Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Rapid Nucleic Acid Reaction Circuits for Point-of-care Diagnosis of Diseases

Author(s): Ezry Santiago-McRae, Sung Won Oh, Anthony Monte Carlo, Omri Bar, Emily Guan, Doris Zheng, Catherine Grgicak and Jinglin Fu*

Volume 22, Issue 8, 2022

Published on: 14 March, 2022

Page: [686 - 698] Pages: 13

DOI: 10.2174/1570163819666220207114148

Price: $65

conference banner
Abstract

An urgent need exists for a rapid, cost-effective, facile, and reliable nucleic acid assay for mass screening to control and prevent the spread of emerging pandemic diseases. This urgent need is not fully met by current diagnostic tools. In this review, we summarize the current state-of-the-art research in novel nucleic acid amplification and detection that could be applied to point-of-care (POC) diagnosis and mass screening of diseases. The critical technological breakthroughs will be discussed for their advantages and disadvantages. Finally, we will discuss the future challenges of developing nucleic acid-based POC diagnosis.

Keywords: Nucleic acid assay, Isothermal amplification, Nucleic acid circuits, CRISPR-Cas, Point-of-care, Diseases.

Graphical Abstract
[1]
Mina, M.J.; Andersen, K.G. COVID-19 testing: One size does not fit all. Science, 2021, 371(6525), 126-127.
[http://dx.doi.org/10.1126/science.abe9187] [PMID: 33414210]
[2]
Firdaus, R.; Saha, K.; Sadhukhan, P.C. Rapid immunoassay alone is insufficient for the detection of hepatitis C virus infection among high-risk population. J. Viral Hepat., 2013, 20(4), 290-293.
[http://dx.doi.org/10.1111/jvh.12002] [PMID: 23490374]
[3]
Raouf, M.; Bettinger, J.J.; Fudin, J. A practical guide to urine drug monitoring. federal practitioner: For the health care professionals of the VA. DoD, and PHS, 2018, 35(4), 38-44.
[4]
Garibyan, L.; Avashia, N. Polymerase chain reaction. J. Invest. Dermatol., 2013, 133(3), 1-4.
[http://dx.doi.org/10.1038/jid.2013.1] [PMID: 23399825]
[5]
Land, K.J.; Boeras, D.I.; Chen, X-S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol., 2019, 4(1), 46-54.
[http://dx.doi.org/10.1038/s41564-018-0295-3] [PMID: 30546093]
[6]
Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev., 2015, 115(22), 12491-12545.
[http://dx.doi.org/10.1021/acs.chemrev.5b00428] [PMID: 26551336]
[7]
Wang, K.; Tang, Z.; Yang, C.J.; Kim, Y.; Fang, X.; Li, W.; Wu, Y.; Medley, C.D.; Cao, Z.; Li, J.; Colon, P.; Lin, H.; Tan, W. Molecular engineering of DNA: Molecular beacons. Angew. Chem. Int. Ed. Engl., 2009, 48(5), 856-870.
[http://dx.doi.org/10.1002/anie.200800370] [PMID: 19065690]
[8]
Zhang, D.Y.; Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem., 2011, 3(2), 103-113.
[http://dx.doi.org/10.1038/nchem.957] [PMID: 21258382]
[9]
Wang, J.S.; Zhang, D.Y. Simulation-guided DNA probe design for consistently ultraspecific hybridization. Nat. Chem., 2015, 7(7), 545-553.
[http://dx.doi.org/10.1038/nchem.2266] [PMID: 26100802]
[10]
Zhang, D.Y.; Turberfield, A.J.; Yurke, B.; Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 2007, 318(5853), 1121-1125.
[http://dx.doi.org/10.1126/science.1148532] [PMID: 18006742]
[11]
Oh, S.W.; Pereira, A.; Zhang, T.; Li, T.; Lane, A.; Fu, J. DNA mediated proximity-based assembly circuit for actuation of biochemical reactions. Angew. Chem. Int. Ed., 2018, 57(40), 13086-13090.
[http://dx.doi.org/10.1002/anie.201806749]
[12]
Aman, R.; Mahas, A.; Mahfouz, M. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synth. Biol., 2020, 9(6), 1226-1233.
[http://dx.doi.org/10.1021/acssynbio.9b00507] [PMID: 32159950]
[13]
Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; Myhrvold, C.; Bhattacharyya, R.P.; Livny, J.; Regev, A.; Koonin, E.V.; Hung, D.T.; Sabeti, P.C.; Collins, J.J.; Zhang, F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336), 438-442.
[http://dx.doi.org/10.1126/science.aam9321] [PMID: 28408723]
[14]
Pardee, K.; Green, A.A.; Ferrante, T.; Cameron, D.E. DaleyKeyser, A.; Yin, P.; Collins, J.J. Paper-based synthetic gene networks. Cell, 2014, 159(4), 940-954.
[http://dx.doi.org/10.1016/j.cell.2014.10.004] [PMID: 25417167]
[15]
Chen, X.; Gole, J.; Gore, A.; He, Q.; Lu, M.; Min, J.; Yuan, Z.; Yang, X.; Jiang, Y.; Zhang, T.; Suo, C.; Li, X.; Cheng, L.; Zhang, Z.; Niu, H.; Li, Z.; Xie, Z.; Shi, H.; Zhang, X.; Fan, M.; Wang, X.; Yang, Y.; Dang, J.; McConnell, C.; Zhang, J.; Wang, J.; Yu, S.; Ye, W.; Gao, Y.; Zhang, K.; Liu, R.; Jin, L. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun., 2020, 11(1), 3475.
[http://dx.doi.org/10.1038/s41467-020-17316-z] [PMID: 32694610]
[16]
Chen, X.; Zhang, J.; Ruan, W.; Huang, M.; Wang, C.; Wang, H.; Jiang, Z.; Wang, S.; Liu, Z.; Liu, C.; Tan, W.; Yang, J.; Chen, J.; Chen, Z.; Li, X.; Zhang, X.; Xu, P.; Chen, L.; Xie, R.; Zhou, Q.; Xu, S.; Irwin, D.L.; Fan, J.B.; Huang, J.; Lin, T. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer. J. Clin. Invest., 2020, 130(12), 6278-6289.
[http://dx.doi.org/10.1172/JCI139597] [PMID: 32817589]
[17]
Ruan, W.; Chen, X.; Huang, M.; Wang, H.; Chen, J.; Liang, Z.; Zhang, J.; Yu, Y.; Chen, S.; Xu, S.; Hu, T.; Li, X.; Guo, Y.; Jiang, Z.; Chen, Z.; Huang, J.; Lin, T.; Fan, J.B. A urine-based DNA methylation assay to facilitate early detection and risk stratification of bladder cancer. Clin. Epigenetics, 2021, 13(1), 91.
[http://dx.doi.org/10.1186/s13148-021-01073-x] [PMID: 33902700]
[18]
Zhang, C.; Zhao, Y.; Xu, X.; Xu, R.; Li, H.; Teng, X.; Du, Y.; Miao, Y.; Lin, H.C.; Han, D. Cancer diagnosis with DNA molecular computation. Nat. Nanotechnol., 2020, 15(8), 709-715.
[http://dx.doi.org/10.1038/s41565-020-0699-0] [PMID: 32451504]
[19]
Basu, A.; Zinger, T.; Inglima, K.; Woo, K.M.; Atie, O.; Yurasits, L.; See, B.; Aguero-Rosenfeld, M.E.; McAdam, A.J. Performance of abbott ID Now COVID-19 rapid nucleic acid amplification test using nasopharyngeal swabs transported in viral transport media and dry nasal swabs in a new york city academic institution. J. Clin. Microbiol., 2020, 58(8), e01136-e20.
[http://dx.doi.org/10.1128/JCM.01136-20] [PMID: 32471894]
[20]
Emmadi, R.; Boonyaratanakornkit, J.B.; Selvarangan, R.; Shyamala, V.; Zimmer, B.L.; Williams, L.; Bryant, B.; Schutzbank, T.; Schoonmaker, M.M.; Amos Wilson, J.A.; Hall, L.; Pancholi, P.; Bernard, K. Molecular methods and platforms for infectious diseases testing a review of FDA-approved and cleared assays. J. Mol. Diagn., 2011, 13(6), 583-604.
[http://dx.doi.org/10.1016/j.jmoldx.2011.05.011] [PMID: 21871973]
[21]
Silva Zatti, M.; Domingos Arantes, T.; Cordeiro Theodoro, R. Isothermal nucleic acid amplification techniques for detection and identification of pathogenic fungi: A review. Mycoses, 2020, 63(10), 1006-1020.
[http://dx.doi.org/10.1111/myc.13140] [PMID: 32648947]
[24]
Biolabs, N.E. Nucleic acid sequenced based amplification and transcription mediated amplification., Available from: https://www.neb.com/applications/dna-amplification-pcr-and-qpcr/isothermal-amplification/nucleic-acid-sequenced-based-amplification-and-transcription-mediated-amplification
[25]
Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12), E63.
[http://dx.doi.org/10.1093/nar/28.12.e63] [PMID: 10871386]
[26]
Shirshikov, F.V.; Pekov, Y.A.; Miroshnikov, K.A. MorphoCatcher: a multiple-alignment based web tool for target selection and designing taxon-specific primers in the loop-mediated isothermal amplification method. PeerJ, 2019, 7, e6801-e6801.
[http://dx.doi.org/10.7717/peerj.6801] [PMID: 31086739]
[27]
Ganguli, A.; Mostafa, A.; Berger, J.; Aydin, M.Y.; Sun, F.; Ramirez, S.A.S.; Valera, E.; Cunningham, B.T.; King, W.P.; Bashir, R. Rapid isothermal amplification and portable detection system for SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(37), 22727-22735.
[http://dx.doi.org/10.1073/pnas.2014739117] [PMID: 32868442]
[28]
Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol., 2018, 124(3), 626-643.
[http://dx.doi.org/10.1111/jam.13647] [PMID: 29165905]
[29]
Augustine, R.; Hasan, A.; Das, S.; Ahmed, R.; Mori, Y.; Notomi, T.; Kevadiya, B.D.; Thakor, A.S. Loop-mediated isothermal amplification (LAMP): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology (Basel), 2020, 9(8), E182.
[http://dx.doi.org/10.3390/biology9080182] [PMID: 32707972]
[30]
Compton, J. Nucleic acid sequence-based amplification. Nature, 1991, 350(6313), 91-92.
[http://dx.doi.org/10.1038/350091a0] [PMID: 1706072]
[31]
Yan, L.; Zhou, J.; Zheng, Y.; Gamson, A.S.; Roembke, B.T.; Nakayama, S.; Sintim, H.O. Isothermal amplified detection of DNA and RNA. Mol. Biosyst., 2014, 10(5), 970-1003.
[http://dx.doi.org/10.1039/c3mb70304e] [PMID: 24643211]
[32]
Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol., 2006, 4(7), e204.
[http://dx.doi.org/10.1371/journal.pbio.0040204] [PMID: 16756388]
[33]
Lillis, L.; Siverson, J.; Lee, A.; Cantera, J.; Parker, M.; Piepenburg, O.; Lehman, D.A.; Boyle, D.S. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol. Cell. Probes, 2016, 30(2), 74-78.
[http://dx.doi.org/10.1016/j.mcp.2016.01.009] [PMID: 26854117]
[34]
Li, X.M.; Zheng, T.; Gao, L.; Li, F.; Hou, X.D.; Wu, P. Recombinase polymerase amplification: From principle to performance. Chem. J. Chin. Univer., 2020, 41(12), 2587-2597.
[35]
TwistAmp® DNA amplification kits, assay design manual., Available from: https://www.twistdx.co.uk/docs/default-source/RPA-assay-design/twistamp-assay-design-manual-v2-5.pdf
[36]
Higgins, M.; Ravenhall, M.; Ward, D.; Phelan, J.; Ibrahim, A.; Forrest, M.S.; Clark, T.G.; Campino, S.; Primed, R.P.A. PrimedRPA: Primer design for recombinase polymerase amplification assays. Bioinformatics, 2019, 35(4), 682-684.
[http://dx.doi.org/10.1093/bioinformatics/bty701] [PMID: 30101342]
[37]
Instructions for use sherlockTM CRISPR SARS-CoV-2 kit, US food and drug administration’s emergency use authorization., Available from: https://www.fda.gov/media/137746/download
[38]
Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev., 2014, 43(10), 3324-3341.
[http://dx.doi.org/10.1039/c3cs60439j] [PMID: 24643375]
[39]
Yang, Z.; McLendon, C.; Hutter, D.; Bradley, K.M.; Hoshika, S.; Frye, C.B.; Benner, S.A. Helicase-dependent isothermal amplification of DNA and RNA by using self-avoiding molecular recognition systems. ChemBioChem, 2015, 16(9), 1365-1370.
[http://dx.doi.org/10.1002/cbic.201500135] [PMID: 25953623]
[40]
Vincent, M.; Xu, Y.; Kong, H. Helicase-dependent isothermal DNA amplification. EMBO Rep., 2004, 5(8), 795-800.
[http://dx.doi.org/10.1038/sj.embor.7400200] [PMID: 15247927]
[41]
Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res., 1992, 20(7), 1691-1696.
[http://dx.doi.org/10.1093/nar/20.7.1691] [PMID: 1579461]
[42]
Dean, F.B.; Hosono, S.; Fang, L.; Wu, X.; Faruqi, A.F.; Bray-Ward, P.; Sun, Z.; Zong, Q.; Du, Y.; Du, J.; Driscoll, M.; Song, W.; Kingsmore, S.F.; Egholm, M.; Lasken, R.S. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 5261-5266.
[http://dx.doi.org/10.1073/pnas.082089499] [PMID: 11959976]
[43]
Masumi, L.; Fakhim, H.; Vaezi, A.; Pourhassan-Moghaddam, M.; Ebrahimi-Kalan, A.; Zarghami, N. Strategies for isothermal amplification of nucleic acids: Are they ready to be applied in point of care diagnosis of mycosis? Biointerface Res. Appl. Chem., 2021, 11(3), 10559-10571.
[44]
Liu, W.; Dong, D.; Yang, Z.; Zou, D.; Chen, Z.; Yuan, J.; Huang, L. Polymerase spiral reaction (PSR): A novel isothermal nucleic acid amplification method. Sci. Rep., 2015, 5(1), 12723.
[http://dx.doi.org/10.1038/srep12723] [PMID: 26220251]
[45]
Agel, E.; Sagcan, H. Optimization of lyophilized LAMP and RT-PCR reaction mixes for detection of tuberculosis. Eurobiotech Journal, 2020, 4(4), 230-236.
[http://dx.doi.org/10.2478/ebtj-2020-0027]
[46]
Jung, C.; Ellington, A.D. Diagnostic applications of nucleic acid circuits. Acc. Chem. Res., 2014, 47(6), 1825-1835.
[http://dx.doi.org/10.1021/ar500059c] [PMID: 24828239]
[47]
Hong, F.; Ma, D.; Wu, K.; Mina, L.A.; Luiten, R.C.; Liu, Y.; Yan, H.; Green, A.A. Precise and programmable detection of mutations using ultraspecific riboregulators. Cell, 2020, 180(5), 1018-1032.e16.
[http://dx.doi.org/10.1016/j.cell.2020.02.011] [PMID: 32109416]
[48]
Tan, W.; Wang, K.; Drake, T.J. Molecular beacons. Curr. Opin. Chem. Biol., 2004, 8(5), 547-553.
[http://dx.doi.org/10.1016/j.cbpa.2004.08.010] [PMID: 15450499]
[49]
Marras, S.A.E.; Gold, B.; Kramer, F.R.; Smith, I.; Tyagi, S. Real-time measurement of in vitro transcription. Nucleic Acids Res., 2004, 32(9), e72-e72.
[http://dx.doi.org/10.1093/nar/gnh068] [PMID: 15155820]
[50]
Wang, Y.; Bai, J.; Qu, X.; Gao, Y.; Wang, J.; Li, S.; Fan, L.; Wei, H.; Liu, S.; Peng, Y.; Gao, Z.; Zhu, Y.; Gao, Z.; Ning, B. High-specificity double-stranded DNA detection with a “humanoid” molecular beacon and TALEs. Nanoscale, 2018, 10(38), 18354-18361.
[http://dx.doi.org/10.1039/C8NR05759A] [PMID: 30255908]
[51]
Sherrill-Mix, S.; Hwang, Y.; Roche, A.M.; Glascock, A.; Weiss, S.R.; Li, Y.; Haddad, L.; Deraska, P.; Monahan, C.; Kromer, A.; Graham-Wooten, J.; Taylor, L.J.; Abella, B.S.; Ganguly, A.; Collman, R.G.; Van Duyne, G.D.; Bushman, F.D. Detection of SARS-CoV-2 RNA using RT-LAMP and molecular beacons. Genome Biol., 2021, 22(1), 169.
[http://dx.doi.org/10.1186/s13059-021-02387-y] [PMID: 34082799]
[52]
Marras, S.A.E.; Tyagi, S.; Antson, D-O.; Kramer, F.R. Color-coded molecular beacons for multiplex PCR screening assays. PLoS One, 2019, 14(3), e0213906.
[http://dx.doi.org/10.1371/journal.pone.0213906] [PMID: 30883590]
[53]
Dirks, R.M.; Pierce, N.A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15275-15278.
[http://dx.doi.org/10.1073/pnas.0407024101] [PMID: 15492210]
[54]
Choi, H.M.T.; Beck, V.A.; Pierce, N.A. Next-generation in situ hybridization chain reaction: Higher gain, lower cost, greater durability. ACS Nano, 2014, 8(5), 4284-4294.
[http://dx.doi.org/10.1021/nn405717p] [PMID: 24712299]
[55]
Xu, G.; Lai, M.; Wilson, R.; Glidle, A.; Reboud, J.; Cooper, J.M. Branched hybridization chain reaction-using highly dimensional DNA nanostructures for label-free, reagent-less, multiplexed molecular diagnostics. Microsyst. Nanoeng., 2019, 5(1), 37.
[http://dx.doi.org/10.1038/s41378-019-0076-z] [PMID: 31636927]
[56]
Jiang, Y.S.; Li, B.; Milligan, J.N.; Bhadra, S.; Ellington, A.D. Real-time detection of isothermal amplification reactions with thermostable catalytic hairpin assembly. J. Am. Chem. Soc., 2013, 135(20), 7430-7433.
[http://dx.doi.org/10.1021/ja4023978] [PMID: 23647466]
[57]
Yin, P.; Choi, H.M.T.; Calvert, C.R.; Pierce, N.A. Programming biomolecular self-assembly pathways. Nature, 2008, 451(7176), 318-322.
[http://dx.doi.org/10.1038/nature06451] [PMID: 18202654]
[58]
Green, A.A.; Silver, P.A.; Collins, J.J.; Yin, P. Toehold switches: De-novo-designed regulators of gene expression. Cell, 2014, 159(4), 925-939.
[http://dx.doi.org/10.1016/j.cell.2014.10.002] [PMID: 25417166]
[59]
East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 2016, 538(7624), 270-273.
[http://dx.doi.org/10.1038/nature19802] [PMID: 27669025]
[60]
Fozouni, P.; Son, S.; Díaz de León Derby, M.; Knott, G.J.; Gray, C.N.; D’Ambrosio, M.V.; Zhao, C.; Switz, N.A.; Kumar, G.R.; Stephens, S.I.; Boehm, D.; Tsou, C.L.; Shu, J.; Bhuiya, A.; Armstrong, M.; Harris, A.R.; Chen, P.Y.; Osterloh, J.M.; Meyer-Franke, A.; Joehnk, B.; Walcott, K.; Sil, A.; Langelier, C.; Pollard, K.S.; Crawford, E.D.; Puschnik, A.S.; Phelps, M.; Kistler, A.; DeRisi, J.L.; Doudna, J.A.; Fletcher, D.A.; Ott, M. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell, 2021, 184(2), 323-333.e9.
[http://dx.doi.org/10.1016/j.cell.2020.12.001] [PMID: 33306959]
[61]
Xiao, Y.; Pavlov, V.; Gill, R.; Bourenko, T.; Willner, I. Lighting up biochemiluminescence by the surface self-assembly of DNA-hemin complexes. ChemBioChem, 2004, 5(3), 374-379.
[http://dx.doi.org/10.1002/cbic.200300794] [PMID: 14997531]
[62]
Ida, J.; Chan, S.K.; Glökler, J.; Lim, Y.Y.; Choong, Y.S.; Lim, T.S. G-Quadruplexes as an alternative recognition element in disease-related target sensing. Molecules, 2019, 24(6), 1079.
[http://dx.doi.org/10.3390/molecules24061079] [PMID: 30893817]
[63]
Lake, R.J.; Yang, Z.; Zhang, J.; Lu, Y. DNAzymes as activity-based sensors for metal ions: Recent applications, demonstrated advantages, current challenges, and future directions. Acc. Chem. Res., 2019, 52(12), 3275-3286.
[http://dx.doi.org/10.1021/acs.accounts.9b00419] [PMID: 31721559]
[64]
Wang, Y.; Nguyen, K.; Spitale, R.C.; Chaput, J.C. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem., 2021, 13(4), 319-326.
[http://dx.doi.org/10.1038/s41557-021-00645-x] [PMID: 33767363]
[65]
Isaacs, F.J.; Dwyer, D.J.; Ding, C.; Pervouchine, D.D.; Cantor, C.R.; Collins, J.J. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol., 2004, 22(7), 841-847.
[http://dx.doi.org/10.1038/nbt986] [PMID: 15208640]
[66]
Pardee, K.; Green, A.A.; Takahashi, M.K.; Braff, D.; Lambert, G.; Lee, J.W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; Daringer, N.M.; Bosch, I.; Dudley, D.M.; O’Connor, D.H.; Gehrke, L.; Collins, J.J. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 2016, 165(5), 1255-1266.
[http://dx.doi.org/10.1016/j.cell.2016.04.059] [PMID: 27160350]
[67]
Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; Severinov, K.; Regev, A.; Lander, E.S.; Koonin, E.V.; Zhang, F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299), aaf5573.
[http://dx.doi.org/10.1126/science.aaf5573] [PMID: 27256883]
[68]
Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc., 2019, 14(10), 2986-3012.
[http://dx.doi.org/10.1038/s41596-019-0210-2] [PMID: 31548639]
[69]
Jiao, C.; Sharma, S.; Dugar, G.; Peeck, N.L.; Bischler, T.; Wimmer, F.; Yu, Y.; Barquist, L.; Schoen, C.; Kurzai, O.; Sharma, C.M.; Beisel, C.L. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science, 2021, 372(6545), 941-948.
[http://dx.doi.org/10.1126/science.abe7106] [PMID: 33906967]
[70]
Rahimi, H.; Salehiabar, M.; Barsbay, M.; Ghaffarlou, M.; Kavetskyy, T.; Sharafi, A.; Davaran, S.; Chauhan, S.C.; Danafar, H.; Kaboli, S.; Nosrati, H.; Yallapu, M.M.; Conde, J. CRISPR systems for Covid-19 diagnosis. ACS Sens., 2021, 6(4), 1430-1445.
[http://dx.doi.org/10.1021/acssensors.0c02312] [PMID: 33502175]
[71]
Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; Zorn, K.; Gopez, A.; Hsu, E.; Gu, W.; Miller, S.; Pan, C-Y.; Guevara, H.; Wadford, D.A.; Chen, J.S.; Chiu, C.Y. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol., 2020, 38(7), 870-874.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[72]
Ganbaatar, U.; Liu, C. CRISPR-based Covid-19 testing: Toward next-generation point-of-care diagnostics. Front. Cell. Infect. Microbiol., 2021, 11, 663949.
[http://dx.doi.org/10.3389/fcimb.2021.663949] [PMID: 33996635]
[73]
Zou, H.; Wu, L-X.; Tan, L.; Shang, F-F.; Zhou, H-H. Significance of single-nucleotide variants in long intergenic non-protein coding RNAs. Front. Cell Dev. Biol., 2020, 8, 347.
[http://dx.doi.org/10.3389/fcell.2020.00347] [PMID: 32523949]
[74]
Chen, S.X.; Zhang, D.Y.; Seelig, G. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat. Chem., 2013, 5(9), 782-789.
[http://dx.doi.org/10.1038/nchem.1713] [PMID: 23965681]
[75]
Varona, M.; Anderson, J.L. Visual detection of single-nucleotide polymorphisms using molecular beacon loop-mediated isothermal amplification with centrifuge-free DNA extraction. Anal. Chem., 2019, 91(11), 6991-6995.
[http://dx.doi.org/10.1021/acs.analchem.9b01762] [PMID: 31099243]
[76]
Ding, S.; Chen, R.; Chen, G.; Li, M.; Wang, J.; Zou, J.; Du, F.; Dong, J.; Cui, X.; Huang, X.; Deng, Y.; Tang, Z. One-step colorimetric genotyping of single nucleotide polymorphism using probe-enhanced loop-mediated isothermal amplification (PE-LAMP). Theranostics, 2019, 9(13), 3723-3731.
[http://dx.doi.org/10.7150/thno.33980] [PMID: 31281509]
[77]
Wu, G.; Zaman, M.H. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull. World Health Organ., 2012, 90(12), 914-920.
[http://dx.doi.org/10.2471/BLT.12.102780] [PMID: 23284197]
[78]
Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 2020, 14(12), 17028-17045.
[http://dx.doi.org/10.1021/acsnano.0c06392] [PMID: 33079516]
[79]
Ma, Y-D.; Chen, Y-S.; Lee, G-B. An integrated self-driven microfluidic device for rapid detection of the influenza A (H1N1) virus by reverse transcription loop-mediated isothermal amplification. Sens. Actuators B Chem., 2019, 296, 126647.
[http://dx.doi.org/10.1016/j.snb.2019.126647]
[80]
Reboud, J.; Xu, G.; Garrett, A.; Adriko, M.; Yang, Z.; Tukahebwa, E.M.; Rowell, C.; Cooper, J.M. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc. Natl. Acad. Sci. USA, 2019, 116(11), 4834-4842.
[http://dx.doi.org/10.1073/pnas.1812296116] [PMID: 30782834]
[81]
Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem., 2016, 60(1), 111-120.
[http://dx.doi.org/10.1042/EBC20150012] [PMID: 27365041]
[82]
Javani, A.; Javadi-Zarnaghi, F.; Rasaee, M.J. A multiplex protein-free lateral flow assay for detection of microRNAs based on unmodified molecular beacons. Anal. Biochem., 2017, 537, 99-105.
[http://dx.doi.org/10.1016/j.ab.2017.09.005] [PMID: 28911984]
[83]
Henderson, W.A.; Xiang, L.; Fourie, N.H.; Abey, S.K.; Ferguson, E.G.; Diallo, A.F.; Kenea, N.D.; Kim, C.H. Simple lateral flow assays for microbial detection in stool. Anal. Methods, 2018, 10(45), 5358-5363.
[http://dx.doi.org/10.1039/C8AY01475B] [PMID: 31241058]
[84]
Xun, G.; Lane, S.T.; Petrov, V.A.; Pepa, B.E.; Zhao, H. A rapid, accurate, scalable, and portable testing system for COVID-19 diagnosis. Nat. Commun., 2021, 12(1), 2905.
[http://dx.doi.org/10.1038/s41467-021-23185-x] [PMID: 34006857]
[85]
Jauset-Rubio, M.; Svobodová, M.; Mairal, T.; McNeil, C.; Keegan, N.; Saeed, A.; Abbas, M.N.; El-Shahawi, M.S.; Bashammakh, A.S.; Alyoubi, A.O.; O Sullivan, C.K. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci. Rep., 2016, 6(1), 37732.
[http://dx.doi.org/10.1038/srep37732] [PMID: 27886248]
[86]
Mejía-Salazar, J.R.; Rodrigues Cruz, K.; Materón Vásques, E.M.; Novais de Oliveira, O. Jr Microfluidic point-of-care devices: New trends and future prospects for ehealth diagnostics. Sensors (Basel), 2020, 20(7), 1951.
[http://dx.doi.org/10.3390/s20071951] [PMID: 32244343]
[87]
Dittrich, P.S.; Manz, A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov., 2006, 5(3), 210-218.
[http://dx.doi.org/10.1038/nrd1985] [PMID: 16518374]
[88]
Kühnemund, M.; Wei, Q.; Darai, E.; Wang, Y.; Hernández-Neuta, I.; Yang, Z.; Tseng, D.; Ahlford, A.; Mathot, L.; Sjöblom, T.; Ozcan, A.; Nilsson, M. Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy. Nat. Commun., 2017, 8(1), 13913.
[http://dx.doi.org/10.1038/ncomms13913] [PMID: 28094784]
[89]
Smith, Z.J.; Chu, K.; Espenson, A.R.; Rahimzadeh, M.; Gryshuk, A.; Molinaro, M.; Dwyre, D.M.; Lane, S.; Matthews, D.; Wachsmann-Hogiu, S. Cell-phone-based platform for biomedical device development and education applications. PLoS One, 2011, 6(3), e17150-e17150.
[http://dx.doi.org/10.1371/journal.pone.0017150] [PMID: 21399693]
[90]
Banik, S.; Melanthota, S.K.; Arbaaz Vaz, J.M.; Kadambalithaya, V.M.; Hussain, I.; Dutta, S.; Mazumder, N. Recent trends in smartphone-based detection for biomedical applications: A review. Anal. Bioanal. Chem., 2021, 413(9), 2389-2406.
[http://dx.doi.org/10.1007/s00216-021-03184-z] [PMID: 33586007]
[91]
Cheong, J.; Yu, H.; Lee, C.Y.; Lee, J.U.; Choi, H-J.; Lee, J-H.; Lee, H.; Cheon, J. Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng., 2020, 4(12), 1159-1167.
[http://dx.doi.org/10.1038/s41551-020-00654-0] [PMID: 33273713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy