.2016.05.144]
[88]
Ge, Y.; Zheng, X.; Ji, R.; Shen, S.; Cao, X. A new pyrido[1,2-a]benzimidazole-rhodamine FRET system as an efficient ratiometric fluorescent probe for Cu2+ in living cells. Anal. Chim. Acta, 2017, 965, 103-110.
[http://dx.doi.org/10.1016/j.aca.2017.02.006] [PMID: 28366207]
[89]
Zheng, X.; Ji, R.; Cao, X.; Ge, Y. FRET-based ratiometric fluorescent probe for Cu2+ with a new indolizine fluorophore. Anal. Chim. Acta, 2017, 978, 48-54.
[http://dx.doi.org/10.1016/j.aca.2017.04.048] [PMID: 28595726]
[90]
Liu, C.; Jiao, X.; He, S.; Zhao, L.; Zeng, X. A highly selective and sensitive fluorescent probe for Cu2+ based on a novel naphthalimide-rhodamine platform and its application in live cell imaging. Org. Biomol. Chem., 2017, 15(18), 3947-3954.
[http://dx.doi.org/10.1039/C7OB00538E] [PMID: 28436528]
[91]
Wu, W-N.; Wu, H.; Zhong, R.B.; Wang, Y.; Xu, Z.H.; Zhao, X.L.; Xu, Z.Q.; Fan, Y.C. Ratiometric fluorescent probe based on pyrrole-modified rhodamine 6G hydrazone for the imaging of Cu2+ in lysosomes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 212, 121-127.
[http://dx.doi.org/10.1016/j.saa.2018.12.041] [PMID: 30616165]
[92]
Park, S.Y.; Kim, W.; Park, S.H.; Han, J.; Lee, J.; Kang, C.; Lee, M.H. An endoplasmic reticulum-selective ratiometric fluorescent probe for imaging a copper pool. Chem. Commun. (Camb.), 2017, 53(32), 4457-4460.
[http://dx.doi.org/10.1039/C7CC01430A] [PMID: 28379247]
[93]
Wang, Y.; Wu, H.; Wu, W-N.; Yu, Y-P.; Zhao, X-L.; Xu, Z-H.; Xu, Z-Q.; Fan, Y-C. Aggregation-induced ratiometric emission active monocarbazone: Ratiometric fluorescent probe for Cu2+ in either solution or aggregation states. J. Lumin., 2018, 204, 289-295.
[http://dx.doi.org/10.1016/j.jlumin.2018.08.042]
[94]
Mehta, P.K.; Oh, E-T.; Park, H.J.; Lee, K-H. Ratiometric detection of Cu+ in aqueous buffered solutions and in live cells using fluorescent peptidyl probe to mimic the binding site of the metalloprotein for Cu+. Sens. Actuators B Chem., 2018, 256, 393-401.
[http://dx.doi.org/10.1016/j.snb.2017.10.087]
[95]
Domaille, D.W.; Zeng, L.; Chang, C.J. Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor. J. Am. Chem. Soc., 2010, 132(4), 1194-1195.
[http://dx.doi.org/10.1021/ja907778b] [PMID: 20052977]
[96]
Dodani, S.C.; Leary, S.C.; Cobine, P.A.; Winge, D.R.; Chang, C.J. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J. Am. Chem. Soc., 2011, 133(22), 8606-8616.
[http://dx.doi.org/10.1021/ja2004158] [PMID: 21563821]
[97]
You, Y.; Han, Y.; Lee, Y-M.; Park, S.Y.; Nam, W.; Lippard, S.J. Phosphorescent sensor for robust quantification of copper(II) ion. J. Am. Chem. Soc., 2011, 133(30), 11488-11491.
[http://dx.doi.org/10.1021/ja204997c] [PMID: 21749087]
[98]
Kang, D.E.; Lim, C.S.; Kim, J.Y.; Kim, E.S.; Chun, H.J.; Cho, B.R. Two-photon probe for Cu2 with an internal reference: Quantitative estimation of Cu2 in human tissues by two-photon microscopy. Anal. Chem., 2014, 86(11), 5353-5359.
[http://dx.doi.org/10.1021/ac500329k] [PMID: 24825103]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy