Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Impact of the Cannabinoid System in Alzheimer's Disease

Author(s): Shuangtao Li, Yuanbing Huang, Lijun Yu, Xiaoyu Ji and Jie Wu*

Volume 21, Issue 3, 2023

Published on: 19 April, 2022

Page: [715 - 726] Pages: 12

DOI: 10.2174/1570159X20666220201091006

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer’s disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer’s disease and the roles of the endocannabinoid system in Alzheimer’s disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer’s disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer’s disease.

Keywords: Cannabinoids, CB1 receptor, CB2 receptor, endocannabinoid, neurodegenerative diseases, Alzheimer's disease.

Graphical Abstract
[1]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[2]
Selkoe, D.J. Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol., 2004, 6(11), 1054-1061.
[http://dx.doi.org/10.1038/ncb1104-1054] [PMID: 15516999]
[3]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[4]
Hardy, J. New insights into the genetics of Alzheimer’s disease. Ann. Med., 1996, 28(3), 255-258.
[http://dx.doi.org/10.3109/07853899609033127] [PMID: 8811169]
[5]
Campion, D.; Dumanchin, C.; Hannequin, D.; Dubois, B.; Belliard, S.; Puel, M.; Thomas-Anterion, C.; Michon, A.; Martin, C.; Charbonnier, F.; Raux, G.; Camuzat, A.; Penet, C.; Mesnage, V.; Martinez, M.; Clerget-Darpoux, F.; Brice, A.; Frebourg, T. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet., 1999, 65(3), 664-670.
[http://dx.doi.org/10.1086/302553] [PMID: 10441572]
[6]
Chen, J.X.; Yan, S.S. Role of mitochondrial amyloid-beta in Alzheimer’s disease. J. Alzheimers Dis., 2010, 20(s2)(Suppl. 2), S569-S578.
[http://dx.doi.org/10.3233/JAD-2010-100357] [PMID: 20463403]
[7]
Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet., 2010, 19(R1), R12-R20.
[http://dx.doi.org/10.1093/hmg/ddq160] [PMID: 20413653]
[8]
McConlogue, L.; Buttini, M.; Anderson, J.P.; Brigham, E.F.; Chen, K.S.; Freedman, S.B.; Games, D.; Johnson-Wood, K.; Lee, M.; Zeller, M.; Liu, W.; Motter, R.; Sinha, S. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP Transgenic Mice. J. Biol. Chem., 2007, 282(36), 26326-26334.
[http://dx.doi.org/10.1074/jbc.M611687200] [PMID: 17616527]
[9]
Goedert, M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ tau, and α-synuclein. Science, 2015, 349(6248), 1255555.
[http://dx.doi.org/10.1126/science.1255555] [PMID: 26250687]
[10]
Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[11]
Streit, W.J. Microglia and Alzheimer’s disease pathogenesis. J. Neurosci. Res., 2004, 77(1), 1-8.
[http://dx.doi.org/10.1002/jnr.20093] [PMID: 15197750]
[12]
Beeri, M.S.; Haroutunian, V.; Schmeidler, J.; Sano, M.; Fam, P.; Kavanaugh, A.; Barr, A.M.; Honer, W.G.; Katsel, P. Synaptic protein deficits are associated with dementia irrespective of extreme old age. Neurobiol. Aging, 33(6), e1-e8.
[13]
Selkoe, D.J. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 1999, 399(6738)(Suppl.), A23-A31.
[http://dx.doi.org/10.1038/399a023] [PMID: 10392577]
[14]
Kása, P.; Rakonczay, Z.; Gulya, K. The cholinergic system in Alzheimer’s disease. Prog. Neurobiol., 1997, 52(6), 511-535.
[http://dx.doi.org/10.1016/S0301-0082(97)00028-2] [PMID: 9316159]
[15]
Fraser, S.P.; Suh, Y.H.; Djamgoz, M.B. Ionic effects of the Alzheimer’s disease beta-amyloid precursor protein and its metabolic fragments. Trends Neurosci., 1997, 20(2), 67-72.
[http://dx.doi.org/10.1016/S0166-2236(96)10079-5] [PMID: 9023874]
[16]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[17]
Thomas, K.R.; Bangen, K.J.; Weigand, A.J.; Edmonds, E.C.; Wong, C.G.; Cooper, S.; Delano-Wood, L.; Bondi, M.W. Objective subtle cognitive difficulties predict future amyloid accumulation and neurodegeneration. Neurology, 2020, 94(4), e397-e406.
[http://dx.doi.org/10.1212/WNL.0000000000008838] [PMID: 31888974]
[18]
Dolezal, V.; Kasparová, J. Beta-amyloid and cholinergic neurons. Neurochem. Res., 2003, 28(3-4), 499-506.
[http://dx.doi.org/10.1023/A:1022865121743] [PMID: 12675138]
[19]
Walsh, D.M.; Selkoe, D.J. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron, 2004, 44(1), 181-193.
[http://dx.doi.org/10.1016/j.neuron.2004.09.010] [PMID: 15450169]
[20]
Rodriguez, G.A.; Barrett, G.M.; Duff, K.E.; Hussaini, S.A. Chemogenetic attenuation of neuronal activity in the entorhinal cortex reduces Aβ and tau pathology in the hippocampus. PLoS Biol., 2020, 18(8), e3000851.
[http://dx.doi.org/10.1371/journal.pbio.3000851] [PMID: 32822389]
[21]
Palop, J.J.; Chin, J.; Roberson, E.D.; Wang, J.; Thwin, M.T.; Bien-Ly, N.; Yoo, J.; Ho, K.O.; Yu, G.Q.; Kreitzer, A.; Finkbeiner, S.; Noebels, J.L.; Mucke, L. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 2007, 55(5), 697-711.
[http://dx.doi.org/10.1016/j.neuron.2007.07.025] [PMID: 17785178]
[22]
Westmark, C.J.; Westmark, P.R.; Beard, A.M.; Hildebrandt, S.M.; Malter, J.S. Seizure susceptibility and mortality in mice that over-express amyloid precursor protein. Int. J. Clin. Exp. Pathol., 2008, 1(2), 157-168.
[PMID: 18784809]
[23]
Perry, E.; Walker, M.; Grace, J.; Perry, R. Acetylcholine in mind: A neurotransmitter correlate of consciousness? Trends Neurosci., 1999, 22(6), 273-280.
[http://dx.doi.org/10.1016/S0166-2236(98)01361-7] [PMID: 10354606]
[24]
Cacabelos, R.; Takeda, M.; Winblad, B. The glutamatergic system and neurodegeneration in dementia: Preventive strategies in Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 1999, 14(1), 3-47.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199901)14:1<3:AID-GPS897>3.0.CO;2-7] [PMID: 10029935]
[25]
Reeve, E.; Farrell, B.; Thompson, W.; Herrmann, N.; Sketris, I.; Magin, P.J.; Chenoweth, L.; Gorman, M.; Quirke, L.; Bethune, G.; Hilmer, S.N. Deprescribing cholinesterase inhibitors and memantine in dementia: Guideline summary. Med. J. Aust., 2019, 210(4), 174-179.
[http://dx.doi.org/10.5694/mja2.50015] [PMID: 30771226]
[26]
Hodson, R. Alzheimer’s disease. Nature, 2018, 559(7715), S1.
[http://dx.doi.org/10.1038/d41586-018-05717-6] [PMID: 30046078]
[27]
Knopman, D.S.; Jones, D.T.; Greicius, M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement., 2021, 17(4), 696-701.
[http://dx.doi.org/10.1002/alz.12213] [PMID: 33135381]
[28]
Aso, E.; Ferrer, I. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic. Front. Pharmacol., 2014, 5, 37.
[http://dx.doi.org/10.3389/fphar.2014.00037] [PMID: 24634659]
[29]
Weier, M.; Hall, W. The Use of Cannabinoids in Treating Dementia. Curr. Neurol. Neurosci. Rep., 2017, 17(8), 56.
[http://dx.doi.org/10.1007/s11910-017-0766-6] [PMID: 28631194]
[30]
Chen, R.; Zhang, J.; Fan, N.; Teng, Z.Q.; Wu, Y.; Yang, H.; Tang, Y.P.; Sun, H.; Song, Y.; Chen, C. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell, 2013, 155(5), 1154-1165.
[http://dx.doi.org/10.1016/j.cell.2013.10.042] [PMID: 24267894]
[31]
Keating, G.M. Delta-9-Tetrahydrocannabinol/Cannabidiol Oromucosal Spray (Sativex®): A Review in Multiple Sclerosis-Related Spasticity. Drugs, 2017, 77(5), 563-574.
[http://dx.doi.org/10.1007/s40265-017-0720-6] [PMID: 28293911]
[32]
Novotna, A.; Mares, J.; Ratcliffe, S.; Novakova, I.; Vachova, M.; Zapletalova, O.; Gasperini, C.; Pozzilli, C.; Cefaro, L.; Comi, G.; Rossi, P.; Ambler, Z.; Stelmasiak, Z.; Erdmann, A.; Montalban, X.; Klimek, A.; Davies, P. Sativex Spasticity Study, G., A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex((R))), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur. J. Neurol., 2011, 18(9), 1122-1131.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03328.x] [PMID: 21362108]
[33]
Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol., 2020, 16(1), 9-29.
[http://dx.doi.org/10.1038/s41582-019-0284-z] [PMID: 31831863]
[34]
Talarico, G.; Trebbastoni, A.; Bruno, G.; de Lena, C. Modulation of the cannabinoid system: A new perspective for the treatment of the Alzheimer’s disease. Curr. Neuropharmacol., 2019, 17(2), 176-183.
[http://dx.doi.org/10.2174/1570159X16666180702144644] [PMID: 29962346]
[35]
Cao, C.; Li, Y.; Liu, H.; Bai, G.; Mayl, J.; Lin, X.; Sutherland, K.; Nabar, N.; Cai, J. The potential therapeutic effects of THC on Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(3), 973-984.
[http://dx.doi.org/10.3233/JAD-140093] [PMID: 25024327]
[36]
Currais, A.; Quehenberger, O.M.; Armando, A.; Daugherty, D.; Maher, P.; Schubert, D. Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. NPJ Aging Mech. Dis., 2016, 2(1), 16012.
[http://dx.doi.org/10.1038/npjamd.2016.12] [PMID: 28721267]
[37]
Eubanks, L.M.; Rogers, C.J.; Beuscher, A.E., IV; Koob, G.F.; Olson, A.J.; Dickerson, T.J.; Janda, K.D. A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol. Pharm., 2006, 3(6), 773-777.
[http://dx.doi.org/10.1021/mp060066m] [PMID: 17140265]
[38]
Libro, R.; Giacoppo, S.; Soundara Rajan, T.; Bramanti, P.; Mazzon, E. Natural phytochemicals in the treatment and prevention of dementia: An overview. Molecules, 2016, 21(4), 518.
[http://dx.doi.org/10.3390/molecules21040518] [PMID: 27110749]
[39]
Ligresti, A.; De Petrocellis, L.; Di Marzo, V. From Phytocannabinoids to cannabinoid receptors and endocannabinoids: Pleiotropic physiological and pathological roles through complex pharmacology. Physiol. Rev., 2016, 96(4), 1593-1659.
[http://dx.doi.org/10.1152/physrev.00002.2016] [PMID: 27630175]
[40]
Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R.A. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. Pharmacol. Rev., 2010, 62(4), 588-631.
[http://dx.doi.org/10.1124/pr.110.003004] [PMID: 21079038]
[41]
Mechoulam, R.; Shvo, Y.; Hashish, I.; Hashish, I. The structure of cannabidiol. Tetrahedron, 1963, 19(12), 2073-2078.
[http://dx.doi.org/10.1016/0040-4020(63)85022-X] [PMID: 5879214]
[42]
Gaoni, Y.; Mechoulam, R. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc., 1964, 86(8), 1646-1647.
[http://dx.doi.org/10.1021/ja01062a046]
[43]
Devane, W.A.; Dysarz, F.A., III; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol., 1988, 34(5), 605-613.
[PMID: 2848184]
[44]
Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 1992, 258(5090), 1946-1949.
[http://dx.doi.org/10.1126/science.1470919] [PMID: 1470919]
[45]
Sugiura, T.; Kishimoto, S.; Oka, S.; Gokoh, M. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog. Lipid Res., 2006, 45(5), 405-446.
[http://dx.doi.org/10.1016/j.plipres.2006.03.003] [PMID: 16678907]
[46]
Howlett, A.C.; Qualy, J.M.; Khachatrian, L.L. Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol. Pharmacol., 1986, 29(3), 307-313.
[PMID: 2869405]
[47]
Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 1990, 346(6284), 561-564.
[http://dx.doi.org/10.1038/346561a0] [PMID: 2165569]
[48]
Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365(6441), 61-65.
[http://dx.doi.org/10.1038/365061a0] [PMID: 7689702]
[49]
Maccarrone, M.; Bari, M.; Battista, N.; Di Rienzo, M.; Finazzi-Agrò, A. Endogenous cannabinoids in neuronal and immune cells: Toxic effects, levels and degradation. Funct. Neurol., 2001, 16(4)(Suppl.), 53-60.
[PMID: 11996531]
[50]
Howlett, A.C. The cannabinoid receptors. Prostaglandins Other Lipid Mediat., 2002, 68-69, 619-631.
[http://dx.doi.org/10.1016/S0090-6980(02)00060-6] [PMID: 12432948]
[51]
Biegon, A.; Kerman, I.A. Autoradiographic study of pre- and postnatal distribution of cannabinoid receptors in human brain. Neuroimage, 2001, 14(6), 1463-1468.
[http://dx.doi.org/10.1006/nimg.2001.0939] [PMID: 11707102]
[52]
Glass, M.; Dragunow, M.; Faull, R.L. Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience, 1997, 77(2), 299-318.
[http://dx.doi.org/10.1016/S0306-4522(96)00428-9] [PMID: 9472392]
[53]
Westlake, T.M.; Howlett, A.C.; Bonner, T.I.; Matsuda, L.A.; Herkenham, M. Cannabinoid receptor binding and messenger RNA expression in human brain: An in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience, 1994, 63(3), 637-652.
[http://dx.doi.org/10.1016/0306-4522(94)90511-8] [PMID: 7898667]
[54]
Ramírez, B.G.; Blázquez, C.; Gómez del Pulgar, T.; Guzmán, M.; de Ceballos, M.L. Prevention of Alzheimer’s disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation. J. Neurosci., 2005, 25(8), 1904-1913.
[http://dx.doi.org/10.1523/JNEUROSCI.4540-04.2005] [PMID: 15728830]
[55]
Solas, M.; Francis, P.T.; Franco, R.; Ramirez, M.J. CB2 receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients. Neurobiol. Aging, 2013, 34(3), 805-808.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.005] [PMID: 22763024]
[56]
Bedse, G.; Romano, A.; Cianci, S.; Lavecchia, A.M.; Lorenzo, P.; Elphick, M.R.; Laferla, F.M.; Vendemiale, G.; Grillo, C.; Altieri, F.; Cassano, T.; Gaetani, S. Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2014, 40(3), 701-712.
[http://dx.doi.org/10.3233/JAD-131910] [PMID: 24496074]
[57]
Stephens, G.J. Does modulation of the endocannabinoid system have potential therapeutic utility in cerebellar ataxia? J. Physiol., 2016, 594(16), 4631-4641.
[http://dx.doi.org/10.1113/JP271106] [PMID: 26970080]
[58]
Rodríguez-Cueto, C.; Hernández-Gálvez, M.; Hillard, C.J.; Maciel, P.; García-García, L.; Valdeolivas, S.; Pozo, M.A.; Ramos, J.A.; Gómez-Ruiz, M.; Fernández-Ruiz, J. Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3. Neuroscience, 2016, 339, 191-209.
[http://dx.doi.org/10.1016/j.neuroscience.2016.09.046] [PMID: 27717809]
[59]
Laprairie, R.B.; Bagher, A.M.; Rourke, J.L.; Zrein, A.; Cairns, E.A.; Kelly, M.E.M.; Sinal, C.J.; Kulkarni, P.M.; Thakur, G.A.; Denovan-Wright, E.M. Positive allosteric modulation of the type 1 cannabinoid receptor reduces the signs and symptoms of Huntington’s disease in the R6/2 mouse model. Neuropharmacology, 2019, 151, 1-12.
[http://dx.doi.org/10.1016/j.neuropharm.2019.03.033] [PMID: 30940536]
[60]
Sepers, M.D.; Smith-Dijak, A.; LeDue, J.; Kolodziejczyk, K.; Mackie, K.; Raymond, L.A. Endocannabinoid-specific impairment in synaptic plasticity in striatum of Huntington’s disease mouse model. J. Neurosci., 2018, 38(3), 544-554.
[http://dx.doi.org/10.1523/JNEUROSCI.1739-17.2017] [PMID: 29192125]
[61]
Navarrete, F.; García-Gutiérrez, M.S.; Aracil-Fernández, A.; Lanciego, J.L.; Manzanares, J. Cannabinoid CB1 and CB2 receptors, and monoacylglycerol lipase gene expression alterations in the basal ganglia of patients with Parkinson’s disease. Neurotherapeutics, 2018, 15(2), 459-469.
[http://dx.doi.org/10.1007/s13311-018-0603-x] [PMID: 29352424]
[62]
Leija-Salazar, M.; Bermúdez de León, M.; González-Horta, A.; González-Hernández, B. Arachidonyl-2′-chloroethylamide (ACEA), a synthetic agonist of cannabinoid receptor, increases CB1R gene expression and reduces dyskinesias in a rat model of Parkinson’s disease. Pharmacol. Biochem. Behav., 2020, 194, 172950.
[http://dx.doi.org/10.1016/j.pbb.2020.172950] [PMID: 32413434]
[63]
Ceccarini, J.; Casteels, C.; Ahmad, R.; Crabbé, M.; Van de Vliet, L.; Vanhaute, H.; Vandenbulcke, M.; Vandenberghe, W.; Van Laere, K. Regional changes in the type 1 cannabinoid receptor are associated with cognitive dysfunction in Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(11), 2348-2357.
[http://dx.doi.org/10.1007/s00259-019-04445-x] [PMID: 31342135]
[64]
Felder, C.C.; Briley, E.M.; Axelrod, J.; Simpson, J.T.; Mackie, K.; Devane, W.A. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc. Natl. Acad. Sci. USA, 1993, 90(16), 7656-7660.
[http://dx.doi.org/10.1073/pnas.90.16.7656] [PMID: 8395053]
[65]
Schatz, A.R.; Lee, M.; Condie, R.B.; Pulaski, J.T.; Kaminski, N.E. Cannabinoid receptors CB1 and CB2: A characterization of expression and adenylate cyclase modulation within the immune system. Toxicol. Appl. Pharmacol., 1997, 142(2), 278-287.
[http://dx.doi.org/10.1006/taap.1996.8034] [PMID: 9070350]
[66]
Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem., 1995, 232(1), 54-61.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20780.x] [PMID: 7556170]
[67]
Griffin, G.; Wray, E.J.; Tao, Q.; McAllister, S.D.; Rorrer, W.K.; Aung, M.M.; Martin, B.R.; Abood, M.E. Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: Further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur. J. Pharmacol., 1999, 377(1), 117-125.
[http://dx.doi.org/10.1016/S0014-2999(99)00402-1] [PMID: 10448934]
[68]
McCoy, K.L.; Matveyeva, M.; Carlisle, S.J.; Cabral, G.A. Cannabinoid inhibition of the processing of intact lysozyme by macrophages: Evidence for CB2 receptor participation. J. Pharmacol. Exp. Ther., 1999, 289(3), 1620-1625.
[PMID: 10336560]
[69]
Burdyga, G.; Lal, S.; Varro, A.; Dimaline, R.; Thompson, D.G.; Dockray, G.J. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J. Neurosci., 2004, 24(11), 2708-2715.
[http://dx.doi.org/10.1523/JNEUROSCI.5404-03.2004] [PMID: 15028763]
[70]
Buckley, N.E.; McCoy, K.L.; Mezey, E.; Bonner, T.; Zimmer, A.; Felder, C.C.; Glass, M.; Zimmer, A. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur. J. Pharmacol., 2000, 396(2-3), 141-149.
[http://dx.doi.org/10.1016/S0014-2999(00)00211-9] [PMID: 10822068]
[71]
Buckley, N.E. The peripheral cannabinoid receptor knockout mice: An update. Br. J. Pharmacol., 2008, 153(2), 309-318.
[http://dx.doi.org/10.1038/sj.bjp.0707527] [PMID: 17965741]
[72]
Van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; Marnett, L.J.; Di Marzo, V.; Pittman, Q.J.; Patel, K.D.; Sharkey, K.A. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science, 2005, 310(5746), 329-332.
[http://dx.doi.org/10.1126/science.1115740] [PMID: 16224028]
[73]
Ashton, J.C.; Friberg, D.; Darlington, C.L.; Smith, P.F. Expression of the cannabinoid CB2 receptor in the rat cerebellum: An immunohistochemical study. Neurosci. Lett., 2006, 396(2), 113-116.
[http://dx.doi.org/10.1016/j.neulet.2005.11.038] [PMID: 16356641]
[74]
Onaivi, E.S.; Ishiguro, H.; Gong, J.P.; Patel, S.; Meozzi, P.A.; Myers, L.; Perchuk, A.; Mora, Z.; Tagliaferro, P.A.; Gardner, E.; Brusco, A.; Akinshola, B.E.; Liu, Q.R.; Chirwa, S.S.; Hope, B.; Lujilde, J.; Inada, T.; Iwasaki, S.; Macharia, D.; Teasenfitz, L.; Arinami, T.; Uhl, G.R. Functional expression of brain neuronal CB2 cannabinoid receptors are involved in the effects of drugs of abuse and in depression. Ann. N. Y. Acad. Sci., 2008, 1139(1), 434-449.
[http://dx.doi.org/10.1196/annals.1432.036] [PMID: 18991891]
[75]
Núñez, E.; Benito, C.; Pazos, M.R.; Barbachano, A.; Fajardo, O.; González, S.; Tolón, R.M.; Romero, J. Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: An immunohistochemical study. Synapse, 2004, 53(4), 208-213.
[http://dx.doi.org/10.1002/syn.20050] [PMID: 15266552]
[76]
Witting, A.; Walter, L.; Wacker, J.; Möller, T.; Stella, N. P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3214-3219.
[http://dx.doi.org/10.1073/pnas.0306707101] [PMID: 14976257]
[77]
Miller, L.K.; Devi, L.A. The highs and lows of cannabinoid receptor expression in disease: Mechanisms and their therapeutic implications. Pharmacol. Rev., 2011, 63(3), 461-470.
[http://dx.doi.org/10.1124/pr.110.003491] [PMID: 21752875]
[78]
Onaivi, E.S.; Ishiguro, H.; Gu, S.; Liu, Q.R. CNS effects of CB2 cannabinoid receptors: Beyond neuro-immuno-cannabinoid activity. J. Psychopharmacol., 2012, 26(1), 92-103.
[http://dx.doi.org/10.1177/0269881111400652] [PMID: 21447538]
[79]
Pacher, P.; Mechoulam, R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog. Lipid Res., 2011, 50(2), 193-211.
[http://dx.doi.org/10.1016/j.plipres.2011.01.001] [PMID: 21295074]
[80]
Skaper, S.D.; Buriani, A.; Dal Toso, R.; Petrelli, L.; Romanello, S.; Facci, L.; Leon, A. The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc. Natl. Acad. Sci. USA, 1996, 93(9), 3984-3989.
[http://dx.doi.org/10.1073/pnas.93.9.3984] [PMID: 8633002]
[81]
Lu, Q.; Straiker, A.; Lu, Q.; Maguire, G. Expression of CB2 cannabinoid receptor mRNA in adult rat retina. Vis. Neurosci., 2000, 17(1), 91-95.
[http://dx.doi.org/10.1017/S0952523800171093] [PMID: 10750830]
[82]
Lanciego, J.L.; Barroso-Chinea, P.; Rico, A.J.; Conte-Perales, L.; Callén, L.; Roda, E.; Gómez-Bautista, V.; López, I.P.; Lluis, C.; Labandeira-García, J.L.; Franco, R. Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J. Psychopharmacol., 2011, 25(1), 97-104.
[http://dx.doi.org/10.1177/0269881110367732] [PMID: 20488834]
[83]
Liu, Q.R.; Pan, C.H.; Hishimoto, A.; Li, C.Y.; Xi, Z.X.; Llorente-Berzal, A.; Viveros, M.P.; Ishiguro, H.; Arinami, T.; Onaivi, E.S.; Uhl, G.R. Species differences in cannabinoid receptor 2 (CNR2 gene): Identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav., 2009, 8(5), 519-530.
[http://dx.doi.org/10.1111/j.1601-183X.2009.00498.x] [PMID: 19496827]
[84]
Garcia-Gutierrez, M.S.; Garcia-Bueno, B.; Zoppi, S.; Leza, J.C.; Manzanares, J. Chronic blockade of cannabinoid CB(2) receptors induces anxiolytic-like actions associated to alterations in GABA(A) receptors. Br. J. Pharmacol., 2011.
[85]
Navarrete, F.; Pérez-Ortiz, J.M.; Manzanares, J. Cannabinoid CB2 receptor-mediated regulation of impulsive-like behaviour in DBA/2 mice. Br. J. Pharmacol., 2012, 165(1), 260-273.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01542.x] [PMID: 21671903]
[86]
Viscomi, M.T.; Oddi, S.; Latini, L.; Pasquariello, N.; Florenzano, F.; Bernardi, G.; Molinari, M.; Maccarrone, M. Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J. Neurosci., 2009, 29(14), 4564-4570.
[http://dx.doi.org/10.1523/JNEUROSCI.0786-09.2009] [PMID: 19357281]
[87]
Sherwood, T.A.; Nong, L.; Agudelo, M.; Newton, C.; Widen, R.; Klein, T.W. Identification of transcription start sites and preferential expression of select CB2 transcripts in mouse and human B lymphocytes. J. Neuroimmune Pharmacol., 2009, 4(4), 476-488.
[http://dx.doi.org/10.1007/s11481-009-9169-z] [PMID: 19757078]
[88]
Baek, J.H.; Zheng, Y.; Darlington, C.L.; Smith, P.F. Cannabinoid CB2 receptor expression in the rat brainstem cochlear and vestibular nuclei. Acta Otolaryngol., 2008, 128(9), 961-967.
[http://dx.doi.org/10.1080/00016480701796944] [PMID: 19086305]
[89]
Brusco, A.; Tagliaferro, P.; Saez, T.; Onaivi, E.S. Postsynaptic localization of CB2 cannabinoid receptors in the rat hippocampus. Synapse, 2008, 62(12), 944-949.
[http://dx.doi.org/10.1002/syn.20569] [PMID: 18798269]
[90]
Gong, J.P.; Onaivi, E.S.; Ishiguro, H.; Liu, Q.R.; Tagliaferro, P.A.; Brusco, A.; Uhl, G.R. Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain. Brain Res., 2006, 1071(1), 10-23.
[http://dx.doi.org/10.1016/j.brainres.2005.11.035] [PMID: 16472786]
[91]
Vlachou, S.; Panagis, G. Regulation of brain reward by the endocannabinoid system: A critical review of behavioral studies in animals. Curr. Pharm. Des., 2014, 20(13), 2072-2088.
[PMID: 23829366]
[92]
Agudo, J.; Martin, M.; Roca, C.; Molas, M.; Bura, A.S.; Zimmer, A.; Bosch, F.; Maldonado, R. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age. Diabetologia, 2010, 53(12), 2629-2640.
[http://dx.doi.org/10.1007/s00125-010-1894-6] [PMID: 20835701]
[93]
Ignatowska-Jankowska, B.; Jankowski, M.M.; Swiergiel, A.H. Cannabidiol decreases body weight gain in rats: Involvement of CB2 receptors. Neurosci. Lett., 2011, 490(1), 82-84.
[http://dx.doi.org/10.1016/j.neulet.2010.12.031] [PMID: 21172406]
[94]
Emadi, L.; Jonaidi, H.; Hosseini Amir Abad, E. The role of central CB2 cannabinoid receptors on food intake in neonatal chicks. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 2011, 197(12), 1143-1147.
[http://dx.doi.org/10.1007/s00359-011-0676-z] [PMID: 21927979]
[95]
Flake, N.M.; Zweifel, L.S. Behavioral effects of pulp exposure in mice lacking cannabinoid receptor 2. J. Endod., 2012, 38(1), 86-90.
[http://dx.doi.org/10.1016/j.joen.2011.09.015] [PMID: 22152627]
[96]
García-Gutiérrez, M.S.; Pérez-Ortiz, J.M.; Gutiérrez-Adán, A.; Manzanares, J. Depression-resistant endophenotype in mice overexpressing cannabinoid CB(2) receptors. Br. J. Pharmacol., 2010, 160(7), 1773-1784.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00819.x] [PMID: 20649579]
[97]
García-Gutiérrez, M.S.; Manzanares, J. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. J. Psychopharmacol., 2011, 25(1), 111-120.
[http://dx.doi.org/10.1177/0269881110379507] [PMID: 20837564]
[98]
Ortega-Alvaro, A.; Aracil-Fernández, A.; García-Gutiérrez, M.S.; Navarrete, F.; Manzanares, J. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology, 2011, 36(7), 1489-1504.
[http://dx.doi.org/10.1038/npp.2011.34] [PMID: 21430651]
[99]
Xi, Z.X.; Peng, X.Q.; Li, X.; Song, R.; Zhang, H.Y.; Liu, Q.R.; Yang, H.J.; Bi, G.H.; Li, J.; Gardner, E.L. Brain cannabinoid CB2 receptors modulate cocaine’s actions in mice. Nat. Neurosci., 2011, 14(9), 1160-1166.
[http://dx.doi.org/10.1038/nn.2874] [PMID: 21785434]
[100]
Navarrete, F.; Rodríguez-Arias, M.; Martín-García, E.; Navarro, D.; García-Gutiérrez, M.S.; Aguilar, M.A.; Aracil-Fernández, A.; Berbel, P.; Miñarro, J.; Maldonado, R.; Manzanares, J. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology, 2013, 38(12), 2515-2524.
[http://dx.doi.org/10.1038/npp.2013.157] [PMID: 23817165]
[101]
Ortega-Alvaro, A.; Ternianov, A.; Aracil-Fernandez, A.; Navarrete, F.; Garcia-Gutierrez, M.S.; Manzanares, J. Role of cannabinoid CB receptor in the reinforcing actions of ethanol. Addict. Biol., 2013.
[PMID: 23855434]
[102]
Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci., 2003, 23(35), 11136-11141.
[http://dx.doi.org/10.1523/JNEUROSCI.23-35-11136.2003] [PMID: 14657172]
[103]
Navarro, G.; Morales, P.; Rodríguez-Cueto, C.; Fernández-Ruiz, J.; Jagerovic, N.; Franco, R. Targeting cannabinoid CB2 receptors in the central nervous system. medicinal chemistry approaches with focus on neurodegenerative disorders. Front. Neurosci., 2016, 10, 406.
[http://dx.doi.org/10.3389/fnins.2016.00406] [PMID: 27679556]
[104]
Rodríguez-Cueto, C.; Benito, C.; Fernández-Ruiz, J.; Romero, J.; Hernández-Gálvez, M.; Gómez-Ruiz, M. Changes in CB(1) and CB(2) receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias. Br. J. Pharmacol., 2014, 171(6), 1472-1489.
[http://dx.doi.org/10.1111/bph.12283] [PMID: 23808969]
[105]
Dowie, M.J.; Grimsey, N.L.; Hoffman, T.; Faull, R.L.; Glass, M. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington’s disease brain. J. Chem. Neuroanat., 2014, 59-60, 62-71.
[http://dx.doi.org/10.1016/j.jchemneu.2014.06.004] [PMID: 24978314]
[106]
Palazuelos, J.; Aguado, T.; Pazos, M.R.; Julien, B.; Carrasco, C.; Resel, E.; Sagredo, O.; Benito, C.; Romero, J.; Azcoitia, I.; Fernández-Ruiz, J.; Guzmán, M.; Galve-Roperh, I. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain, 2009, 132(Pt 11), 3152-3164.
[http://dx.doi.org/10.1093/brain/awp239] [PMID: 19805493]
[107]
Gómez-Gálvez, Y.; Palomo-Garo, C.; Fernández-Ruiz, J.; García, C. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 200-208.
[http://dx.doi.org/10.1016/j.pnpbp.2015.03.017] [PMID: 25863279]
[108]
Concannon, R.M.; Okine, B.N.; Finn, D.P.; Dowd, E. Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson's disease. Exp Neurol, 2016, 283(Pt A), 204-212.
[http://dx.doi.org/10.1016/j.expneurol.2016.06.014]
[109]
Concannon, R.M.; Okine, B.N.; Finn, D.P.; Dowd, E. Differential upregulation of the cannabinoid CB2 receptor in neurotoxic and inflammation-driven rat models of Parkinson’s disease. Exp. Neurol., 2015, 269, 133-141.
[http://dx.doi.org/10.1016/j.expneurol.2015.04.007] [PMID: 25895887]
[110]
Espejo-Porras, F.; García-Toscano, L.; Rodríguez-Cueto, C.; Santos-García, I.; de Lago, E.; Fernandez-Ruiz, J. Targeting glial cannabinoid CB2 receptors to delay the progression of the pathological phenotype in TDP-43 (A315T) transgenic mice, a model of amyotrophic lateral sclerosis. Br. J. Pharmacol., 2019, 176(10), 1585-1600.
[http://dx.doi.org/10.1111/bph.14216] [PMID: 29574689]
[111]
Palazuelos, J.; Ortega, Z.; Díaz-Alonso, J.; Guzmán, M.; Galve-Roperh, I. CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J. Biol. Chem., 2012, 287(2), 1198-1209.
[http://dx.doi.org/10.1074/jbc.M111.291294] [PMID: 22102284]
[112]
Li, Y.; Kim, J. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus. Hippocampus, 2016, 26(3), 275-281.
[http://dx.doi.org/10.1002/hipo.22558] [PMID: 26663094]
[113]
Ma, Z.; Gao, F.; Larsen, B.; Gao, M.; Luo, Z.; Chen, D.; Ma, X.; Qiu, S.; Zhou, Y.; Xie, J.; Xi, Z.X.; Wu, J. Mechanisms of cannabinoid CB2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. EBioMedicine, 2019, 42, 225-237.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.040] [PMID: 30952618]
[114]
Stella, N. Endocannabinoid signaling in microglial cells. Neuropharmacology, 2009, 56(Suppl. 1), 244-253.
[http://dx.doi.org/10.1016/j.neuropharm.2008.07.037] [PMID: 18722389]
[115]
Mensching, L.; Rading, S.; Nikolaev, V.; Karsak, M. Monitoring cannabinoid CB2 -receptor mediated cAMP dynamics by FRET-based live cell imaging. Int. J. Mol. Sci., 2020, 21(21), E7880.
[http://dx.doi.org/10.3390/ijms21217880] [PMID: 33114208]
[116]
Howlett, A.C. Cannabinoid receptor signaling. Handb. Exp. Pharmacol., 2005, 168, 53-79.
[http://dx.doi.org/10.1007/3-540-26573-2_2] [PMID: 16596771]
[117]
Lu, H.C.; Mackie, K. An Introduction to the Endogenous Cannabinoid System. Biol. Psychiatry, 2016, 79(7), 516-525.
[http://dx.doi.org/10.1016/j.biopsych.2015.07.028] [PMID: 26698193]
[118]
Chen, D.J.; Gao, M.; Gao, F.F.; Su, Q.X.; Wu, J. Brain cannabinoid receptor 2: Expression, function and modulation. Acta Pharmacol. Sin., 2017, 38(3), 312-316.
[http://dx.doi.org/10.1038/aps.2016.149] [PMID: 28065934]
[119]
Zhang, H.Y.; Gao, M.; Liu, Q.R.; Bi, G.H.; Li, X.; Yang, H.J.; Gardner, E.L.; Wu, J.; Xi, Z.X. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc. Natl. Acad. Sci. USA, 2014, 111(46), E5007-E5015.
[http://dx.doi.org/10.1073/pnas.1413210111] [PMID: 25368177]
[120]
Aso, E.; Andrés-Benito, P.; Ferrer, I. Genetic deletion of CB1 cannabinoid receptors exacerbates the Alzheimer-like symptoms in a transgenic animal model. Biochem. Pharmacol., 2018, 157, 210-216.
[http://dx.doi.org/10.1016/j.bcp.2018.08.007] [PMID: 30096288]
[121]
Manuel, I.; Lombardero, L.; LaFerla, F.M.; Giménez-Llort, L.; Rodríguez-Puertas, R. Activity of muscarinic, galanin and cannabinoid receptors in the prodromal and advanced stages in the triple transgenic mice model of Alzheimer’s disease. Neuroscience, 2016, 329, 284-293.
[http://dx.doi.org/10.1016/j.neuroscience.2016.05.012] [PMID: 27223629]
[122]
Shibata, M.; Yamada, S.; Kumar, S.R.; Calero, M.; Bading, J.; Frangione, B.; Holtzman, D.M.; Miller, C.A.; Strickland, D.K.; Ghiso, J.; Zlokovic, B.V. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest., 2000, 106(12), 1489-1499.
[http://dx.doi.org/10.1172/JCI10498] [PMID: 11120756]
[123]
Bachmeier, C.; Beaulieu-Abdelahad, D.; Mullan, M.; Paris, D. Role of the cannabinoid system in the transit of beta-amyloid across the blood-brain barrier. Mol. Cell. Neurosci., 2013, 56, 255-262.
[http://dx.doi.org/10.1016/j.mcn.2013.06.004] [PMID: 23831388]
[124]
Stumm, C.; Hiebel, C.; Hanstein, R.; Purrio, M.; Nagel, H.; Conrad, A.; Lutz, B.; Behl, C.; Clement, A.B. Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer’s disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition. Neurobiol. Aging, 2013, 34(11), 2574-2584.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.05.027] [PMID: 23838176]
[125]
Haghani, M.; Janahmadi, M.; Shabani, M. Protective effect of cannabinoid CB1 receptor activation against altered intrinsic repetitive firing properties induced by Aβ neurotoxicity. Neurosci. Lett., 2012, 507(1), 33-37.
[http://dx.doi.org/10.1016/j.neulet.2011.11.044] [PMID: 22172925]
[126]
Aso, E.; Palomer, E.; Juvés, S.; Maldonado, R.; Muñoz, F.J.; Ferrer, I. CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AβPP/PS1 mice. J. Alzheimers Dis., 2012, 30(2), 439-459.
[http://dx.doi.org/10.3233/JAD-2012-111862] [PMID: 22451318]
[127]
Patricio-Martínez, A.; Sánchez-Zavaleta, R.; Angulo-Cruz, I.; Gutierrez-Praxedis, L.; Ramírez, E.; Martínez-García, I.; Limón, I.D. The acute activation of the CB1 receptor in the hippocampus decreases neurotoxicity and prevents spatial memory impairment in rats lesioned with β-amyloid 25-35. Neuroscience, 2019, 416, 239-254.
[http://dx.doi.org/10.1016/j.neuroscience.2019.08.001] [PMID: 31400487]
[128]
Di Marzo, V.; Stella, N.; Zimmer, A. Endocannabinoid signalling and the deteriorating brain. Nat. Rev. Neurosci., 2015, 16(1), 30-42.
[http://dx.doi.org/10.1038/nrn3876] [PMID: 25524120]
[129]
Tolón, R.M.; Núñez, E.; Pazos, M.R.; Benito, C.; Castillo, A.I.; Martínez-Orgado, J.A.; Romero, J. The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Res., 2009, 1283, 148-154.
[http://dx.doi.org/10.1016/j.brainres.2009.05.098] [PMID: 19505450]
[130]
Fakhfouri, G.; Ahmadiani, A.; Rahimian, R.; Grolla, A.A.; Moradi, F.; Haeri, A. WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-γ pathway. Neuropharmacology, 2012, 63(4), 653-666.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.013] [PMID: 22634229]
[131]
Casarejos, M.J.; Perucho, J.; Gomez, A.; Muñoz, M.P.; Fernandez-Estevez, M.; Sagredo, O.; Fernandez Ruiz, J.; Guzman, M.; de Yebenes, J.G.; Mena, M.A. Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy. J. Alzheimers Dis., 2013, 35(3), 525-539.
[http://dx.doi.org/10.3233/JAD-130050] [PMID: 23478312]
[132]
Aso, E.; Juvés, S.; Maldonado, R.; Ferrer, I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in A&#946;PP/PS1 mice. J. Alzheimers Dis., 2013, 35(4), 847-858.
[http://dx.doi.org/10.3233/JAD-130137] [PMID: 23515018]
[133]
Jayant, S.; Sharma, B.M.; Bansal, R.; Sharma, B. Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer’s disease. Pharmacol. Biochem. Behav., 2016, 140, 39-50.
[http://dx.doi.org/10.1016/j.pbb.2015.11.006] [PMID: 26577751]
[134]
Martín-Moreno, A.M.; Brera, B.; Spuch, C.; Carro, E.; García-García, L.; Delgado, M.; Pozo, M.A.; Innamorato, N.G.; Cuadrado, A.; de Ceballos, M.L. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers &#946;-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation, 2012, 9(1), 8.
[http://dx.doi.org/10.1186/1742-2094-9-8] [PMID: 22248049]
[135]
Aso, E.; Andrés-Benito, P.; Carmona, M.; Maldonado, R.; Ferrer, I. Cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer’s Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine. J. Alzheimers Dis., 2016, 51(2), 489-500.
[http://dx.doi.org/10.3233/JAD-150913] [PMID: 26890764]
[136]
Koppel, J.; Vingtdeux, V.; Marambaud, P.; d’Abramo, C.; Jimenez, H.; Stauber, M.; Friedman, R.; Davies, P. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer’s disease. Mol. Med., 2014, 20(1), 29-36.
[http://dx.doi.org/10.2119/molmed.2013.00140.revised] [PMID: 24722782]
[137]
Maroof, N.; Ravipati, S.; Pardon, M.C.; Barrett, D.A.; Kendall, D.A. Reductions in endocannabinoid levels and enhanced coupling of cannabinoid receptors in the striatum are accompanied by cognitive impairments in the AβPPswe/PS1ΔE9 mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(1), 227-245.
[http://dx.doi.org/10.3233/JAD-131961] [PMID: 24844690]
[138]
Ahmad, R.; Postnov, A.; Bormans, G.; Versijpt, J.; Vandenbulcke, M.; Van Laere, K. Decreased in vivo availability of the cannabinoid type 2 receptor in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(12), 2219-2227.
[http://dx.doi.org/10.1007/s00259-016-3457-7] [PMID: 27488857]
[139]
Schmöle, A.C.; Lundt, R.; Ternes, S.; Albayram, Ö.; Ulas, T.; Schultze, J.L.; Bano, D.; Nicotera, P.; Alferink, J.; Zimmer, A. Cannabinoid receptor 2 deficiency results in reduced neuroinflammation in an Alzheimer’s disease mouse model. Neurobiol. Aging, 2015, 36(2), 710-719.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.019] [PMID: 25443294]
[140]
Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, 173(4), 649-665.
[http://dx.doi.org/10.1111/bph.13139] [PMID: 25800044]
[141]
Mecha, M.; Feliú, A.; Carrillo-Salinas, F.J.; Rueda-Zubiaurre, A.; Ortega-Gutiérrez, S.; de Sola, R.G.; Guaza, C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav. Immun., 2015, 49, 233-245.
[http://dx.doi.org/10.1016/j.bbi.2015.06.002] [PMID: 26086345]
[142]
Wu, J.; Bie, B.; Yang, H.; Xu, J.J.; Brown, D.L.; Naguib, M. Activation of the CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiol. Aging, 2013, 34(3), 791-804.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.011] [PMID: 22795792]
[143]
Martín-Moreno, A.M.; Reigada, D.; Ramírez, B.G.; Mechoulam, R.; Innamorato, N.; Cuadrado, A.; de Ceballos, M.L. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: Relevance to Alzheimer’s disease. Mol. Pharmacol., 2011, 79(6), 964-973.
[http://dx.doi.org/10.1124/mol.111.071290] [PMID: 21350020]
[144]
Esposito, G.; Iuvone, T.; Savani, C.; Scuderi, C.; De Filippis, D.; Papa, M.; Di Marzo, V.; Steardo, L. Opposing control of cannabinoid receptor stimulation on amyloid-beta-induced reactive gliosis: In vitro and in vivo evidence. J. Pharmacol. Exp. Ther., 2007, 322(3), 1144-1152.
[http://dx.doi.org/10.1124/jpet.107.121566] [PMID: 17545311]
[145]
Ehrhart, J.; Obregon, D.; Mori, T.; Hou, H.; Sun, N.; Bai, Y.; Klein, T.; Fernandez, F.; Tan, J.; Shytle, R.D. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflammation, 2005, 2(1), 29.
[http://dx.doi.org/10.1186/1742-2094-2-29] [PMID: 16343349]
[146]
Zhao, J.; Wang, M.; Liu, W.; Ma, Z.; Wu, J. Activation of cannabinoid receptor 2 protects rat hippocampal neurons against Aβ-induced neuronal toxicity. Neurosci. Lett., 2020, 735, 135207.
[http://dx.doi.org/10.1016/j.neulet.2020.135207] [PMID: 32592731]
[147]
Sugiura, T.; Kondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun., 1995, 215(1), 89-97.
[http://dx.doi.org/10.1006/bbrc.1995.2437] [PMID: 7575630]
[148]
Wilson, R.I.; Nicoll, R.A. Endocannabinoid signaling in the brain. Science, 2002, 296(5568), 678-682.
[http://dx.doi.org/10.1126/science.1063545] [PMID: 11976437]
[149]
Walter, L.; Stella, N. Cannabinoids and neuroinflammation. Br. J. Pharmacol., 2004, 141(5), 775-785.
[http://dx.doi.org/10.1038/sj.bjp.0705667] [PMID: 14757702]
[150]
Guzman, M. Neurons on cannabinoids: Dead or alive? Br. J. Pharmacol., 2003, 140(3), 439-440.
[http://dx.doi.org/10.1038/sj.bjp.0705465] [PMID: 14522839]
[151]
Medina-Vera, D.; Rosell-Valle, C.; López-Gambero, A.J.; Navarro, J.A.; Zambrana-Infantes, E.N.; Rivera, P.; Santín, L.J.; Suarez, J.; Rodríguez de Fonseca, F. Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity. Biology (Basel), 2020, 9(11), E377.
[http://dx.doi.org/10.3390/biology9110377] [PMID: 33167441]
[152]
Berry, A.J.; Zubko, O.; Reeves, S.J.; Howard, R.J. Endocannabinoid system alterations in Alzheimer’s disease: A systematic review of human studies. Brain Res., 2020, 1749, 147135.
[http://dx.doi.org/10.1016/j.brainres.2020.147135] [PMID: 32980333]
[153]
Milton, N.G. Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci. Lett., 2002, 332(2), 127-130.
[http://dx.doi.org/10.1016/S0304-3940(02)00936-9] [PMID: 12384227]
[154]
Gajardo-Gómez, R.; Labra, V.C.; Maturana, C.J.; Shoji, K.F.; Santibañez, C.A.; Sáez, J.C.; Giaume, C.; Orellana, J.A. Cannabinoids prevent the amyloid β-induced activation of astroglial hemichannels: A neuroprotective mechanism. Glia, 2017, 65(1), 122-137.
[http://dx.doi.org/10.1002/glia.23080] [PMID: 27757991]
[155]
van der Stelt, M.; Mazzola, C.; Esposito, G.; Matias, I.; Petrosino, S.; De Filippis, D.; Micale, V.; Steardo, L.; Drago, F.; Iuvone, T.; Di Marzo, V. Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: Effect of pharmacological elevation of endocannabinoid levels. Cell. Mol. Life Sci., 2006, 63(12), 1410-1424.
[http://dx.doi.org/10.1007/s00018-006-6037-3] [PMID: 16732431]
[156]
Yan, W.; Yun, Y.; Ku, T.; Li, G.; Sang, N. NO2 inhalation promotes Alzheimer’s disease-like progression: Cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication. Sci. Rep., 2016, 6(1), 22429.
[http://dx.doi.org/10.1038/srep22429] [PMID: 26928013]
[157]
Chen, R.; Zhang, J.; Wu, Y.; Wang, D.; Feng, G.; Tang, Y.P.; Teng, Z.; Chen, C. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep., 2012, 2(5), 1329-1339.
[http://dx.doi.org/10.1016/j.celrep.2012.09.030] [PMID: 23122958]
[158]
Schweisguth, F. Regulation of notch signaling activity. Curr. Biol., 2004, 14(3), R129-R138.
[http://dx.doi.org/10.1016/j.cub.2004.01.023] [PMID: 14986688]
[159]
Tanveer, R.; Gowran, A.; Noonan, J.; Keating, S.E.; Bowie, A.G.; Campbell, V.A. The endocannabinoid, anandamide, augments Notch-1 signaling in cultured cortical neurons exposed to amyloid-β and in the cortex of aged rats. J. Biol. Chem., 2012, 287(41), 34709-34721.
[http://dx.doi.org/10.1074/jbc.M112.350678] [PMID: 22891244]
[160]
Cassano, T.; Villani, R.; Pace, L.; Carbone, A.; Bukke, V.N.; Orkisz, S.; Avolio, C.; Serviddio, G. From Cannabis sativa to Cannabidiol: Promising therapeutic candidate for the treatment of Neurodegenerative diseases. Front. Pharmacol., 2020, 11, 124.
[http://dx.doi.org/10.3389/fphar.2020.00124] [PMID: 32210795]
[161]
Cooray, R.; Gupta, V.; Suphioglu, C. Current aspects of the endocannabinoid system and targeted THC and CBD phytocannabinoids as potential therapeutics for Parkinson’s and Alzheimer’s diseases: A review. Mol. Neurobiol., 2020, 57(11), 4878-4890.
[http://dx.doi.org/10.1007/s12035-020-02054-6] [PMID: 32813239]
[162]
Calabrese, E.J.; Rubio-Casillas, A. Biphasic effects of THC in memory and cognition. Eur. J. Clin. Invest., 2018, 48(5), e12920.
[http://dx.doi.org/10.1111/eci.12920] [PMID: 29574698]
[163]
Monteiro, K.L.C.; Dos Santos Alcântara, M.G.; de Aquino, T.M.; da Silva-Júnior, E.F. Cannabinoid pharmacology and its therapeutic uses in Alzheimer’s disease. Neural Regen. Res., 2021, 16(5), 990-991.
[http://dx.doi.org/10.4103/1673-5374.294336] [PMID: 33229747]
[164]
Herrmann, N.; Ruthirakuhan, M.; Gallagher, D.; Verhoeff, N.P.L.G.; Kiss, A.; Black, S.E.; Lanctôt, K.L. Randomized Placebo-Controlled Trial of Nabilone for Agitation in Alzheimer’s Disease. Am. J. Geriatr. Psychiatry, 2019, 27(11), 1161-1173.
[http://dx.doi.org/10.1016/j.jagp.2019.05.002] [PMID: 31182351]
[165]
Russo, E.B. Cannabis Therapeutics and the Future of Neurology. Front. Integr. Nuerosci., 2018, 12, 51.
[http://dx.doi.org/10.3389/fnint.2018.00051] [PMID: 30405366]
[166]
Mukhopadhyay, P.; Rajesh, M.; Horváth, B.; Bátkai, S.; Park, O.; Tanchian, G.; Gao, R.Y.; Patel, V.; Wink, D.A.; Liaudet, L.; Haskó, G.; Mechoulam, R.; Pacher, P. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death. Free Radic. Biol. Med., 2011, 50(10), 1368-1381.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.021] [PMID: 21362471]
[167]
Hamelink, C.; Hampson, A.; Wink, D.A.; Eiden, L.E.; Eskay, R.L. Comparison of cannabidiol, antioxidants, and diuretics in reversing binge ethanol-induced neurotoxicity. J. Pharmacol. Exp. Ther., 2005, 314(2), 780-788.
[http://dx.doi.org/10.1124/jpet.105.085779] [PMID: 15878999]
[168]
Watt, G.; Karl, T. In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer’s Disease. Front. Pharmacol., 2017, 8, 20.
[http://dx.doi.org/10.3389/fphar.2017.00020] [PMID: 28217094]
[169]
Watt, G.; Shang, K.; Zieba, J.; Olaya, J.; Li, H.; Garner, B.; Karl, T. Chronic treatment with 50mg/kg cannabidiol improves cognition and moderately reduces Aβ40 levels in 12-month-old male AβPPswe/PS1ΔE9 transgenic mice. J. Alzheimers Dis., 2020, 74(3), 937-950.
[http://dx.doi.org/10.3233/JAD-191242] [PMID: 32116258]
[170]
Janefjord, E.; Mååg, J.L.; Harvey, B.S.; Smid, S.D. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro. Cell. Mol. Neurobiol., 2014, 34(1), 31-42.
[http://dx.doi.org/10.1007/s10571-013-9984-x] [PMID: 24030360]
[171]
Harvey, B.S.; Ohlsson, K.S.; Mååg, J.L.; Musgrave, I.F.; Smid, S.D. Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro. Neurotoxicology, 2012, 33(1), 138-146.
[http://dx.doi.org/10.1016/j.neuro.2011.12.015] [PMID: 22233683]
[172]
Karikari, T.K.; Benedet, A.L.; Ashton, N.J.; Lantero Rodriguez, J.; Snellman, A.; Suárez-Calvet, M.; Saha-Chaudhuri, P.; Lussier, F.; Kvartsberg, H.; Rial, A.M.; Pascoal, T.A.; Andreasson, U.; Schöll, M.; Weiner, M.W.; Rosa-Neto, P.; Trojanowski, J.Q.; Shaw, L.M.; Blennow, K.; Zetterberg, H. Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer’s Disease Neuroimaging Initiative. Mol. Psychiatry, 2021, 26(2), 429-442.
[http://dx.doi.org/10.1038/s41380-020-00923-z] [PMID: 33106600]
[173]
Karikari, T.K.; Emeršič, A.; Vrillon, A.; Lantero-Rodriguez, J.; Ashton, N.J.; Kramberger, M.G.; Dumurgier, J.; Hourregue, C.; Čučnik, S.; Brinkmalm, G.; Rot, U.; Zetterberg, H.; Paquet, C.; Blennow, K. Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer’s disease diagnosis. Alzheimers Dement., 2021, 17(5), 755-767.
[http://dx.doi.org/10.1002/alz.12236] [PMID: 33252199]
[174]
Sharma, D.S.; Paddibhatla, I.; Raghuwanshi, S.; Malleswarapu, M.; Sangeeth, A.; Kovuru, N.; Dahariya, S.; Gautam, D.K.; Pallepati, A.; Gutti, R.K. Endocannabinoid system: Role in blood cell development, neuroimmune interactions and associated disorders. J. Neuroimmunol., 2021, 353, 577501.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577501] [PMID: 33571815]
[175]
Reddy, V.; Grogan, D.; Ahluwalia, M.; Salles, É.L.; Ahluwalia, P.; Khodadadi, H.; Alverson, K.; Nguyen, A.; Raju, S.P.; Gaur, P.; Braun, M.; Vale, F.L.; Costigliola, V.; Dhandapani, K.; Baban, B.; Vaibhav, K. Targeting the endocannabinoid system: A predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J., 2020, 11(2), 217-250.
[http://dx.doi.org/10.1007/s13167-020-00203-4] [PMID: 32549916]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy