Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Fish Gelatin: Current Nutritional, Medicinal, Tissue Repair Applications, and as a Carrier of Drug Delivery

Author(s): Amro M. Soliman, Seong Lin Teoh and Srijit Das*

Volume 28, Issue 12, 2022

Published on: 08 March, 2022

Page: [1019 - 1030] Pages: 12

DOI: 10.2174/1381612828666220128103725

Price: $65

conference banner
Abstract

Gelatin is obtained via partial denaturation of collagen and is extensively used in various industries. The majority of gelatin utilized globally is derived from a mammalian source. Several health and religious concerns associated with porcine/bovine gelatin have been reported. Therefore, gelatin from a marine source is widely being investigated for its efficiency and utilization in a variety of applications as a potential substitute for porcine/bovine gelatin. Although fish gelatin is less durable and possesses lower melting and gelling temperatures compared to mammal-derived gelatin, various modifications have been reported to promote its rheological and functional properties to be efficiently employed. The present review describes in detail the current innovative applications of fish gelatin involving the food industry, drug delivery, and possible therapeutic applications. Gelatin bioactive molecules may be utilized as carriers for drug delivery. Due to its versatility, gelatin can be used in different carrier systems, such as microparticles, nanoparticles, fibers, and hydrogels. The present review also provides a perspective on the other potential pharmaceutical applications of fish gelatin, such as tissue regeneration, antioxidant supplementation, and antihypertensive and anticancer treatments.

Keywords: Fish gelatin, food formulation, drug delivery, biomedical applications, wound healing, tissue engineering.

[1]
Ward AG, Courts A. The Science and Technology of Gelatin. Academic Press 1977; pp. 1-31.
[2]
Belitz H, Grosch W, Schieberle P. Food Chemistry. In: 2009; p. 626.
[3]
Karim AA, Bhat R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll 2009; 23: 563-76.
[http://dx.doi.org/10.1016/j.foodhyd.2008.07.002]
[4]
Yang H, Wang Y, Jiang M, Oh J-H, Herring J, Zhou P. 2-step optimization of the extraction and subsequent physical properties of channel catfish (Ictalurus punctatus) skin gelatin. J Food Sci 2007; 72(4): C188-95.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00319.x] [PMID: 17995759]
[5]
Hou P, Regenstein J. Optimization of extraction conditions for pollock skin gelatin. J Food Sci 2004; 69: C393-8.
[http://dx.doi.org/10.1111/j.1365-2621.2004.tb10704.x]
[6]
Nurilmala M, Adinugraha SC, Jacoeb AM, Susilawati S, Ochiai Y. Evaluation of the properties of tuna skin gelatin as a hard capsule material. Fish Sci 2020; 86: 917-24.
[http://dx.doi.org/10.1007/s12562-020-01457-7]
[7]
Sha X-M, Tu Z-C, Wang H, et al. Gelatin quantification by oxygen-18 labeling and liquid chromatography-high-resolution mass spectrometry. J Agric Food Chem 2014; 62(49): 11840-53.
[http://dx.doi.org/10.1021/jf503876a] [PMID: 25404505]
[8]
Huang T, Tu Z-C, Wang H, et al. Comparison of rheological behaviors and nanostructure of bighead carp scales gelatin modified by different modification methods. J Food Sci Technol 2017; 54(5): 1256-65.
[http://dx.doi.org/10.1007/s13197-017-2511-1] [PMID: 28416876]
[9]
Tu ZC, Huang T, Wang H, et al. Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. J Food Sci Technol 2015; 52(4): 2166-74.
[http://dx.doi.org/10.1007/s13197-013-1239-9] [PMID: 25829597]
[10]
Arnesen JA, Gildberg A. Extraction and characteri-sation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresour Technol 2007; 98(1): 53-7.
[http://dx.doi.org/10.1016/j.biortech.2005.11.021] [PMID: 16410050]
[11]
Avila Rodríguez MI, Rodríguez Barroso LG, Sánchez ML. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol 2018; 17(1): 20-6.
[http://dx.doi.org/10.1111/jocd.12450] [PMID: 29144022]
[12]
Blanco M, Vázquez JA, Pérez-Martín RI, Sotelo CG. Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry byproducts. Mar Drugs 2017; 15(5): 131.
[http://dx.doi.org/10.3390/md15050131] [PMID: 28475143]
[13]
Gauza-Włodarczyk M, Kubisz L, Włodarczyk D. Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int J Biol Macromol 2017; 104(Pt A): 987-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.013] [PMID: 28687386]
[14]
Xu S, Gu M, Wu K, Li G. Unraveling the role of hydroxyproline in maintaining the thermal stability of the collagen triple helix structure using simulation. J Phys Chem B 2019; 123(36): 7754-63.
[http://dx.doi.org/10.1021/acs.jpcb.9b05006] [PMID: 31418574]
[15]
Kim S-K, Mendis E. Bioactive compounds from marine processing byproducts–a Review. Food Res Int 2006; 39: 383-93.
[http://dx.doi.org/10.1016/j.foodres.2005.10.010]
[16]
Wasswa J, Tang J, Gu X. Utilization of fish processing byproducts in the gelatin industry. Food Rev Int 2007; 23: 159-74.
[http://dx.doi.org/10.1080/87559120701225029]
[17]
Badii F, Howell NK. Fish gelatin: Structure, gelling properties and interaction with egg albumen proteins. Food Hydrocoll 2006; 20: 630-40.
[http://dx.doi.org/10.1016/j.foodhyd.2005.06.006]
[18]
Herpandi H, Huda N, Adzitey F. Fish Bone and Scale as a Potential Source of Halal Gelatin. Su Ürün Derg 2011; 6: 379-89.
[19]
Huang T, Tu Z, Shangguan X, et al. Fish gelatin modifications: A comprehensive review. Trends Food Sci Technol 2019; 86: 260-9.
[http://dx.doi.org/10.1016/j.tifs.2019.02.048]
[20]
Song Z, Liu H, Chen L, et al. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chem 2021; 340: 128139.
[http://dx.doi.org/10.1016/j.foodchem.2020.128139] [PMID: 33010648]
[21]
Ahmad T, Ismail A, Ahmad SA, et al. Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: A review. Food Hydrocoll 2017; 63: 85-96.
[http://dx.doi.org/10.1016/j.foodhyd.2016.08.007]
[22]
Huang T, Tu ZC, Wang H, et al. Pectin and enzyme complex modified fish scales gelatin: Rheological behavior, gel properties and nanostructure. Carbohydr Polym 2017; 156: 294-302.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.040] [PMID: 27842826]
[23]
Abdelmalek BE, Gómez-Estaca J, Sila A, et al. Characteristics and functional properties of gelatin extracted from squid (loligo vulgaris) skin. Lebensm Wiss Technol 2016; 65: 924-31.
[http://dx.doi.org/10.1016/j.lwt.2015.09.024]
[24]
da Trindade Alfaro A, Balbinot E, Weber CI, Tonial IB, Machado-Lunkes A. Fish gelatin: Characteristics, functional properties, applications and future potentials. Food Eng Rev 2015; 7: 33-44.
[http://dx.doi.org/10.1007/s12393-014-9096-5]
[25]
Cho S, Gu Y, Kim S. Extracting optimization and physical properties of yellowfin tuna (thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocoll 2005; 19: 221-9.
[http://dx.doi.org/10.1016/j.foodhyd.2004.05.005]
[26]
Ahmed R, Haq M, Chun B-S. Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus). Int J Biol Macromol 2019; 135: 668-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.213] [PMID: 31154039]
[27]
Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P. Fish gelatin: A renewable material for developing active biodegradable films. Trends Food Sci Technol 2009; 20: 3-16.
[http://dx.doi.org/10.1016/j.tifs.2008.10.002]
[28]
Nitsuwat S, Zhang P, Ng K, Fang Z. Fish gelatin as an alternative to mammalian gelatin for food industry: A meta-analysis. Lebensm Wiss Technol 2021; 141: 110899.
[http://dx.doi.org/10.1016/j.lwt.2021.110899]
[29]
See SF, Ghassem M, Mamot S, Babji AS. Effect of different pretreatments on functional properties of African catfish (Clarias gariepinus) skin gelatin. J Food Sci Technol 2015; 52(2): 753-62.
[http://dx.doi.org/10.1007/s13197-013-1043-6] [PMID: 25694683]
[30]
da Trindade Alfaro A, Fonseca GG. Prentice-Hernández C. Enhancement of functional properties of wami tilapia (oreochromis urolepis hornorum) skin gelatin at different PH values. Food Bioprocess Technol 2013; 6: 2118-27.
[http://dx.doi.org/10.1007/s11947-012-0859-9]
[31]
Sow LC, Yang H. Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocoll 2015; 45: 72-82.
[http://dx.doi.org/10.1016/j.foodhyd.2014.10.021]
[32]
Sow LC, Kong K, Yang H. Structural modification of fish gelatin by the addition of gellan, κ-carrageenan, and salts mimics the critical physicochemical properties of pork gelatin. J Food Sci 2018; 83(5): 1280-91.
[http://dx.doi.org/10.1111/1750-3841.14123] [PMID: 29660829]
[33]
Guillén G, López Caballero ME, Alemán A, López de Lacey A, Giménez B, Montero García P. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. Sea By-Products as Real Material: New Ways of Application 2010; 89-115. Available from: http://hdl.handle.net/10261/40679
[34]
Ramírez JA, Uresti RM, Velazquez G, Vázquez M. Food hydrocolloids as additives to improve the mechanical and functional properties of fish products: A review. Food Hydrocoll 2011; 25: 1842-52.
[http://dx.doi.org/10.1016/j.foodhyd.2011.05.009]
[35]
Pangestuti R, Kim S-K. Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar Drugs 2017; 15(3): 67.
[http://dx.doi.org/10.3390/md15030067] [PMID: 28282929]
[36]
Mirzapour-Kouhdasht A, Moosavi-Nasab M, Lee CW, Yun H, Eun J-B. Structure-function engineering of novel fish gelatin-derived multifunctional peptides using high-resolution peptidomics and bioinformatics. Sci Rep 2021; 11(1): 7401.
[http://dx.doi.org/10.1038/s41598-021-86808-9] [PMID: 33795773]
[37]
Cheng L, Lim B, Chow K, Chong S, Chang Y. Using fish gelatin and pectin to make a low-fat spread. Food Hydrocoll 2008; 22: 1637-40.
[http://dx.doi.org/10.1016/j.foodhyd.2007.10.006]
[38]
Surh J, Decker EA, McClements DJ. Properties and stability of oil-in-water emulsions stabilized by fish gela-tin. Food Hydrocoll 2006; 20: 596-606.
[http://dx.doi.org/10.1016/j.foodhyd.2005.06.002]
[39]
Huang T, Tu ZC, Shangguan X, Wang H, Sha X, Bansal N. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin. Food Chem 2018; 246: 428-36.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.023] [PMID: 29291869]
[40]
Tongnuanchan P, Benjakul S, Prodpran T, Nilsuwan K. Emulsion film based on fish skin gelatin and palm oil: Physical, structural and thermal properties. Food Hydrocoll 2015; 48: 248-59.
[http://dx.doi.org/10.1016/j.foodhyd.2015.02.025]
[41]
Vall-Llosera M, Jessen F, Henriet P, et al. Physical stability and interfacial properties of oil in water emulsion stabilized with pea protein and fish skin gelatin. Food Biophys 2021; 16: 139-51.
[http://dx.doi.org/10.1007/s11483-020-09655-7]
[42]
Huang T, Tu Z, Zou Z, Shangguan X, Wang H, Bansal N. Glycosylated fish gelatin emulsion: Rheo-logical, tribological properties and its application as model coffee creamers. Food Hydrocoll 2020; 102: 105552.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105552]
[43]
Etxabide A, Leceta I, Cabezudo S, Guerrero P, de la Caba K. Sustainable fish gelatin films: From food processing waste to compost. ACS Sustain Chem& Eng 2016; 4: 4626-34.
[http://dx.doi.org/10.1021/acssuschemeng.6b00750]
[44]
Rhim J-W, Ng PK. Natural biopolymer-based nano-composite films for packaging applications. Crit Rev Food Sci Nutr 2007; 47(4): 411-33.
[http://dx.doi.org/10.1080/10408390600846366] [PMID: 17457725]
[45]
Hosseini SF, Gómez-Guillén MC. A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches. Trends Food Sci Technol 2018; 79: 125-35.
[http://dx.doi.org/10.1016/j.tifs.2018.07.022]
[46]
Nilsuwan K, Benjakul S, Prodpran T, de la Caba K. Fish Gelatin Monolayer and Bilayer Films Incorporated with Epigallocatechin Gallate: Properties and Their Use as Pouches for Storage of Chicken Skin Oil. Food Hydrocoll 2019; 89: 783-91.
[http://dx.doi.org/10.1016/j.foodhyd.2018.11.056]
[47]
Etxabide A, Uranga J, Guerrero P, de la Caba K. Improvement of barrier properties of fish gelatin films promoted by gelatin glycation with lactose at high temperatures. Lebensm Wiss Technol 2015; 63: 315-21.
[http://dx.doi.org/10.1016/j.lwt.2015.03.079]
[48]
Sun X, Guo X, Ji M, et al. Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4°C. Food Chem 2019; 272: 643-52.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.040] [PMID: 30309593]
[49]
Ghaderi J, Hosseini SF, Keyvani N, Gómez-Guillén MC. Polymer blending effects on the physico-chemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocoll 2019; 95: 122-32.
[http://dx.doi.org/10.1016/j.foodhyd.2019.04.021]
[50]
Mohajer S, Rezaei M, Hosseini SF. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydr Polym 2017; 157: 784-93.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.061] [PMID: 27987991]
[51]
Chin S, Han Lyn F, Nur Hanani ZA. Effect of aloe vera (aloe barbadensis miller) gel on the physical and functional properties of fish gelatin films as active packaging. Food Packag Shelf Life 2017; 12: 128-34.
[http://dx.doi.org/10.1016/j.fpsl.2017.04.008]
[52]
Hanani ZAN, Yee FC, Nor-Khaizura MAR. Effect of pomegranate (Punica Granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll 2019; 89: 253-9.
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.007]
[53]
Liu J, Yong H, Liu Y, Qin Y, Kan J, Liu J. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (lonicera caerulea l.) extract. Food Packag Shelf Life 2019; 22: 100417.
[http://dx.doi.org/10.1016/j.fpsl.2019.100417]
[54]
Wu J, Sun X, Guo X, Ge S, Zhang Q. Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquac Fish 2017; 2: 185-92.
[http://dx.doi.org/10.1016/j.aaf.2017.06.004]
[55]
e Silva N da S, de Souza Farias F, dos Santos Freitas MM, et al.. Artificial intelligence application for classification and selection of fish gelatin packaging film produced with incorporation of palm oil and plant essential oils. Food Packag Shelf Life 2021; 27: 100611.
[56]
Hosseini SF, Rezaei M, Zandi M, Farah-mandghavi F. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem 2016; 194: 1266-74.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.004] [PMID: 26471681]
[57]
López-Palestina CU, Aguirre-Mancilla CL, Raya-Pérez JC, Ramirez-Pimentel JG, Vargas-Torres A, Hernández-Fuentes AD. Physi-cochemical and antioxidant properties of gelatin-based films containing oily tomato extract (Solanum Lycopersicum L.). CYTA J Food 2019; 17: 142-50.
[http://dx.doi.org/10.1080/19476337.2018.1564793]
[58]
Shahbazi Y. The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int J Biol Macromol 2017; 99: 746-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.065] [PMID: 28315767]
[59]
Kim H, Beak S-E, Song KB. Development of a hagfish skin gelatin film containing cinnamon bark essential oil. Lebensm Wiss Technol 2018; 96: 583-8.
[http://dx.doi.org/10.1016/j.lwt.2018.06.016]
[60]
Lee K-Y, Lee J-H, Yang H-J, Song KB. Production and characterisation of skate skin gelatin films incorporated with thyme essential oil and their application in chicken tenderloin packaging. Int J Food Sci Technol 2016; 51: 1465-72.
[http://dx.doi.org/10.1111/ijfs.13119]
[61]
Maryam Adilah ZA, Nur Hanani ZA. Active packaging of fish gelatin films with morinda citrifolia oil. Food Biosci 2016; 16: 66-71.
[http://dx.doi.org/10.1016/j.fbio.2016.10.002]
[62]
Su K, Wang C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 2015; 37(11): 2139-45.
[http://dx.doi.org/10.1007/s10529-015-1907-0] [PMID: 26160110]
[63]
Liu Y, Li B, Zhang K, Li J, Hou H. Novel hard capsule prepared by tilapia (Oreochromis niloticus) scale gelatin and konjac glucomannan: Characterization, and in vitro dissolution. Carbohydr Polym 2019; 206: 254-61.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.104] [PMID: 30553320]
[64]
Foox M, Zilberman M. Drug delivery from gelatin-based systems. Expert Opin Drug Deliv 2015; 12(9): 1547-63.
[http://dx.doi.org/10.1517/17425247.2015.1037272] [PMID: 25943722]
[65]
Al-Nimry S, Dayah AA, Hasan I, Daghmash R. Cosmetic, biomedical and pharmaceutical applications of fish gelatin/hydrolysates. Mar Drugs 2021; 19(3): 145.
[http://dx.doi.org/10.3390/md19030145] [PMID: 33800149]
[66]
Uranga J, Etxabide A, Cabezudo S, de la Caba K, Guerrero P. Valorization of marine-derived biowaste to develop chitin/fish gelatin products as bioactive carriers and moisture scavengers. Sci Total Environ 2020; 706: 135747.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135747] [PMID: 31806316]
[67]
Won Kwak H, Woo H, Kim I-C, Hoon Lee K. Fish gelatin nanofibers prevent drug crystallization and enable ultrafast delivery. RSC Advances 2017; 7: 40411-7.
[http://dx.doi.org/10.1039/C7RA06433K]
[68]
Kang MG, Lee MY, Cha JM, et al. Nanogels derived from fish gelatin: Application to drug delivery system. Mar Drugs 2019; 17(4): 246.
[http://dx.doi.org/10.3390/md17040246] [PMID: 31027308]
[69]
Subara D, Jaswir I, Alkhatib MFR, Noorbatcha IA. Synthesis of fish gelatin nanoparticles and their application for the drug delivery based on response surface methodology. Adv Nat Sci. Nanosci Nan-otechnol 2018; 9: 045014.
[http://dx.doi.org/10.1088/2043-6254/aae988]
[70]
Pietrysiak E, Smith DM, Smith BM, Ganjyal GM. Enhanced functionality of pea-rice protein isolate blends through direct steam injection processing. Food Chem 2018; 243: 338-44.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.132] [PMID: 29146346]
[71]
Gudipati V. Fish gelatin: A versatile ingredient for the food and pharmaceutical industries. In: Marine Proteins Peptides. Biol Activities Applications 2013; pp. 271-95.
[http://dx.doi.org/10.1002/9781118375082.ch13]
[72]
Alves AL, Marques ALP, Martins E, Silva TH, Reis RL. Cosmetic potential of marine fish skin collagen. Cosmetics 2017; 4: 39.
[http://dx.doi.org/10.3390/cosmetics4040039]
[73]
Chen T, Hou H. Protective effect of gelatin polypeptides from Pacific cod (Gadus macrocephalus) against UV irradiation-induced damages by inhibiting inflammation and improving transforming growth factor-β/Smad signaling pathway. J Photochem Photobiol B 2016; 162: 633-40.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.07.038] [PMID: 27491029]
[74]
Chen T, Hou H, Lu J, Zhang K, Li B. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin. J Ocean Univ China 2016; 15: 711-8.
[http://dx.doi.org/10.1007/s11802-016-2953-5]
[75]
Wang L, Wang X, Bai F, Fang Y, Wang J, Gao R. The anti-skin-aging effect of oral administration of gelatin from the swim bladder of Amur sturgeon (Acipenser schrenckii). Food Funct 2019; 10(7): 3890-7.
[http://dx.doi.org/10.1039/C9FO00661C] [PMID: 31187836]
[76]
Koizumi S, Inoue N, Shimizu M, Kwon C, Kim H, Park KS. Effects of dietary supplementation with fish scales-derived collagen peptides on skin parameters and condition: A randomized, placebo-controlled, double-blind study. Int J Pept Res Ther 2018; 24: 397-402.
[http://dx.doi.org/10.1007/s10989-017-9626-0]
[77]
Ketnawa S, Liceaga AM. Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food Bioprocess Technol 2017; 10: 582-91.
[http://dx.doi.org/10.1007/s11947-016-1841-8]
[78]
Horch RE, Debus M, Wagner G, Stark GB. Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis. Tissue Eng 2000; 6(1): 53-67.
[http://dx.doi.org/10.1089/107632700320892] [PMID: 10941201]
[79]
Tronci G, Yin J, Holmes RA, Liang H, Russell SJ, Wood DJ. Protease-sensitive atelocollagen hydrogels promote healing in a diabetic wound model. J Mater Chem B Mater Biol Med 2016; 4(45): 7249-58.
[http://dx.doi.org/10.1039/C6TB02268E] [PMID: 32263727]
[80]
Kim J-H, Kim D-J, Lee H-J, Kim B-K, Kim Y-S. Atelocollagen injection improves tendon integrity in partial-thickness rotator cuff tears: A prospective comparative study. Orthop J Sports Med 2020; 8(2): 2325967120904012.
[http://dx.doi.org/10.1177/2325967120904012] [PMID: 32128319]
[81]
Lee DW, Jang HG, Lee YJ, Moon SG, Kim NR, Kim JG. Effect of atelocollagen on the healing status after medial meniscal root repair using the modified Mason-Allen stitch. Orthop Traumatol Surg Res 2020; 106(5): 969-75.
[http://dx.doi.org/10.1016/j.otsr.2020.03.022] [PMID: 32753355]
[82]
Hanai K, Takeshita F, Honma K, et al. Atelocollagen-mediated systemic DDS for nucleic acid medicines. Ann N Y Acad Sci 2006; 1082: 9-17.
[http://dx.doi.org/10.1196/annals.1348.010] [PMID: 17145919]
[83]
Park HY, Shetty AA, Kim JM, et al. Enhancement of healing of long tubular bone defects in rabbits using a mixture of atelocollagen gel and bone marrow aspirate concentrate. Cells Tissues Organs 2017; 203(6): 339-52.
[http://dx.doi.org/10.1159/000455829] [PMID: 28301847]
[84]
O’Shaughnessy TJ, Lin HJ, Ma W. Functional synapse formation among rat cortical neurons grown on three-dimensional collagen gels. Neurosci Lett 2003; 340(3): 169-72.
[http://dx.doi.org/10.1016/S0304-3940(03)00083-1] [PMID: 12672533]
[85]
Hakuba N, Hato N, Okada M, Mise K, Gyo K. Preoperative factors affecting tympanic membrane regeneration therapy using an atelocollagen and basic fibroblast growth factor. JAMA Otolaryngol Head Neck Surg 2015; 141(1): 60-6.
[http://dx.doi.org/10.1001/jamaoto.2014.2613] [PMID: 25340882]
[86]
Chen J, Gao K, Liu S, et al. Fish collagen surgical compress repairing characteristics on wound healing process in vivo. Mar Drugs 2019; 17(1): 33.
[http://dx.doi.org/10.3390/md17010033] [PMID: 30625985]
[87]
Shalaby M, Agwa M, Saeed H, Khedr SM, Morsy O, El-Demellawy MA. Fish scale collagen preparation, characterization and its application in wound healing. J Polym Environ 2020; 28: 166-78.
[http://dx.doi.org/10.1007/s10924-019-01594-w]
[88]
Pal P, Srivas PK, Dadhich P, et al. Accelerating full thickness wound healing using collagen sponge of mrigal fish (Cirrhinus cirrhosus) scale origin. Int J Biol Macromol 2016; 93(Pt B): 1507-18.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.032] [PMID: 27086291]
[89]
Hu Z, Yang P, Zhou C, Li S, Hong P. Marine collagen peptides from the skin of nile tilapia (Oreochromis niloticus): characterization and wound healing evaluation. Mar Drugs 2017; 15(4): 102.
[http://dx.doi.org/10.3390/md15040102] [PMID: 28358307]
[90]
Acevedo CA, Sánchez E, Orellana N, et al. Re-epithelialization appraisal of skin wound in a porcine model using a salmon-gelatin based biomaterial as wound dressing. Pharmaceutics 2019; 11(5): 196.
[http://dx.doi.org/10.3390/pharmaceutics11050196] [PMID: 31027353]
[91]
Etxabide A, Ribeiro RDC, Guerrero P, et al. Lactose-crosslinked fish gelatin-based porous scaffolds embedded with tetrahydrocurcumin for cartilage regeneration. Int J Biol Macromol 2018; 117: 199-208.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.154] [PMID: 29800660]
[92]
Gelatin F. The novel potential applications. J Funct Foods 2019; 63: 103581.
[http://dx.doi.org/10.1016/j.jff.2019.103581]
[93]
Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y. Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int 2014; 2014
[http://dx.doi.org/10.1155/2014/302932]
[94]
Le Thi P, Lee Y, Tran DL, Hoang Thi TT, Park KD. Horseradish peroxidase-catalyzed hydrogelation of fish gelatin with tunable mechanical properties and biocompatibility. J Biomater Appl 2020; 34(9): 1216-26.
[http://dx.doi.org/10.1177/0885328219899787] [PMID: 31914843]
[95]
Choi DJ, Choi SM, Kang HY, et al. Bioactive fish collagen/polycaprolactone composite nanofibrous scaffolds fabricated by electrospinning for 3D cell culture. J Biotechnol 2015; 205: 47-58.
[http://dx.doi.org/10.1016/j.jbiotec.2015.01.017] [PMID: 25617682]
[96]
Sghayyar HNM, Lim SS, Ahmed I, et al. Fish biowaste gelatin coated phosphate-glass fibres for wound-healing application. Eur Polym J 2020; 122: 109386.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109386]
[97]
Ren T, Gan J, Zhou L, Chen H. Physically cross-linked hydrogels based on poly (vinyl alcohol) and fish gelatin for wound dressing application: fabrication and characterization. Polymers (Basel) 2020; 12(8): 1729.
[http://dx.doi.org/10.3390/polym12081729] [PMID: 32748896]
[98]
Zhou L, Xu T, Yan J, Li X, Xie Y, Chen H. Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing. Food Hydrocoll 2020; 104: 105702.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105702]
[99]
Zhang Z, Zhao M, Wang J, Ding Y, Dai X, Li Y. Oral administration of skin gelatin isolated from Chum salmon (Oncorhynchus keta) enhances wound healing in diabetic rats. Mar Drugs 2011; 9(5): 696-711.
[http://dx.doi.org/10.3390/md9050696] [PMID: 21673883]
[100]
Soliman AM, Teoh SL, Ghafar NA, Das S. Molecular concept of diabetic wound healing: Effective role of herbal remedies. Mini Rev Med Chem 2019; 19(5): 381-94.
[http://dx.doi.org/10.2174/1389557518666181025155204] [PMID: 30360709]
[101]
Zeng Y, Zhu L, Han Q, et al. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomater 2015; 25: 291-303.
[http://dx.doi.org/10.1016/j.actbio.2015.07.042] [PMID: 26234487]
[102]
Mohammed Nawi A, Mohammad Z, Jetly K, et al. The prevalence and risk factors of hypertension among the urban population in southeast asian countries: A systematic review and meta-analysis. Int J Hypertens 2021; 2021: 6657003.
[http://dx.doi.org/10.1155/2021/6657003] [PMID: 33628485]
[103]
Nerenberg KA, Zarnke KB, Leung AA, et al. Hypertension Canada. Hypertension Canada’s 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children. Can J Cardiol 2018; 34(5): 506-25.
[http://dx.doi.org/10.1016/j.cjca.2018.02.022] [PMID: 29731013]
[104]
Laurent S. Antihypertensive drugs. Pharmacol Res 2017; 124: 116-25.
[http://dx.doi.org/10.1016/j.phrs.2017.07.026] [PMID: 28780421]
[105]
Abachi S, Bazinet L, Beaulieu L. Antihypertensive and angiotensin-i-converting enzyme (ACE)-Inhibitory peptides from fish as potential cardioprotective compounds. Mar Drugs 2019; 17(11): 613.
[http://dx.doi.org/10.3390/md17110613] [PMID: 31671730]
[106]
Yi Y, Lv Y, Zhang L, Yang J, Shi Q. High throughput identification of antihypertensive peptides from fish proteome datasets. Mar Drugs 2018; 16(10): 365.
[http://dx.doi.org/10.3390/md16100365] [PMID: 30279337]
[107]
Abdelhedi O, Nasri R, Jridi M, et al. In silico analysis and antihypertensive effect of ACE-inhibitory peptides from smooth-hound viscera protein hydrolysate: Enzyme-peptide interaction study using molecular docking simulation. Process Biochem 2017; 58: 145-59.
[http://dx.doi.org/10.1016/j.procbio.2017.04.032]
[108]
Kim H-S, Je J-G, Ryu B, et al. Antioxidant and angiotensin-i converting enzyme inhibitory peptides from hippocampus abdominalis. Eur Food Res Technol 2019; 245: 479-87.
[http://dx.doi.org/10.1007/s00217-018-3179-0]
[109]
Qara S, Habibi Najafi MB. Bioactive properties of kilka (Clupeonella Cultriventris Caspi) fish protein hydrolysates. Food Measure 2018; 12: 2263-70.
[http://dx.doi.org/10.1007/s11694-018-9843-z]
[110]
Putalan R, Munifah I, Nurhayati T, Chasanah E. Antioxidant and ace inhibitor potential of stripe trevally fish (selaroides leptolepis) hydrolysate. Squalen Bulletin of Marine and Fisheries Postharvest Biotechnol 2018; 13: 17-22.
[http://dx.doi.org/10.15578/squalen.v13i1.319]
[111]
Choonpicharn S, Jaturasitha S, Rakariyatham N, Suree N, Niamsup H. Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. J Food Sci Technol 2015; 52(5): 3134-9.
[http://dx.doi.org/10.1007/s13197-014-1581-6] [PMID: 25892821]
[112]
Huang C-Y, Tsai Y-H, Hong Y-H, Hsieh S-L, Huang R-H. Characterization and antioxidant and angiotensin i-converting enzyme (ACE)-inhibitory activities of gelatin hydrolysates prepared from extrusion-pretreated milkfish (chanos chanos) Scale. Mar Drugs 2018; 16(10): 346.
[http://dx.doi.org/10.3390/md16100346] [PMID: 30248998]
[113]
Ngo D-H, Kang K-H, Ryu B, et al. Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats. Food Chem 2015; 174: 37-43.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.013] [PMID: 25529649]
[114]
Rahmdel M, Cho SM, Jeon Y-J, Lee DH. A flounder fish peptide shows anti-hypertensive effects by suppressing the renin-angiotensin-aldosterone system and endothelin-1. Protein Pept Lett 2021; 28(7): 831-40.
[http://dx.doi.org/10.2174/0929866528666210211142105] [PMID: 33573539]
[115]
Ko J-Y, Kang N, Lee J-H, et al. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (paralichthys olivaceus) muscle as a potent anti-hypertensive agent. Process Biochem 2016; 51: 535-41.
[http://dx.doi.org/10.1016/j.procbio.2016.01.009]
[116]
Oh J-Y, Kim E-A, Lee H, Kim H-S, Lee J-S, Jeon Y-J. Antihypertensive effect of surimi prepared from olive flounder (paralichthys olivaceus) by angiotensin-i converting enzyme (ACE) inhibitory activity and characterization of ACE inhibitory peptides. Process Biochem 2019; 80: 164-70.
[http://dx.doi.org/10.1016/j.procbio.2019.01.016]
[117]
Abdelhedi O, Khemakhem H, Nasri R, et al. Assessment of cholesterol, glycemia control and short- and long-term antihypertensive effects of smooth hound viscera peptides in high-salt and fructose diet-fed wistar rats. Mar Drugs 2019; 17(4): 194.
[http://dx.doi.org/10.3390/md17040194] [PMID: 30934709]
[118]
Shahidi S, Jamili S, Ghavam Mostafavi P, Rezaie S, Khorramizadeh M. Assessment of the inhibitory effects of ficin-hydrolyzed gelatin derived from squid (Uroteuthis duvauceli) on breast cancer cell lines and animal model. Iran J Allergy Asthma Immunol 2018; 17(5): 436-52.
[http://dx.doi.org/10.18502/ijaai.v17i5.302] [PMID: 30518186]
[119]
Suarez-Jimenez G-M, Burgos-Hernandez A, Ezquerra-Brauer J-M. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drugs 2012; 10(5): 963-86.
[http://dx.doi.org/10.3390/md10050963] [PMID: 22822350]
[120]
Yaghoubzadeh Z, Peyravii Ghadikolaii F, Kaboosi H, Safari R, Fattahi E. Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. Int J Pept Res Ther 2020; 26: 625-32.
[http://dx.doi.org/10.1007/s10989-019-09869-5]
[121]
Halim NRA, Azlan A, Yusof HM, Sarbon NM. Antioxidant and anticancer activities of enzymatic eel (Monopterus sp) protein hydrolysate as influenced by different molecular weight. Biocatal Agric Biotechnol 2018; 16: 10-6.
[http://dx.doi.org/10.1016/j.bcab.2018.06.006]
[122]
Yang J-I, Tang J-Y, Liu Y-S, et al. Roe protein hydrolysates of giant grouper (Epinephelus lanceolatus) inhibit cell proliferation of oral cancer cells involving apoptosis and oxidative stress. BioMed Res Int 2016; 2016: 8305073.
[http://dx.doi.org/10.1155/2016/8305073] [PMID: 27195297]
[123]
Sae-leaw T, O’Callaghan YC, Benjakul S, O’Brien NM. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysates from seabass (Lates calcarifer) skins. Int J Food Sci Technol 2016; 51: 1545-51.
[http://dx.doi.org/10.1111/ijfs.13123]
[124]
Karnjanapratum S, O’Callaghan YC, Benjakul S, O’Brien N. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin. J Sci Food Agric 2016; 96(9): 3220-6.
[http://dx.doi.org/10.1002/jsfa.7504] [PMID: 26493634]
[125]
Ismail SM, Hui CK, Aminuddin A, Ugusman A. Piper sarmentosum as an antioxidant: A systematic review. Sains Malays 2018; 47: 2359-68.
[http://dx.doi.org/10.17576/jsm-2018-4710-12]
[126]
Zayapor MN, Abdullah A, Wan Mustapha WA. The antioxidant analysis and α-glucosidase inhibition activities of spices and herbs (22 species) in asian traditional beverages. Food Measure 2021; 15: 1703-18.
[http://dx.doi.org/10.1007/s11694-020-00766-w]
[127]
Chi C-F, Wang B, Wang Y-M, Zhang B, Deng S-G. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leather-jacket (Navodon septentrionalis) heads. J Funct Foods 2015; 12: 1-10.
[http://dx.doi.org/10.1016/j.jff.2014.10.027]
[128]
Sabeena Farvin KH, Andersen LL, Otte J, Nielsen HH, Jessen F, Jacobsen C. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chem 2016; 204: 409-19.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.145] [PMID: 26988519]
[129]
Park SY, Kim Y-S, Ahn C-B, Je J-Y. Partial purification and identification of three antioxidant peptides with hepatoprotective effects from blue mussel (Mytilus edulis) hydrolysate by peptic hydrolysis. J Funct Foods 2016; 20: 88-95.
[http://dx.doi.org/10.1016/j.jff.2015.10.023]
[130]
Shiao W-C, Wu T-C, Kuo C-H, et al. Physico-chemical and Antioxidant Properties of Gelatin and Gelatin Hydrolysates Obtained from Extrusion-Pretreated Fish (Oreochromis sp.) Scales. Mar Drugs 2021; 19(5): 275.
[http://dx.doi.org/10.3390/md19050275] [PMID: 34068988]
[131]
Zheng L, Wei H, Yu H, et al. Fish skin gelatin hydrolysate production by ginger powder induces glutathione synthesis to prevent hydrogen peroxide induced intestinal oxidative stress via the Pept1-p62-Nrf2 cascade. J Agric Food Chem 2018; 66(44): 11601-11.
[http://dx.doi.org/10.1021/acs.jafc.8b02840] [PMID: 30339007]
[132]
Deng Z, Cui C, Wang Y, et al. FSGHF3 and peptides, prepared from fish skin gelatin, exert a protective effect on DSS-induced colitis via the Nrf2 pathway. Food Funct 2020; 11(1): 414-23.
[http://dx.doi.org/10.1039/C9FO02165E] [PMID: 31825438]
[133]
Mirzapour-Kouhdasht A, Moosavi-Nasab M, Kim Y-M, Eun J-B. Antioxidant mechanism, antibacterial activity, and functional characterization of peptide fractions obtained from barred mackerel gelatin with a focus on application in carbonated beverages. Food Chem 2021; 342: 128339.
[http://dx.doi.org/10.1016/j.foodchem.2020.128339] [PMID: 33069523]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy