Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Natural Products Against COVID-19 Inflammation: A Mini-Review

Author(s): Simone Mendes Lopes, Herbert Igor Rodrigues de Medeiros, Marcus Tullius Scotti and Luciana Scotti*

Volume 25, Issue 14, 2022

Published on: 06 April, 2022

Page: [2358 - 2369] Pages: 12

DOI: 10.2174/1386207325666220128114547

Price: $65

conference banner
Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is a virus whose genetic material is positive single-stranded RNA, being responsible for coronavirus disease 2019 (COVID- 19), an infection that compromises the lungs and consequently the respiratory capacity of the infected individual, according to the WHO in November 2021, 249,743,428 cases were confirmed, of which 5,047,652 individuals died due to complications resulting from the infection caused by SARSCOV- 2. As the infection progresses, the individual may experience loss of smell and taste, as well as breathing difficulties, severe respiratory failure, multiple organ failure, and death. Due to this new epidemiological agent in March 2020 it was announced by the director general of the World Health Organization (WHO) a pandemic status, and with that, many research groups are looking for new therapeutic alternatives through synthetic and natural bioactives. This research is a literature review of some in silico studies involving natural products against COVID-19 inflammation published in 2020 and 2021. Work like this presents relevant information to the scientific community, boosting future research and encouraging the use of natural products for the search for new antivirals against COVID-19.

Keywords: Virus infection, natural products, molecular modeling database, SARS-CoV-2, COVID-19 inflammation, antivirals.

Graphical Abstract
[1]
Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology, 2020, 296(2), E15-E25.
[http://dx.doi.org/10.1148/radiol.2020200490] [PMID: 32083985]
[2]
Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res., 2018, 100, 163-188.
[http://dx.doi.org/10.1016/bs.aivir.2018.01.001]
[3]
Woo, P.C.Y.; Huang, Y.; Lau, S.K.P.; Yuen, K-Y. Coronavirus genomics and bioinformatics analysis. Viruses, 2010, 2(8), 1804-1820.
[http://dx.doi.org/10.3390/v2081803] [PMID: 21994708]
[4]
Al-Rohaimi, A.H.; Al Otaibi, F. Novel SARS-CoV-2 outbreak and COVID19 disease; a systemic review on the global pandemic. Genes Dis., 2020, 7(4), 491-501.
[http://dx.doi.org/10.1016/j.gendis.2020.06.004] [PMID: 33335956]
[5]
Rabiee, N.; Bagherzadeh, M.; Ghasemi, A.; Zare, H.; Ahmadi, S.; Fatahi, Y.; Dinarvand, R.; Rabiee, M.; Ramakrishna, S.; Shokouhimehr, M.; Varma, R.S. Point-of-use rapid detection of SARS-CoV-2: Nanotechnology-enabled solutions for the COVID-19 pandemic. Int. J. Mol. Sci., 2020, 21(14), 5126.
[http://dx.doi.org/10.3390/ijms21145126] [PMID: 32698479]
[6]
Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens, 2020, 9(3), 231.
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[7]
Chen, P.; Zeng, Z.; Du, H. Establishment and validation of a drug-target microarray for SARS-CoV-2. Biochem. Biophys. Res. Commun., 2020, 530(1), 4-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.217] [PMID: 32828312]
[8]
Uzunian, A. Coronavirus SARS-CoV-2 and COVID-19. J. Bras. Patol. Med. Lab., 2020, 56.
[http://dx.doi.org/10.5935/1676-2444.20200053]
[9]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today, 2020, 25(4), 668-688.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[10]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[11]
Brito, J.C.M.; Lima, W.G.; Cardoso, B.G.; Simião, D.C.; Amorim, J.M.; Silva, C. de A. Uso irracional de medicamentos e plantas medicinais contra a COVID-19 (SARS-CoV-2): An emerging problem. Um Problema Emergente. Brazilian J. Heal. Pharm., 2020, 2(3), 37-53.
[http://dx.doi.org/10.29327/226760.2.3-5]
[12]
de Albuquerque, L.P.; da Silva, R.B.; de Araújo, R.M.S. COVID-19: Origin, pathogenesis, transmission, clinical aspects and current therapeutic strategies. Rev. Prevenção Infecção e Saúde, 2020, 6.
[13]
Liu, Y.; Yang, Y.; Zhang, C.; Huang, F.; Wang, F.; Yuan, J.; Wang, Z.; Li, J.; Li, J.; Feng, C.; Zhang, Z.; Wang, L.; Peng, L.; Chen, L.; Qin, Y.; Zhao, D.; Tan, S.; Yin, L.; Xu, J.; Zhou, C.; Jiang, C.; Liu, L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci., 2020, 63(3), 364-374.
[http://dx.doi.org/10.1007/s11427-020-1643-8] [PMID: 32048163]
[14]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[15]
Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K-Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[16]
Skariyachan, S.; Challapilli, S.B.; Packirisamy, S.; Kumargowda, S.T.; Sridhar, V.S. Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for middle east respiratory syndrome coronavirus infections. Front. Microbiol., 2019, 10, 569.
[http://dx.doi.org/10.3389/fmicb.2019.00569] [PMID: 30984127]
[17]
Hamid, S.; Mir, M.Y.; Rohela, G.K. Novel coronavirus disease (COVID-19): A pandemic (epidemiology, pathogenesis and potential therapeutics). New Microbes New Infect., 2020, 35, 100679.
[http://dx.doi.org/10.1016/j.nmni.2020.100679] [PMID: 32322401]
[18]
Mouffouk, C.; Mouffouk, S.; Mouffouk, S.; Hambaba, L.; Haba, H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur. J. Pharmacol., 2021, 891, 173759.
[http://dx.doi.org/10.1016/j.ejphar.2020.173759] [PMID: 33249077]
[19]
Cohen, N.C. Guidebook on Molecular Modeling in Drug Design; Gulf Professional Publishing: Houston, TX, 1996.
[20]
Barreiro, E.J.; Rodrigues, C.R.; Albuquerque, M.G.; Sant’Anna, C.M.R. de; Alencastro, R. B. de Molecular modeling: A tool for rational drug design in medicinal chemistry. Quim. Nova, 1997, 20(3), 300-310.
[http://dx.doi.org/10.1590/S0100-40421997000300011]
[21]
Silva, F.G.C.; Borges, A.L.T.F.; de Oliveira, J.V.L.; do Nascimento Prata, A.P.; de Moraes Porto, I.C.C.; de Almeida, C.A.C.; dos Santos Sousa, J.; Freitas, J.D.; de Oliveira-Filho, A.D.; Reis, F.M.P. Food, nutraceuticals and medicinal plants used as complementary practice in facing a coronavirus (COVID-19); Uma Revisão, 2020.
[http://dx.doi.org/10.1590/SciELOPreprints.317]
[22]
Kumar, A.; Choudhir, G.; Shukla, S.K.; Sharma, M.; Tyagi, P.; Bhushan, A.; Rathore, M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn., 2021, 39(10), 3760-3770.
[http://dx.doi.org/10.1080/07391102.2020.1772112] [PMID: 32448034]
[23]
Romano Lopes, J.; Henrique Imperador, C.L.; Man Chin, C. Leandro dos Santos, J. Desenvolvimento de fármacos para tratamento Da COVID-19. J. Med., 2020, 118-124.
[24]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[25]
Arora, S.; Lohiya, G.; Moharir, K.; Shah, S.; Yende, S. Identification of potential flavonoid inhibitors of the SARS-CoV-2 main protease 6YNQ: A molecular docking study. Digit. Chinese Med., 2020, 3(4), 239-248.
[http://dx.doi.org/10.1016/j.dcmed.2020.12.003]
[26]
Owis, A.I.; El-Hawary, M.S.; El Amir, D.; Aly, O.M.; Abdelmohsen, U.R.; Kamel, M.S. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Adv., 2020, 10(33), 19570-19575.
[http://dx.doi.org/10.1039/D0RA03582C]
[27]
Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 2021, 39(9), 3347-3357.
[http://dx.doi.org/10.1080/07391102.2020.1763201] [PMID: 32362245]
[28]
Ngwa, W.; Kumar, R.; Thompson, D.; Lyerly, W.; Moore, R.; Reid, T-E.; Lowe, H.; Toyang, N. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules, 2020, 25(11), 2707.
[http://dx.doi.org/10.3390/molecules25112707] [PMID: 32545268]
[29]
Lowe, H.; Steele, B.; Bryant, J.; Fouad, E.; Toyang, N.; Ngwa, W. Antiviral activity of jamaican medicinal plants and isolated bioactive compounds. Molecules, 2021, 26(3), 607.
[http://dx.doi.org/10.3390/molecules26030607] [PMID: 33503834]
[30]
Shaghaghi, N. Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plants.ChemRxiv; Cambridge Open Engage: Cambridge, 2020.
[http://dx.doi.org/10.26434/chemrxiv.11935722.v1]
[31]
McKee, D.L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res., 2020, 157, 104859.
[http://dx.doi.org/10.1016/j.phrs.2020.104859] [PMID: 32360480]
[32]
Ahmadi, S.; Rabiee, N.; Fatahi, Y.; Hooshmand, S.E.; Bagherzadeh, M.; Rabiee, M.; Jajarmi, V.; Dinarvand, R.; Habibzadeh, S.; Saeb, M.R.; Varma, R.S.; Shokouhimehr, M.; Hamblin, M.R. Green chemistry and coronavirus. Sustain. Chem. Pharm., 2021, 21, 100415.
[http://dx.doi.org/10.1016/j.scp.2021.100415] [PMID: 33686371]
[33]
Oliveira, D.F.; de Godoy, A.L.R.; Cavalaro, V.; Bella, L.M.; Oliveira, C.R. Candidate herbal medicines to combat symptoms of COVID-19 and their possible mechanisms of action. Brazilian J. Heal. Pharm., 2020, 2(4), 10-19.
[http://dx.doi.org/10.29327/226760.2.4-2]
[34]
Ibrahim, M.A.A.; Abdeljawaad, K.A.A.; Abdelrahman, A.H.M.; Hegazy, M.F. Natural-like products as potential SARS-CoV-2 Mpro inhibitors: In-silico drug discovery. J. Biomol. Struct. Dyn., 2021, 39(15), 5722-5734.
[http://dx.doi.org/10.1080/07391102.2020.1790037] [PMID: 32643529]
[35]
da Silva, F.M.A.; da Silva, K.P.A.; de Oliveira, L.P.M.; Costa, E.V.; Koolen, H.H.F.; Pinheiro, M.L.B.; de Souza, A.Q.L.; de Souza, A.D.L. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz, 2020, 115, e200207.
[http://dx.doi.org/10.1590/0074-02760200207] [PMID: 33027419]
[36]
Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res., 2019, 10(4), 1567-1574.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74]
[37]
Rengasamy, K.R.R.; Khan, H.; Gowrishankar, S.; Lagoa, R.J.L.; Mahomoodally, F.M.; Khan, Z.; Suroowan, S.; Tewari, D.; Zengin, G.; Hassan, S.T.S.; Pandian, S.K. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol. Ther., 2019, 194, 107-131.
[http://dx.doi.org/10.1016/j.pharmthera.2018.09.009] [PMID: 30268770]
[38]
Zahradník, J.; Marciano, S.; Shemesh, M.; Zoler, E.; Harari, D.; Chiaravalli, J.; Meyer, B.; Rudich, Y.; Li, C.; Marton, I.; Dym, O.; Elad, N.; Lewis, M.G.; Andersen, H.; Gagne, M.; Seder, R.A.; Douek, D.C.; Schreiber, G. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat. Microbiol., 2021, 6(9), 1188-1198.
[http://dx.doi.org/10.1038/s41564-021-00954-4] [PMID: 34400835]
[39]
Antonio, A. da S.; Wiedemann, L.S.M.; Veiga-Junior, V.F. Natural products’ role against COVID-19. RSC Adv., 2020, 10(39), 23379-23393.
[http://dx.doi.org/10.1039/D0RA03774E]
[40]
Wang, Y-X.; Duan, Z-K.; Chang, Y.; Yan, Z-Y.; Wang, X-B.; Huang, X-X.; Song, S-J. Triterpenes from Archidendron clypearia (Jack) ICN with anti-β-amyloid aggregation activity. Nat. Prod. Res., 2019, 35(1), 1-4.
[PMID: 31135212]
[41]
SÁ, R.D. Estudo Farmacognóstico De Chenopodium Ambrosioides L. (Chenopodiaceae); Universidade Federal De Pernambuco 2013. Available from: www.repositorio.ufie.br/handle/123456789/10715
[42]
Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods, 2013, 5(4), 1732-1740.
[http://dx.doi.org/10.1016/j.jff.2013.07.019]
[43]
Acosta, A.L.; Xavier, F.; Chaves, L.S.M.; Sabino, E.C.; Saraiva, A.M.; Sallum, M.A.M. Interfaces to coronavirus transmission and spillover between forests and cities. Estud. Av., 2020, 34(99), 191-208.
[http://dx.doi.org/10.1590/s0103-4014.2020.3499.012]
[44]
Wen, C-C.; Kuo, Y-H.; Jan, J-T.; Liang, P-H.; Wang, S-Y.; Liu, H-G.; Lee, C-K.; Chang, S-T.; Kuo, C-J.; Lee, S-S.; Hou, C-C.; Hsiao, P-W.; Chien, S-C.; Shyur, L-F.; Yang, N-S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[45]
Cui, Q.; Du, R.; Liu, M.; Rong, L. Lignans and their derivatives from plants as antivirals. Molecules, 2020, 25(1), 183.
[http://dx.doi.org/10.3390/molecules25010183] [PMID: 31906391]
[46]
Muhammad, I.A.; Muangchoo, K.; Muhammad, A.; Ajingi, Y.S.; Muhammad, I.Y.; Umar, I.D.; Muhammad, A.B. A computational study to identify potential inhibitors of SARS-CoV-2 main protease (Mpro) from Eucalyptus active compounds. Computation (Basel), 2020, 8(3), 79.
[http://dx.doi.org/10.3390/computation8030079]
[47]
de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, W.F., Jr Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[48]
Boukhatem, M.N.; Setzer, W.N. Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: Future perspectives. Plants, 2020, 9(6), 800.
[http://dx.doi.org/10.3390/plants9060800] [PMID: 32604842]
[49]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-CoV-2 Main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar. Drugs, 2020, 18(4), 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[50]
Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising natural compounds against viral infections. Arch. Virol., 2017, 162(9), 2539-2551.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[51]
Patel, K.; Patel, D.K. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. In: Bioactive Food as Dietary Interventions for Arthritis and Inflammatory Diseases; Academic Press: Cambridge, Massachusetts, USA, 2019; pp. 457-479.
[http://dx.doi.org/10.1016/B978-0-12-813820-5.00026-X]
[52]
Rahman, F.; Tabrez, S.; Ali, R.; Alqahtani, A.S.; Ahmed, M.Z.; Rub, A. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. J. Tradit. Complement. Med., 2021, 11(2), 173-179.
[http://dx.doi.org/10.1016/j.jtcme.2021.01.006] [PMID: 33520682]
[53]
Bharadwaj, S.; El-Kafrawy, S.A.; Alandijany, T.A.; Bajrai, L.H.; Shah, A.A.; Dubey, A.; Sahoo, A.K.; Yadava, U.; Kamal, M.A.; Azhar, E.I.; Kang, S.G.; Dwivedi, V.D. Structure-based identification of natural products as SARS-CoV-2 Mpro antagonist from Echinacea angustifolia using computational approaches. Viruses, 2021, 13(2), 305.
[http://dx.doi.org/10.3390/v13020305] [PMID: 33672054]
[54]
Ngo, S.T.; Quynh Anh Pham, N.; Thi Le, L.; Pham, D-H.; Vu, V.V. Computational determination of potential inhibitors of SARS-CoV-2 main protease. J. Chem. Inf. Model., 2020, 60(12), 5771-5780.
[http://dx.doi.org/10.1021/acs.jcim.0c00491] [PMID: 32530282]
[55]
Falade, V.A.; Adelusi, T.I.; Adedotun, I.O.; Abdul-Hammed, M.; Lawal, T.A.; Agboluaje, S.A. In silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (Mpro). In Silico Pharmacol., 2021, 9(1), 9.
[http://dx.doi.org/10.1007/s40203-020-00071-w] [PMID: 33425648]
[56]
Muhseen, Z.T.; Hameed, A.R.; Al-Hasani, H.M.H.; Tahir Ul Qamar, M.; Li, G. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. J. Mol. Liq., 2020, 320, 114493.
[http://dx.doi.org/10.1016/j.molliq.2020.114493] [PMID: 33041407]
[57]
Rangsinth, P.; Sillapachaiyaporn, C.; Nilkhet, S.; Tencomnao, T.; Ung, A.T.; Chuchawankul, S. Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: An in silico approach. J. Tradit. Complement. Med., 2021, 11(2), 158-172.
[http://dx.doi.org/10.1016/j.jtcme.2020.12.002] [PMID: 33520685]
[58]
Singh, R.; Bhardwaj, V.K.; Sharma, J.; Purohit, R.; Kumar, S. In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. J. Tradit. Complement. Med., 2022, 12, 35-43.
[http://dx.doi.org/10.1016/j.jtcme.2021.05.005] [PMID: 34099976]
[59]
Messaoudi, O.; Gouzi, H.; El-Hoshoudy, A.N.; Benaceur, F.; Patel, C.; Goswami, D.; Boukerouis, D.; Bendahou, M. Berries anthocyanins as potential SARS-CoV–2 Inhibitors targeting the viral attachment and replication; molecular docking simulation. Egypt. J. Pet., 2021, 30(1), 33-43.
[60]
Silva, J.K.R.D.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential oils as antiviral agents. potential of essential oils to treat SARS-CoV-2 infection: An In-Silico investigation. Int. J. Mol. Sci., 2020, 21(10), 3426.
[http://dx.doi.org/10.3390/ijms21103426] [PMID: 32408699]
[61]
Leal, C.M.; Leitão, S.G.; Sausset, R.; Mendonça, S.C.; Nascimento, P.H.A.; de Araujo, R.; Cheohen, C.F.; Esteves, M.E.A.; Leal da Silva, M.; Gondim, T.S.; Monteiro, M.E.S.; Tucci, A.R.; Fintelman-Rodrigues, N.; Siqueira, M.M.; Miranda, M.D.; Costa, F.N.; Simas, R.C.; Leitão, G.G. Flavonoids from Siparuna cristata as potential inhibitors of SARS-CoV-2 Replication. Rev. Bras. Farmacogn., 2021, 31(5), 658-66.
[PMID: 34305198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy