Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Involvement of Terminase Complex in Herpes Simplex Virus Mature Virion Egress

Author(s): Archana Mahadev Rao, Sridevi Balireddy, Fayaz Shaik Mohammad, Divyashree M. Somashekara and Raghu Chandrashekar Hariharapura*

Volume 23, Issue 2, 2022

Published on: 15 March, 2022

Page: [105 - 113] Pages: 9

DOI: 10.2174/1389203723666220217144432

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The life cycle of the Herpes simplex virus starts with attachment to the host cell, injection of the nucleocapsid into the cytoplasm, replication, transcription and viral protein production, and finally, the assembly of the mature virion nucleopcapsid. The assembled nucleocapsid exits the host nucleus and gains a tegument layer bound within a bilayer of membrane phospholipid. The packaged virion particle then exits the host cell. The interaction of the (Deoxyribonucleic acid) DNA packaging complex- terminase, present on the mature viral nucleocapsid, with other proteins involved in nuclear egress and cytoplasmic tegumentation has led to the proposal of the model by which the terminase complex may be involved in these two events. The role of terminase complex in Herpes Simplex Virus (HSV) genomic DNA encapsidation into the capsid is previously established, but the role of the terminase subunits post DNA packaging remains unclear. The current review provides a model by which the terminase complex may have a role to play in the events of nuclear egress and secondary envelopment.

Keywords: Terminase, nuclear egress, secondary envelopment, HSV, viral replication, nucleopcapsid.

Next »
Graphical Abstract
[1]
Oehmig, A.; Fraefel, C.; Breakefield, X.O. Update on herpesvirus amplicon vectors. Mol. Ther., 2004, 10(4), 630-643.
[http://dx.doi.org/10.1016/j.ymthe.2004.06.641] [PMID: 15451447]
[2]
Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One, 2015, 10(10), e0140765.
[http://dx.doi.org/10.1371/journal.pone.0140765] [PMID: 26510007]
[3]
Looker, K.J.; Magaret, A.S.; Turner, K.M.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One, 2012, 10, 1-23.
[4]
Cowan, F.M.; French, R.S.; Mayaud, P.; Gopal, R.; Robinson, N.J.; de Oliveira, S.A.; Faillace, T.; Uusküla, A.; Nygård-Kibur, M.; Ramalingam, S.; Sridharan, G.; El Aouad, R.; Alami, K.; Rbai, M.; Sunil-Chandra, N.P.; Brown, D.W. Seroepidemiological study of herpes simplex virus types 1 and 2 in Brazil, Estonia, India, Morocco, and Sri Lanka. Sex. Transm. Infect., 2003, 79(4), 286-290.
[http://dx.doi.org/10.1136/sti.79.4.286] [PMID: 12902576]
[5]
Khadr, L.; Harfouche, M.; Omori, R.; Schwarzer, G.; Chemaitelly, H.; Abu-Raddad, L.J. The epidemiology of herpes simplex virus type 1 in Asia: Systematic review, meta-analyses, and meta-regressions. Clin. Infect. Dis., 2019, 68(5), 757-772.
[http://dx.doi.org/10.1093/cid/ciy562] [PMID: 30020453]
[6]
Wald, A.; Link, K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: A meta-analysis. J. Infect. Dis., 2002, 185(1), 45-52.
[http://dx.doi.org/10.1086/338231] [PMID: 11756980]
[7]
Sauerbrei, A. Diagnosis, antiviral therapy, and prophylaxis of varicella-zoster virus infections. Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35(5), 723-734.
[http://dx.doi.org/10.1007/s10096-016-2605-0] [PMID: 26873382]
[8]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[9]
Szpara, M.L.; Gatherer, D.; Ochoa, A.; Greenbaum, B.; Dolan, A.; Bowden, R.J.; Enquist, L.W.; Legendre, M.; Davison, A.J. Evolution and diversity in human herpes simplex virus genomes. J. Virol., 2014, 88(2), 1209-1227.
[http://dx.doi.org/10.1128/JVI.01987-13] [PMID: 24227835]
[10]
Grinde, B. Herpesviruses: latency and reactivation - viral strategies and host response. J. Oral Microbiol., 2013, 5(1), 1-9.
[http://dx.doi.org/10.3402/jom.v5i0.22766] [PMID: 24167660]
[11]
Spear, P.G.; Longnecker, R. Herpesvirus entry: An update. J. Virol., 2003, 77(19), 10179-10185.
[http://dx.doi.org/10.1128/JVI.77.19.10179-10185.2003] [PMID: 12970403]
[12]
Clement, C.; Tiwari, V.; Scanlan, P.M.; Valyi-Nagy, T.; Yue, B.Y.; Shukla, D. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J. Cell Biol., 2006, 174(7), 1009-1021.
[http://dx.doi.org/10.1083/jcb.200509155] [PMID: 17000878]
[13]
Lyman, M.G.; Enquist, L.W. Herpesvirus interactions with the host cytoskeleton. J. Virol., 2009, 83(5), 2058-2066.
[http://dx.doi.org/10.1128/JVI.01718-08] [PMID: 18842724]
[14]
Weller, S.K.; Coen, D.M. Herpes simplex viruses: Mechanisms of DNA replication. Cold Spring Harb. Perspect. Biol., 2012, 4(9), a013011.
[http://dx.doi.org/10.1101/cshperspect.a013011] [PMID: 22952399]
[15]
Alvisi, G.; Avanzi, S.; Musiani, D.; Camozzi, D.; Leoni, V.; Ly-Huynh, J.D.; Ripalti, A. Nuclear import of HSV-1 DNA polymerase processivity factor UL42 is mediated by a C-terminally located bipartite nuclear localization signal. Biochemistry, 2008, 47(52), 13764-13777.
[http://dx.doi.org/10.1021/bi800869y] [PMID: 19053255]
[16]
Burch, A.D.; Weller, S.K. Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J. Virol., 2005, 79(16), 10740-10749.
[http://dx.doi.org/10.1128/JVI.79.16.10740-10749.2005] [PMID: 16051866]
[17]
Malik, A.K.; Shao, L.; Shanley, J.D.; Weller, S.K. Intracellular localization of the herpes simplex virus type-1 origin binding protein, UL9. Virology, 1996, 224(2), 380-389.
[http://dx.doi.org/10.1006/viro.1996.0545] [PMID: 8874499]
[18]
Heming, J.D.; Conway, J.F.; Homa, F.L. Herpesvirus capsid assembly and DNA packaging. Adv. Anat. Embryol. Cell Biol., 2017, 223, 119-142.
[http://dx.doi.org/10.1007/978-3-319-53168-7_6] [PMID: 28528442]
[19]
Newcomb, W.W.; Homa, F.L.; Thomsen, D.R.; Booy, F.P.; Trus, B.L.; Steven, A.C.; Spencer, J.V.; Brown, J.C. Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol., 1996, 263(3), 432-446.
[http://dx.doi.org/10.1006/jmbi.1996.0587] [PMID: 8918599]
[20]
Gibson, W.; Roizman, B. Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J. Virol., 1972, 10(5), 1044-1052.
[http://dx.doi.org/10.1128/jvi.10.5.1044-1052.1972] [PMID: 4344252]
[21]
Rixon, F.J.; Cross, A.M.; Addison, C.; Preston, V.G. The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. J. Gen. Virol., 1988, 69(Pt 11), 2879-2891.
[http://dx.doi.org/10.1099/0022-1317-69-11-2879] [PMID: 2846764]
[22]
Sherman, G.; Bachenheimer, S.L. Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology, 1988, 163(2), 471-480.
[http://dx.doi.org/10.1016/0042-6822(88)90288-7] [PMID: 2833020]
[23]
Tandon, R.; Mocarski, E.S.; Conway, J.F. The A, B, Cs of herpesvirus capsids. Viruses, 2015, 7(3), 899-914.
[http://dx.doi.org/10.3390/v7030899] [PMID: 25730559]
[24]
Yang, K.; Homa, F.; Baines, J.D. Putative terminase subunits of herpes simplex virus 1 form a complex in the cytoplasm and interact with portal protein in the nucleus. J. Virol., 2007, 81(12), 6419-6433.
[http://dx.doi.org/10.1128/JVI.00047-07] [PMID: 17392365]
[25]
White, C.A.; Stow, N.D.; Patel, A.H.; Hughes, M.; Preston, V.G. Herpes simplex virus type 1 portal protein UL6 interacts with the putative terminase subunits UL15 and UL28. J. Virol., 2003, 77(11), 6351-6358.
[http://dx.doi.org/10.1128/JVI.77.11.6351-6358.2003] [PMID: 12743292]
[26]
Yang, K.; Wills, E.G.; Baines, J.D. A mutation in UL15 of herpes simplex virus 1 that reduces packaging of cleaved genomes. J. Virol., 2011, 85(22), 11972-11980.
[http://dx.doi.org/10.1128/JVI.00857-11] [PMID: 21880766]
[27]
Selvarajan Sigamani, S.; Zhao, H.; Kamau, Y.N.; Baines, J.D.; Tang, L. The structure of the herpes simplex virus DNA-packaging terminase pUL15 nuclease domain suggests an evolutionary lineage among eukaryotic and prokaryotic viruses. J. Virol., 2013, 87(12), 7140-7148.
[http://dx.doi.org/10.1128/JVI.00311-13] [PMID: 23596306]
[28]
Adelman, K.; Salmon, B.; Baines, J.D. Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3086-3091.
[http://dx.doi.org/10.1073/pnas.061555698] [PMID: 11248036]
[29]
Yang, K.; Dang, X.; Baines, J.D. A domain of Herpes simplex virus pUL33 required to release monomeric viral genomes from cleaved concatameric DNA. J. Virol., 2017, 9, 817-854.
[30]
Conway, J.F.; Homa, F.L. Nucleocapsid structure, assembly and DNA packaging of herpes simplex virus.Alphaheresviruses; Weller, S.K., Ed.; Caister Academic Press: Norwich, United Kingdom, 2011, pp. 175-193.
[31]
Yu, D.; Weller, S.K. Herpes simplex virus type 1 cleavage and packaging proteins UL15 and UL28 are associated with B but not C capsids during packaging. J. Virol., 1998, 72(9), 7428-7439.
[http://dx.doi.org/10.1128/JVI.72.9.7428-7439.1998] [PMID: 9696839]
[32]
Beard, P.M.; Duffy, C.; Baines, J.D. Quantification of the DNA cleavage and packaging proteins U(L)15 and U(L)28 in A and B capsids of herpes simplex virus type 1. J. Virol., 2004, 78(3), 1367-1374.
[http://dx.doi.org/10.1128/JVI.78.3.1367-1374.2004] [PMID: 14722291]
[33]
Roos, W.H.; Radtke, K.; Kniesmeijer, E.; Geertsema, H.; Sodeik, B.; Wuite, G.J. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc. Natl. Acad. Sci. USA, 2009, 106(24), 9673-9678.
[http://dx.doi.org/10.1073/pnas.0901514106] [PMID: 19487681]
[34]
Bailer, S.M. Venture from the interior-herpesvirus pUL31 escorts capsids from nucleoplasmic replication compartments to sites of primary envelopment at the inner nuclear membrane. Cells, 2017, 6(4), 46.
[http://dx.doi.org/10.3390/cells6040046] [PMID: 29186822]
[35]
Johnson, D.C.; Baines, J.D. Herpesviruses remodel host membranes for virus egress. Nat. Rev. Microbiol., 2011, 9(5), 382-394.
[http://dx.doi.org/10.1038/nrmicro2559] [PMID: 21494278]
[36]
Skepper, J.N.; Whiteley, A.; Browne, H.; Minson, A. Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment deenvelopment reenvelopment pathway. J. Virol., 2001, 75(12), 5697-5702.
[http://dx.doi.org/10.1128/JVI.75.12.5697-5702.2001] [PMID: 11356979]
[37]
Schulz, K.S.; Klupp, B.G.; Granzow, H.; Passvogel, L.; Mettenleiter, T.C. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway. Virus Res., 2015, 209, 76-86.
[http://dx.doi.org/10.1016/j.virusres.2015.02.001] [PMID: 25678269]
[38]
Karamitros, T.; Harrison, I.; Piorkowska, R.; Katzourakis, A.; Magiorkinis, G.; Mbisa, J.L. De Novo assembly of human herpes virus type 1 (HHV-1) Genome, mining of non-canonical structures and detection of novel drug-resistance mutations using short- and long-read next generation sequencing technologies. PLoS One, 2016, 11(6), e0157600.
[http://dx.doi.org/10.1371/journal.pone.0157600] [PMID: 27309375]
[39]
Reynolds, A.E.; Ryckman, B.J.; Baines, J.D.; Zhou, Y.; Liang, L.; Roller, R.J.U. (L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J. Virol., 2001, 75(18), 8803-8817.
[http://dx.doi.org/10.1128/JVI.75.18.8803-8817.2001] [PMID: 11507225]
[40]
Baines, J.D.; Wills, E.; Jacob, R.J.; Pennington, J.; Roizman, B. Glycoprotein M of herpes simplex virus 1 is incorporated into virions during budding at the inner nuclear membrane. J. Virol., 2007, 81(2), 800-812.
[http://dx.doi.org/10.1128/JVI.01756-06] [PMID: 17079321]
[41]
Farnsworth, A.; Wisner, T.W.; Webb, M.; Roller, R.; Cohen, G.; Eisenberg, R.; Johnson, D.C. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10187-10192.
[http://dx.doi.org/10.1073/pnas.0703790104] [PMID: 17548810]
[42]
Stannard, L.M.; Himmelhoch, S.; Wynchank, S. Intra-nuclear localization of two envelope proteins, gB and gD, of herpes simplex virus. Arch. Virol., 1996, 141(3-4), 505-524.
[http://dx.doi.org/10.1007/BF01718314] [PMID: 8645092]
[43]
Reynolds, A.E.; Wills, E.G.; Roller, R.J.; Ryckman, B.J.; Baines, J.D. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J. Virol., 2002, 76(17), 8939-8952.
[http://dx.doi.org/10.1128/JVI.76.17.8939-8952.2002] [PMID: 12163613]
[44]
Wright, C.C.; Wisner, T.W.; Hannah, B.P.; Eisenberg, R.J.; Cohen, G.H.; Johnson, D.C. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB. J. Virol., 2009, 83(22), 11847-11856.
[http://dx.doi.org/10.1128/JVI.01397-09] [PMID: 19759132]
[45]
Chouljenko, V.N.; Iyer, A.V.; Chowdhury, S.; Kim, J.; Kousoulas, K.G. The herpes simplex virus type-1 (HSV-1) UL20 protein and the amino terminus of glycoprotein K (gK) physically interact with glycoprotein B (gB). J. Virol., 2010, 84, 8596-8606.
[http://dx.doi.org/10.1128/JVI.00298-10] [PMID: 20573833]
[46]
Liu, Z.; Kato, A.; Shindo, K.; Noda, T.; Sagara, H.; Kawaoka, Y.; Arii, J.; Kawaguchi, Y. Herpes simplex virus 1 UL47 interacts with viral nuclear egress factors UL31, UL34, and Us3 and regulates viral nuclear egress. J. Virol., 2014, 88(9), 4657-4667.
[http://dx.doi.org/10.1128/JVI.00137-14] [PMID: 24522907]
[47]
Poon, A.P.; Roizman, B. Characterization of a temperature-sensitive mutant of the UL15 open reading frame of herpes simplex virus 1. J. Virol., 1993, 67(8), 4497-4503.
[http://dx.doi.org/10.1128/jvi.67.8.4497-4503.1993] [PMID: 8331721]
[48]
Newcomb, W.W.; Juhas, R.M.; Thomsen, D.R.; Homa, F.L.; Burch, A.D.; Weller, S.K.; Brown, J.C. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J. Virol., 2001, 75(22), 10923-10932.
[http://dx.doi.org/10.1128/JVI.75.22.10923-10932.2001] [PMID: 11602732]
[49]
Sankhala, R.S.; Lokareddy, R.K.; Cingolani, G. Divergent evolution of nuclear localization signal sequences in herpesvirus terminase subunits. J. Biol. Chem., 2016, 291(21), 11420-11433.
[http://dx.doi.org/10.1074/jbc.M116.724393] [PMID: 27033706]
[50]
Abbotts, A.P.; Preston, V.G.; Hughes, M.; Patel, A.H.; Stow, N.D. Interaction of the herpes simplex virus type 1 packaging protein UL15 with full-length and deleted forms of the UL28 protein. J. Gen. Virol., 2000, 81(Pt 12), 2999-3009.
[http://dx.doi.org/10.1099/0022-1317-81-12-2999] [PMID: 11086131]
[51]
Vizoso Pinto, M.G.; Pothineni, V.R.; Haase, R.; Woidy, M.; Lotz-Havla, A.S.; Gersting, S.W.; Muntau, A.C.; Haas, J.; Sommer, M.; Arvin, A.M.; Baiker, A. Varicella zoster virus ORF25 gene product: An essential hub protein linking encapsidation proteins and the nuclear egress complex. J. Proteome Res., 2011, 10(12), 5374-5382.
[http://dx.doi.org/10.1021/pr200628s] [PMID: 21988664]
[52]
Cardone, G.; Heymann, J.B.; Cheng, N.; Trus, B.L.; Steven, A.C. Procapsid assembly, maturation, nuclear exit: Dynamic steps in the production of infectious herpesvirions. Adv. Exp. Med. Biol., 2012, 726, 423-439.
[http://dx.doi.org/10.1007/978-1-4614-0980-9_19] [PMID: 22297525]
[53]
Ashford, P.; Hernandez, A.; Greco, T.M.; Buch, A.; Sodeik, B.; Cristea, I.M.; Grünewald, K.; Shepherd, A.; Topf, M. HVint: A strategy for identifying novel protein-protein interactions in herpes simplex virus type 1. Mol. Cell. Proteomics, 2016, 15(9), 2939-2953.
[http://dx.doi.org/10.1074/mcp.M116.058552] [PMID: 27384951]
[54]
Johnson, D.C.; Wisner, T.W.; Wright, C.C. Herpes simplex virus glycoproteins gB and gD function in a redundant fashion to promote secondary envelopment. J. Virol., 2011, 85(10), 4910-4926.
[http://dx.doi.org/10.1128/JVI.00011-11] [PMID: 21411539]
[55]
Hannah, B.P.; Cairns, T.M.; Bender, F.C.; Whitbeck, J.C.; Lou, H.; Eisenberg, R.J.; Cohen, G.H. Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J. Virol., 2009, 83(13), 6825-6836.
[http://dx.doi.org/10.1128/JVI.00301-09] [PMID: 19369321]
[56]
Marlin, S.D.; Highlander, S.L.; Holland, T.C.; Levine, M.; Glorioso, J.C. Antigenic variation (mar mutations) in herpes simplex virus glycoprotein B can induce temperature-dependent alterations in gB processing and virus production. J. Virol., 1986, 59(1), 142-153.
[http://dx.doi.org/10.1128/jvi.59.1.142-153.1986] [PMID: 2423702]
[57]
Baines, J.D.; Ward, P.L.; Campadelli-Fiume, G.; Roizman, B. The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J. Virol., 1991, 65(12), 6414-6424.
[http://dx.doi.org/10.1128/jvi.65.12.6414-6424.1991] [PMID: 1719228]
[58]
Le Sage, V.; Jung, M.; Alter, J.D.; Wills, E.G.; Johnston, S.M.; Kawaguchi, Y.; Baines, J.D.; Banfield, B.W. The herpes simplex virus 2 UL21 protein is essential for virus propagation. J. Virol., 2013, 87(10), 5904-5915.
[http://dx.doi.org/10.1128/JVI.03489-12] [PMID: 23487471]
[59]
Fossum, E.; Friedel, C.C.; Rajagopala, S.V.; Titz, B.; Baiker, A.; Schmidt, T.; Kraus, T.; Stellberger, T.; Rutenberg, C.; Suthram, S.; Bandyopadhyay, S.; Rose, D.; von Brunn, A.; Uhlmann, M.; Zeretzke, C.; Dong, Y.A.; Boulet, H.; Koegl, M.; Bailer, S.M.; Koszinowski, U.; Ideker, T.; Uetz, P.; Zimmer, R.; Haas, J. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog., 2009, 5(9), e1000570.
[http://dx.doi.org/10.1371/journal.ppat.1000570] [PMID: 19730696]
[60]
Beilstein, F.; Higgs, M.R.; Stow, N.D. Mutational analysis of the herpes simplex virus type 1 DNA packaging protein UL33. J. Virol., 2009, 83(17), 8938-8945.
[http://dx.doi.org/10.1128/JVI.01048-09] [PMID: 19553324]
[61]
Foster, T.P.; Melancon, J.M.; Olivier, T.L.; Kousoulas, K.G. Herpes simplex virus type 1 glycoprotein K and the UL20 protein are interdependent for intracellular trafficking and trans-Golgi network localization. J. Virol., 2004, 78(23), 13262-13277.
[http://dx.doi.org/10.1128/JVI.78.23.13262-13277.2004] [PMID: 15542677]
[62]
Yamauchi, Y.; Wada, K.; Goshima, F.; Takakuwa, H.; Daikoku, T.; Yamada, M.; Nishiyama, Y. The UL14 protein of herpes simplex virus type 2 translocates the minor capsid protein VP26 and the DNA cleavage and packaging UL33 protein into the nucleus of coexpressing cells. J. Gen. Virol., 2001, 82(Pt 2), 321-330.
[http://dx.doi.org/10.1099/0022-1317-82-2-321] [PMID: 11161269]
[63]
Cunningham, C.; Davison, A.J.; MacLean, A.R.; Taus, N.S.; Baines, J.D. Herpes simplex virus type 1 gene UL14: Phenotype of a null mutant and identification of the encoded protein. J. Virol., 2000, 74(1), 33-41.
[http://dx.doi.org/10.1128/JVI.74.1.33-41.2000] [PMID: 10590088]
[64]
Oda, S.; Arii, J.; Koyanagi, N.; Kato, A.; Kawaguchi, Y. The interaction between herpes simplex virus 1 tegument proteins UL51 and UL14 and its role in virion morphogenesis. J. Virol., 2016, 90(19), 8754-8767.
[http://dx.doi.org/10.1128/JVI.01258-16] [PMID: 27440890]
[65]
Roller, R.J.; Zhou, Y.; Schnetzer, R.; Ferguson, J.; DeSalvo, D. Herpes simplex virus type 1 U(L)34 gene product is required for viral envelopment. J. Virol., 2000, 74(1), 117-129.
[http://dx.doi.org/10.1128/JVI.74.1.117-129.2000] [PMID: 10590098]
[66]
Stow, N.D. Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS. J. Virol., 2001, 75(22), 10755-10765.
[http://dx.doi.org/10.1128/JVI.75.22.10755-10765.2001] [PMID: 11602717]
[67]
Lyman, M.G.; Randall, J.A.; Calton, C.M.; Banfield, B.W. Localization of ERK/MAP kinase is regulated by the alpha herpes virus tegument protein Us2. J. Virol., 2006, 80(14), 7159-7168.
[http://dx.doi.org/10.1128/JVI.00592-06] [PMID: 16809321]
[68]
Roller, R.J.; Fetters, R. The herpes simplex virus 1 UL51 protein interacts with the UL7 protein and plays a role in its recruitment into the virion. J. Virol., 2015, 89(6), 3112-3122.
[http://dx.doi.org/10.1128/JVI.02799-14] [PMID: 25552711]
[69]
Herold, B.C.; Visalli, R.J.; Susmarski, N.; Brandt, C.R.; Spear, P.G. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J. Gen. Virol., 1994, 75(Pt 6), 1211-1222.
[http://dx.doi.org/10.1099/0022-1317-75-6-1211] [PMID: 8207388]
[70]
Griffiths, A.; Renfrey, S.; Minson, T. Glycoprotein C-deficient mutants of two strains of herpes simplex virus type 1 exhibit unaltered adsorption characteristics on polarized or non-polarized cells. J. Gen. Virol., 1998, 79(Pt 4), 807-812.
[http://dx.doi.org/10.1099/0022-1317-79-4-807] [PMID: 9568976]
[71]
Murphy, M.A.; Bucks, M.A.; O’Regan, K.J.; Courtney, R.J. The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids. Virology, 2008, 376(2), 279-289.
[http://dx.doi.org/10.1016/j.virol.2008.03.018] [PMID: 18452963]
[72]
Yamada, H.; Jiang, Y.M.; Oshima, S.; Daikoku, T.; Yamashita, Y.; Tsurumi, T.; Nishiyama, Y. Characterization of the UL55 gene product of herpes simplex virus type 2. J. Gen. Virol., 1998, 79(Pt 8), 1989-1995.
[http://dx.doi.org/10.1099/0022-1317-79-8-1989] [PMID: 9714248]
[73]
Owen, D.J.; Crump, C.M.; Graham, S.C. Tegument assembly and secondary envelopment of alphaherpesviruses. Viruses, 2015, 7(9), 5084-5114.
[http://dx.doi.org/10.3390/v7092861] [PMID: 26393641]
[74]
Mettenleiter, T.C.; Klupp, B.G.; Granzow, H. Herpesvirus assembly: An update. Virus Res., 2009, 143(2), 222-234.
[http://dx.doi.org/10.1016/j.virusres.2009.03.018] [PMID: 19651457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy