Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation

Author(s): Idris Zubairu Sadiq*

Volume 23, Issue 1, 2023

Published on: 24 January, 2022

Page: [13 - 35] Pages: 23

DOI: 10.2174/1566524022666211222161637

Price: $65

conference banner
Abstract

Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as “second messengers,” influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson’s disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer’s disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.

Keywords: Oxidative stress, redox signaling, reactive oxygen species, free radicals, antioxidants, redox cycle, cell cycle regulation.

[1]
Sies H. Oxidative stress: Introductory remarks. In: Sies H, Ed. Oxidative Stress. London: Academic Press 1985; pp. 1-8.
[http://dx.doi.org/10.1016/B978-0-12-642760-8.50005-3]
[2]
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24(10): R453-62.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[3]
Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2(2): 188-94.
[http://dx.doi.org/10.1016/S1369-5274(99)80033-2] [PMID: 10322176]
[4]
Shankar K, Mehendale HM. Encyclopedia of Toxicology. (3rd Ed.), 2014.
[5]
Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: Current status and future prospects. Curr Med Chem 2011; 18(25): 3871-88.
[http://dx.doi.org/10.2174/092986711803414368] [PMID: 21824100]
[6]
Gurer-Orhan H, Ince E, Konyar D, Saso L, Suzen S. The role of oxidative stress modulators in breast cancer. Curr Med Chem 2018; 25(33): 4084-101.
[http://dx.doi.org/10.2174/0929867324666170711114336] [PMID: 28699501]
[7]
Ma Q. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 2010; 125(3): 376-93.
[http://dx.doi.org/10.1016/j.pharmthera.2009.11.004] [PMID: 19945483]
[8]
Telkoparan-Akillilar P, Suzen S, Saso L. Pharmacological applications of Nrf2 inhibitors as potential antineoplastic drugs. Int J Mol Sci 2019; 20(8): 2025.
[http://dx.doi.org/10.3390/ijms20082025] [PMID: 31022969]
[9]
Parthasarathy S, Santanam N, Ramachandran S, Meilhac O. Oxidants and antioxidants in atherogenesis. An appraisal. J Lipid Res 1999; 40(12): 2143-57.
[http://dx.doi.org/10.1016/S0022-2275(20)32089-7] [PMID: 10588940]
[10]
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30(1): 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[11]
Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4(2): 89-96.
[PMID: 23675073]
[12]
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007; 19(9): 1807-19.
[http://dx.doi.org/10.1016/j.cellsig.2007.04.009] [PMID: 17570640]
[13]
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4(8): 118-26.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[14]
Ebadi M. Antioxidants and free radicals in health and disease: An introduction to reactive oxygen species, oxidative injury, neuronal cell death and therapy in neurodegenerative diseases. Arizona: Prominent Press 2001.
[15]
Sailaja Rao P, Kalva S, Yerramilli A, Mamidi S. Free radicals and tissue damage: Role of antioxidants. Free Radic Antioxid 2011; 1(4): 2-7.
[http://dx.doi.org/10.5530/ax.2011.4.2]
[16]
Machlin LJ, Bendich A. Free radical tissue damage: Protective role of antioxidant nutrients. FASEB J 1987; 1(6): 441-5.
[http://dx.doi.org/10.1096/fasebj.1.6.3315807] [PMID: 3315807]
[17]
Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004; 52: 794-804.
[PMID: 15909857]
[18]
Fruhwirth GO, Hermetter A. Mediation of apoptosis by oxidized phospholipids. Subcell Biochem 2008; 49: 351-67.
[http://dx.doi.org/10.1007/978-1-4020-8831-5_13] [PMID: 18751918]
[19]
Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatr Res 2009; 66(2): 121-7.
[http://dx.doi.org/10.1203/PDR.0b013e3181a9eafb] [PMID: 19390491]
[20]
Auten RL, Whorton MH, Nicholas Mason S. Blocking neutrophil influx reduces DNA damage in hyperoxia-exposed newborn rat lung. Am J Respir Cell Mol Biol 2002; 26(4): 391-7.
[http://dx.doi.org/10.1165/ajrcmb.26.4.4708] [PMID: 11919074]
[21]
Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 2014; 30(7): 513-23.
[http://dx.doi.org/10.3109/02656736.2014.971446] [PMID: 25354680]
[22]
Liochev SI, Fridovich I. Superoxide and iron: partners in crime. IUBMB Life 1999; 48(2): 157-61.
[http://dx.doi.org/10.1080/713803492] [PMID: 10794591]
[23]
He J, Xu L, Yang L, Wang X. Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med Sci Monit 2018; 24: 8198-206.
[http://dx.doi.org/10.12659/MSM.911175] [PMID: 30428482]
[24]
Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10(10): 1713-65.
[http://dx.doi.org/10.1089/ars.2008.2027] [PMID: 18707220]
[25]
Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev 2011; 2011: 809696.
[http://dx.doi.org/10.1155/2011/809696] [PMID: 21904647]
[26]
Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 1983; 23: 239-57.
[http://dx.doi.org/10.1146/annurev.pa.23.040183.001323] [PMID: 6307121]
[27]
Kehrer JP, Robertson JD, Smith CV. Free radicals and reactive oxygen species. Comp Toxicol 2010; 277-307.
[http://dx.doi.org/10.1016/B978-0-08-046884-6.00114-7]
[28]
Maioli NA, Zarpelon AC, Mizokami SS, et al. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2. Braz J Med Biol Res 2015; 48(4): 321-31.
[http://dx.doi.org/10.1590/1414-431x20144187] [PMID: 25714890]
[29]
Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 2018; 9: 1162.
[http://dx.doi.org/10.3389/fphar.2018.01162] [PMID: 30405405]
[30]
Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res 1999; 31(6): 651-69.
[http://dx.doi.org/10.1080/10715769900301221] [PMID: 10630688]
[31]
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci USA 2018; 115(23): 5839-48.
[http://dx.doi.org/10.1073/pnas.1804932115] [PMID: 29802228]
[32]
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87(1): 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[33]
Koppenol WH. The chemistry of peroxynitrite, a biological toxin. Quim Nova 1998; 21(3): 326-31.
[http://dx.doi.org/10.1590/S0100-40421998000300014]
[34]
Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem 2013; 288(37): 26464-72.
[http://dx.doi.org/10.1074/jbc.R113.472936] [PMID: 23861390]
[35]
Salvemini D, Doyle TM, Cuzzocrea S. Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation. Biochem Soc Trans 2006; 34(Pt 5): 965-70.
[http://dx.doi.org/10.1042/BST0340965] [PMID: 17052238]
[36]
Poveda L, Hottiger M, Boos N, Wuertz K. Peroxynitrite induces gene expression in intervertebral disc cells. Spine 2009; 34(11): 1127-33.
[http://dx.doi.org/10.1097/BRS.0b013e31819f2330] [PMID: 19407676]
[37]
Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 2003; 25(3-4): 295-311.
[http://dx.doi.org/10.1007/s00726-003-0018-8] [PMID: 14661092]
[38]
Boccini F, Herold S. Mechanistic studies of the oxidation of oxyhemoglobin by peroxynitrite. Biochemistry 2004; 43(51): 16393-404.
[http://dx.doi.org/10.1021/bi0482250] [PMID: 15610034]
[39]
Herold S, Exner M, Boccini F. The mechanism of the peroxynitrite-mediated oxidation of myoglobin in the absence and presence of carbon dioxide. Chem Res Toxicol 2003; 16(3): 390-402.
[http://dx.doi.org/10.1021/tx025595l] [PMID: 12641440]
[40]
Thomson L, Trujillo M, Telleri R, Radi R. Kinetics of cytochrome c2+ oxidation by peroxynitrite: Implications for superoxide measurements in nitric oxide-producing biological systems. Arch Biochem Biophys 1995; 319(2): 491-7.
[http://dx.doi.org/10.1006/abbi.1995.1321] [PMID: 7786032]
[41]
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol 2017; 7: 373.
[http://dx.doi.org/10.3389/fcimb.2017.00373] [PMID: 28890882]
[42]
Dong JM, Zhao SG, Huang GY, Liu Q. NADPH oxidase-mediated generation of reactive oxygen species is critically required for survival of undifferentiated human promyelocytic leukemia cell line HL-60. Free Radic Res 2004; 38(6): 629-37.
[http://dx.doi.org/10.1080/10715760410001694053] [PMID: 15346654]
[43]
Segal AW, Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 1993; 18(2): 43-7.
[http://dx.doi.org/10.1016/0968-0004(93)90051-N] [PMID: 8488557]
[44]
Paik YH, Brenner DA. NADPH oxidase mediated oxidative stress in hepatic fibrogenesis. Korean J Hepatol 2011; 17(4): 251-7.
[http://dx.doi.org/10.3350/kjhep.2011.17.4.251] [PMID: 22310788]
[45]
Kida T, Oku H, Horie T, et al. NADPH oxidase-mediated ROS production determines insulin’s action on the retinal microvasculature. Invest Ophthalmol Vis Sci 2015; 56(11): 6754-61.
[http://dx.doi.org/10.1167/iovs.15-17534] [PMID: 26567787]
[46]
Chen S, Meng XF, Zhang C. Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury. BioMed Res Int 2013; 2013: 839761.
[http://dx.doi.org/10.1155/2013/839761] [PMID: 24319690]
[47]
Chan EC, Jiang F, Peshavariya HM, Dusting GJ. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther 2009; 122(2): 97-108.
[http://dx.doi.org/10.1016/j.pharmthera.2009.02.005] [PMID: 19285105]
[48]
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev 2007; 87(1): 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]
[49]
Augsburger F, Filippova A, Rasti D, et al. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol 2019; 26: 101272.
[http://dx.doi.org/10.1016/j.redox.2019.101272] [PMID: 31330481]
[50]
Cho S, Yu SL, Kang J, et al. NADPH oxidase 4 mediates TGF-β1/Smad signaling pathway induced acute kidney injury in hypoxia. PLoS One 2019; 14(7): e0219483.
[http://dx.doi.org/10.1371/journal.pone.0219483] [PMID: 31318905]
[51]
Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev 2016; 2016: 4350965.
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[52]
Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 2010; 45(7-8): 466-72.
[http://dx.doi.org/10.1016/j.exger.2010.01.003] [PMID: 20064600]
[53]
Roberge S, Roussel J, Andersson DC, et al. TNF-α-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res 2014; 103(1): 90-9.
[http://dx.doi.org/10.1093/cvr/cvu112] [PMID: 24802330]
[54]
Ilatovskaya DV, Pavlov TS, Levchenko V, Staruschenko A. ROS production as a common mechanism of ENaC regulation by EGF, insulin, and IGF-1. Am J Physiol Cell Physiol 2013; 304(1): C102-11.
[http://dx.doi.org/10.1152/ajpcell.00231.2012] [PMID: 23135700]
[55]
Large M, Reichert S, Hehlgans S, Fournier C, Rödel C, Rödel F. A non-linear detection of phospho-histone H2AX in EA.hy926 endothelial cells following low-dose X-irradiation is modulated by reactive oxygen species. Radiat Oncol 2014; 9: 80.
[http://dx.doi.org/10.1186/1748-717X-9-80] [PMID: 24655916]
[56]
Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim) 2018; 12(3): 88-93.
[PMID: 29896077]
[57]
Sadiq IZ, Pankaj T, Khan AR, Naziru D, Safiyanu I, Salisu AR. Cytoprotective, conjugative and antioxidant activities of glutathione; and its role in removal of toxic metabolites and protein protection: a review. Chem Res J 2016; 1(4): 147-53.
[58]
Meloni G, Vašák M. Redox activity of α-synuclein-Cu is silenced by Zn7-metallothionein-3. Free Radic Biol Med 2011; 50(11): 1471-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.003] [PMID: 21320589]
[59]
Chen J, Adikari M, Pallai R, Parekh HK, Simpkins H. Dihydrodiol dehydrogenases regulate the generation of reactive oxygen species and the development of cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol 2008; 61(6): 979-87.
[http://dx.doi.org/10.1007/s00280-007-0554-0] [PMID: 17661040]
[60]
Ayer A, Gourlay CW, Dawes IW. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Res 2014; 14(1): 60-72.
[http://dx.doi.org/10.1111/1567-1364.12114] [PMID: 24164795]
[61]
Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006; 25(51): 6680-4.
[http://dx.doi.org/10.1038/sj.onc.1209954] [PMID: 17072321]
[62]
Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol 2006; 6(2): 111-30.
[http://dx.doi.org/10.1385/CT:6:2:111] [PMID: 17303919]
[63]
Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007; 8(1): 49-62.
[http://dx.doi.org/10.1038/nrm2083] [PMID: 17183360]
[64]
Chandel NS, Trzyna WC, McClintock DS, Schumacker PT. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 2000; 165(2): 1013-21.
[http://dx.doi.org/10.4049/jimmunol.165.2.1013] [PMID: 10878378]
[65]
Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol 2018; 7: 81-6.
[http://dx.doi.org/10.1016/j.cotox.2017.11.002] [PMID: 29862377]
[66]
Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochem Pharmacol 2006; 72(11): 1493-505.
[http://dx.doi.org/10.1016/j.bcp.2006.04.011] [PMID: 16723122]
[67]
Staal FJ, Roederer M, Herzenberg LA, Herzenberg LA. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 1990; 87(24): 9943-7.
[http://dx.doi.org/10.1073/pnas.87.24.9943]
[68]
Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 2000; 12(4): 419-29.
[http://dx.doi.org/10.1016/S1074-7613(00)80194-6] [PMID: 10795740]
[69]
Gloire G, Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 2009; 11(9): 2209-22.
[http://dx.doi.org/10.1089/ars.2009.2463] [PMID: 19203223]
[70]
Basak S, Hoffmann A. Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev 2008; 19(3-4): 187-97.
[http://dx.doi.org/10.1016/j.cytogfr.2008.04.005] [PMID: 18515173]
[71]
Reynaert NL, van der Vliet A, Guala AS, et al. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci USA 2006; 103(35): 13086-91.
[http://dx.doi.org/10.1073/pnas.0603290103] [PMID: 16916935]
[72]
Haddad JJ, Abdel-Karim NE. NF-κB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol 2011; 271(1): 5-14.
[http://dx.doi.org/10.1016/j.cellimm.2011.06.021] [PMID: 21777910]
[73]
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020; 19(3): 1997-2007.
[http://dx.doi.org/10.3892/etm.2020.8454] [PMID: 32104259]
[74]
Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81(2): 807-69.
[http://dx.doi.org/10.1152/physrev.2001.81.2.807] [PMID: 11274345]
[75]
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002; 12(1): 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[76]
McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 2006; 8(9-10): 1775-89.
[http://dx.doi.org/10.1089/ars.2006.8.1775] [PMID: 16987031]
[77]
Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: An update. Arch Toxicol 2015; 89(6): 867-82.
[http://dx.doi.org/10.1007/s00204-015-1472-2] [PMID: 25690731]
[78]
Gào X, Schöttker B. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 2017; 8(31): 51888-906.
[http://dx.doi.org/10.18632/oncotarget.17128] [PMID: 28881698]
[79]
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75(1): 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
[80]
Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol 2012; 4(11): a011254.
[http://dx.doi.org/10.1101/cshperspect.a011254] [PMID: 23125017]
[81]
Kasuya Y, Kim JD, Hatano M, Tatsumi K, Matsuda S. Pathophysiological roles of stress-activated protein kinases in pulmonary fibrosis. Int J Mol Sci 2021; 22(11): 6041.
[http://dx.doi.org/10.3390/ijms22116041] [PMID: 34204949]
[82]
Rezatabar S, Karimian A, Rameshknia V, et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol 2019. Epub ahead of print
[http://dx.doi.org/10.1002/jcp.28334] [PMID: 30811039]
[83]
Serafini MM, Catanzaro M, Fagiani F, et al. Modulation of Keap1/Nrf2/ARE signaling pathway by curcuma- and garlic-derived hybrids. Front Pharmacol 2020; 10: 1597.
[http://dx.doi.org/10.3389/fphar.2019.01597] [PMID: 32047434]
[84]
Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med 2014; 66: 36-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.008] [PMID: 23434765]
[85]
Kansanen E, Jyrkkänen HK, Levonen AL. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 2012; 52(6): 973-82.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.038] [PMID: 22198184]
[86]
Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 2013; 1(1): 45-9.
[http://dx.doi.org/10.1016/j.redox.2012.10.001] [PMID: 24024136]
[87]
Kansanen E, Kivelä AM, Levonen AL. Regulation of Nrf2-dependent gene expression by 15-deoxy-delta12,14-prostaglandin J2. Free Radic Biol Med 2009; 47(9): 1310-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.06.030] [PMID: 19573595]
[88]
Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011; 16(2): 123-40.
[http://dx.doi.org/10.1111/j.1365-2443.2010.01473.x] [PMID: 21251164]
[89]
Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 2009; 47(9): 1304-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.035] [PMID: 19666107]
[90]
Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 2003; 43: 233-60.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140229] [PMID: 12359864]
[91]
Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-26.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[92]
Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep 2019; 19(6): 4529-35.
[http://dx.doi.org/10.3892/mmr.2019.10121] [PMID: 30942405]
[93]
King D, Yeomanson D, Bryant HE. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol 2015; 37(4): 245-51.
[http://dx.doi.org/10.1097/MPH.0000000000000329] [PMID: 25811750]
[94]
Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2011; 93(2): 182-203.
[http://dx.doi.org/10.1016/j.pneurobio.2010.10.007] [PMID: 21056618]
[95]
Peltier J, O’Neill A, Schaffer DV. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 2007; 67(10): 1348-61.
[http://dx.doi.org/10.1002/dneu.20506] [PMID: 17638387]
[96]
Man HY, Wang Q, Lu WY, et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 2003; 38(4): 611-24.
[http://dx.doi.org/10.1016/S0896-6273(03)00228-9] [PMID: 12765612]
[97]
Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 2012; 4(9): a011189.
[http://dx.doi.org/10.1101/cshperspect.a011189] [PMID: 22952397]
[98]
Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: More than just a road to PKB. Biochem J 2000; 346(Pt 3): 561-76.
[99]
Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14(5): 381-95.
[http://dx.doi.org/10.1016/S0898-6568(01)00271-6] [PMID: 11882383]
[100]
Abraham AG, O’Neill E. PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans 2014; 42(4): 798-803.
[http://dx.doi.org/10.1042/BST20140070] [PMID: 25109960]
[101]
Zhang Y, Gan B, Liu D, Paik JH. FoxO family members in cancer. Cancer Biol Ther 2011; 12(4): 253-9.
[http://dx.doi.org/10.4161/cbt.12.4.15954] [PMID: 21613825]
[102]
Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol 2001; 2(10): 769-76.
[http://dx.doi.org/10.1038/35096075] [PMID: 11584304]
[103]
Zhang XS, Zhang X, Wu Q, et al. Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: Possible involvement of Akt/bad signaling. Mar Drugs 2014; 12(8): 4291-310.
[http://dx.doi.org/10.3390/md12084291] [PMID: 25072152]
[104]
Leslie NR, Downes CP. PTEN: the down side of PI 3-kinase signalling. Cell Signal 2002; 14(4): 285-95.
[http://dx.doi.org/10.1016/S0898-6568(01)00234-0] [PMID: 11858936]
[105]
Koundouros N, Poulogiannis G. Phosphoinositide 3-Kinase/Akt signaling and redox metabolism in cancer. Front Oncol 2018; 8: 160.
[http://dx.doi.org/10.3389/fonc.2018.00160] [PMID: 29868481]
[106]
Bijur GN, Jope RS. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 2003; 87(6): 1427-35.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02113.x] [PMID: 14713298]
[107]
Starkov AA, Fiskum G, Chinopoulos C, et al. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 2004; 24(36): 7779-88.
[http://dx.doi.org/10.1523/JNEUROSCI.1899-04.2004] [PMID: 15356189]
[108]
Halliwell B. Oxidative stress and cancer: Have we moved forward? Biochem J 2007; 401(1): 1-11.
[http://dx.doi.org/10.1042/BJ20061131] [PMID: 17150040]
[109]
Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 2006; 132(1): 108-13.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05834.x] [PMID: 16371026]
[110]
Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 2013; 22(1): 11-7.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[111]
Romá-Mateo C, Aguado C, García-Giménez JL, et al. Increased oxidative stress and impaired antioxidant response in Lafora disease. Mol Neurobiol 2015; 51(3): 932-46.
[http://dx.doi.org/10.1007/s12035-014-8747-0] [PMID: 24838580]
[112]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[113]
Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R. Atherosclerosis and oxidative stress. Histol Histopathol 2008; 23(3): 381-90.
[http://dx.doi.org/10.14670/HH-23.381] [PMID: 18072094]
[114]
Singh N, Dhalla AK, Seneviratne C, Singal PK. Oxidative stress and heart failure. Mol Cell Biochem 1995; 147(1-2): 77-81.
[http://dx.doi.org/10.1007/BF00944786] [PMID: 7494558]
[115]
Ramond A, Godin-Ribuot D, Ribuot C, et al. Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol 2013; 27(3): 252-61.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01015.x] [PMID: 22145601]
[116]
Dean OM, van den Buuse M, Berk M, Copolov DL, Mavros C, Bush AI. N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and d-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett 2011; 499(3): 149-53.
[http://dx.doi.org/10.1016/j.neulet.2011.05.027] [PMID: 21621586]
[117]
de Diego-Otero Y, Romero-Zerbo Y, el Bekay R, et al. Alpha-tocopherol protects against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency. Neuropsychopharmacology 2009; 34(4): 1011-26.
[http://dx.doi.org/10.1038/npp.2008.152] [PMID: 18843266]
[118]
Aly DG, Shahin RS. Oxidative stress in lichen planus. Acta Dermatovenerol Alp Panonica Adriat 2010; 19(1): 3-11.
[PMID: 20372767]
[119]
James SJ, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 2004; 80(6): 1611-7.
[http://dx.doi.org/10.1093/ajcn/80.6.1611] [PMID: 15585776]
[120]
Kennedy G, Spence VA, McLaren M, Hill A, Underwood C, Belch JJ. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 2005; 39(5): 584-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.020] [PMID: 16085177]
[121]
Joseph N, Zhang-James Y, Perl A, Faraone SV. Oxidative stress and ADHD: a meta-analysis. J Atten Disord 2015; 19(11): 915-24.
[http://dx.doi.org/10.1177/1087054713510354] [PMID: 24232168]
[122]
Jiménez-Fernández S, Gurpegui M, Díaz-Atienza F, Pérez-Costillas L, Gerstenberg M, Correll CU. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: results from a meta-analysis. J Clin Psychiatry 2015; 76(12): 1658-67.
[http://dx.doi.org/10.4088/JCP.14r09179] [PMID: 26579881]
[123]
Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer 1996; 32A(1): 30-8.
[http://dx.doi.org/10.1016/0959-8049(95)00531-5] [PMID: 8695238]
[124]
Goldstein BD, Witz G. Free radicals and carcinogenesis. Free Radic Res Commun 1990; 11(1-3): 3-10.
[http://dx.doi.org/10.3109/10715769009109662] [PMID: 2074048]
[125]
Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988; 5(2): 113-24.
[http://dx.doi.org/10.1016/0891-5849(88)90036-6] [PMID: 3075947]
[126]
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89(1): 27-71.
[http://dx.doi.org/10.1152/physrev.00014.2008] [PMID: 19126754]
[127]
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 2016; 24(5): 547-53.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[128]
Santiago-López D, Bautista-Martínez JA, Reyes-Hernandez CI, Aguilar-Martínez M, Rivas-Arancibia S. Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone. Toxicol Lett 2010; 197(3): 193-200.
[http://dx.doi.org/10.1016/j.toxlet.2010.05.020] [PMID: 20541596]
[129]
Olivieri S, Conti A, Iannaccone S, et al. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 2011; 31(50): 18568-77.
[http://dx.doi.org/10.1523/JNEUROSCI.3768-11.2011] [PMID: 22171055]
[130]
Chang Y, Kong Q, Shan X, et al. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 2008; 3(8): e2849.
[http://dx.doi.org/10.1371/journal.pone.0002849] [PMID: 18682740]
[131]
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[132]
Haider L. Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxid Med Cell Longev 2015; 2015: 725370.
[http://dx.doi.org/10.1155/2015/725370] [PMID: 26106458]
[133]
Gonsette RE. Neurodegeneration in multiple sclerosis: The role of oxidative stress and excitotoxicity. J Neurol Sci 2008; 274(1-2): 48-53.
[http://dx.doi.org/10.1016/j.jns.2008.06.029] [PMID: 18684473]
[134]
Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 2004; 251(3): 261-8.
[http://dx.doi.org/10.1007/s00415-004-0348-9] [PMID: 15015004]
[135]
Guz J, Foksinski M, Siomek A, et al. The relationship between 8-oxo-7,8-dihydro-2′-deoxyguanosine level and extent of cytosine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutat Res 2008; 640(1-2): 170-3.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.12.013] [PMID: 18281064]
[136]
Cairns RA, Harris I, McCracken S, Mak TW. Cancer cell metabolism. Cold Spring Harb Symp Quant Biol 2011; 76: 299-311.
[http://dx.doi.org/10.1101/sqb.2011.76.012856] [PMID: 22156302]
[137]
Förstermann U. Oxidative stress in vascular disease: Causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 2008; 5(6): 338-49.
[http://dx.doi.org/10.1038/ncpcardio1211] [PMID: 18461048]
[138]
Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 1996; 98(11): 2572-9.
[http://dx.doi.org/10.1172/JCI119076] [PMID: 8958220]
[139]
Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 2007; 17(2): 48-54.
[http://dx.doi.org/10.1016/j.tcm.2006.11.005] [PMID: 17292046]
[140]
Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke: Nearly as large as smoking. Circulation 2005; 111(20): 2684-98.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.492215] [PMID: 15911719]
[141]
Wu X, Zhang H, Qi W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis 2018; 9(2): 171.
[http://dx.doi.org/10.1038/s41419-017-0257-3] [PMID: 29416034]
[142]
Liao F, Berliner JA, Mehrabian M, et al. Minimally modified low density lipoprotein is biologically active in vivo in mice. J Clin Invest 1991; 87(6): 2253-7.
[http://dx.doi.org/10.1172/JCI115261] [PMID: 2040705]
[143]
Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized low-density lipoprotein. Methods Mol Biol 2010; 610: 403-17.
[http://dx.doi.org/10.1007/978-1-60327-029-8_24] [PMID: 20013192]
[144]
Zalba G, San José G, Moreno MU, et al. Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 2001; 38(6): 1395-9.
[http://dx.doi.org/10.1161/hy1201.099611] [PMID: 11751724]
[145]
Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells -- implications in cardiovascular disease. Braz J Med Biol Res 2004; 37(8): 1263-73.
[http://dx.doi.org/10.1590/S0100-879X2004000800018] [PMID: 15273829]
[146]
Sinha N, Dabla PK. Oxidative stress and antioxidants in hypertension-a current review. Curr Hypertens Rev 2015; 11(2): 132-42.
[http://dx.doi.org/10.2174/1573402111666150529130922] [PMID: 26022210]
[147]
Vaka VR, McMaster KM, Cunningham MW Jr, et al. Role of mitochondrial dysfunction and reactive oxygen species in mediating hypertension in the reduced uterine perfusion pressure rat model of preeclampsia. Hypertension 2018; 72(3): 703-11.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11290] [PMID: 30012871]
[148]
Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res 2010; 44(3): 155-65.
[http://dx.doi.org/10.1159/000316481] [PMID: 20829639]
[149]
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60: 1-19.
[http://dx.doi.org/10.1016/j.preteyeres.2017.08.003] [PMID: 28864287]
[150]
Bhuyan KC, Bhuyan DK, Podos SM. Lipid peroxidation in cataract of the human. Life Sci 1986; 38(16): 1463-71.
[http://dx.doi.org/10.1016/0024-3205(86)90559-X] [PMID: 3702587]
[151]
Vasanthi P, Nalini G, Rajasekhar G. Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis 2009; 12(1): 29-33.
[http://dx.doi.org/10.1111/j.1756-185X.2009.01375.x] [PMID: 20374313]
[152]
Hitchon CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther 2004; 6(6): 265-78.
[http://dx.doi.org/10.1186/ar1447] [PMID: 15535839]
[153]
Filippin LI, Vercelino R, Marroni NP, Xavier RM. Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 2008; 152(3): 415-22.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03634.x] [PMID: 18422737]
[154]
Grootveld M, Henderson EB, Farrell A, Blake DR, Parkes HG, Haycock P. Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-N.M.R. spectroscopy. Biochem J 1991; 273(Pt 2): 459-67.
[http://dx.doi.org/10.1042/bj2730459]
[155]
Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003; 329(1-2): 23-38.
[http://dx.doi.org/10.1016/S0009-8981(03)00003-2] [PMID: 12589963]
[156]
Tohyama Y, Kanazawa H, Fujiwara H, Hirata K, Fujimoto S, Yoshikawa J. Role of nitric oxide on airway microvascular permeability in patients with asthma. Osaka City Med J 2005; 51(1): 1-9.
[PMID: 16334611]
[157]
Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 2006; 533(1-3): 222-39.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.087] [PMID: 16500642]
[158]
Fujisawa T. Role of oxygen radicals on bronchial asthma. Curr Drug Targets Inflamm Allergy 2005; 4(4): 505-9.
[http://dx.doi.org/10.2174/1568010054526304] [PMID: 16101530]
[159]
Ozaras R, Tahan V, Turkmen S, et al. Changes in malondialdehyde levels in bronchoalveolar fluid and serum by the treatment of asthma with inhaled steroid and beta2-agonist. Respirology 2000; 5(3): 289-92.
[http://dx.doi.org/10.1046/j.1440-1843.2000.00260.x] [PMID: 11022993]
[160]
Ahmad A, Shameem M, Husain Q. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med 2012; 7(4): 226-32.
[http://dx.doi.org/10.4103/1817-1737.102182] [PMID: 23189100]
[161]
Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994; 74(1): 139-62.
[http://dx.doi.org/10.1152/physrev.1994.74.1.139] [PMID: 8295932]
[162]
Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: Generation and chemical implications. Chem Rev 2016; 116(5): 3029-85.
[http://dx.doi.org/10.1021/acs.chemrev.5b00407] [PMID: 26875845]
[163]
McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244(22): 6049-55.
[http://dx.doi.org/10.1016/S0021-9258(18)63504-5] [PMID: 5389100]
[164]
Miller AF. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 2012; 586(5): 585-95.
[http://dx.doi.org/10.1016/j.febslet.2011.10.048] [PMID: 22079668]
[165]
Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 2011; 15(6): 1583-606.
[http://dx.doi.org/10.1089/ars.2011.3999] [PMID: 21473702]
[166]
Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci 2004; 61(2): 192-208.
[http://dx.doi.org/10.1007/s00018-003-3206-5] [PMID: 14745498]
[167]
Zamocky M, Furtmüller PG, Obinger C. Evolution of catalases from bacteria to humans. Antioxid Redox Signal 2008; 10(9): 1527-48.
[http://dx.doi.org/10.1089/ars.2008.2046] [PMID: 18498226]
[168]
Marín-García J. Oxidative stress and cell death in cardiovascular diseases: A Post-Genomic Appraisal. In: Post-Genomic Cardiology. (2nd Ed.). Elsevier 2014; 2014: pp. 471-98.
[http://dx.doi.org/10.1016/B978-0-12-404599-6.00014-7]
[169]
Selvaratnam J, Robaire B. Overexpression of catalase in mice reduces age-related oxidative stress and maintains sperm production. Exp Gerontol 2016; 84: 12-20.
[http://dx.doi.org/10.1016/j.exger.2016.08.012] [PMID: 27575890]
[170]
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 2013; 1830(5): 3217-66.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.018] [PMID: 23036594]
[171]
Meister A. Glutathione metabolism and its selective modification. J Biol Chem 1988; 263(33): 17205-8.
[http://dx.doi.org/10.1016/S0021-9258(19)77815-6] [PMID: 3053703]
[172]
Mannervik B. The enzymes of glutathione metabolism: An overview. Biochem Soc Trans 1987; 15(4): 717-8.
[http://dx.doi.org/10.1042/bst0150717] [PMID: 3315772]
[173]
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016; 95: 27-42.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.02.028] [PMID: 26923386]
[174]
Khan AR, Sadiq IZ, Abdullahi LI, Danlami D, Taneja P. Chemoprotective role of bovine lactoferricin against 7,12 dimethylbenz (A) anthracene induced skin cancer in female Swiss Albino mice. Int J Pharm Pharm Sci 2016; 8(8): 215-22.
[175]
Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M. Glutathione peroxidase family - an evolutionary overview. FEBS J 2008; 275(15): 3959-70.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06542.x] [PMID: 18616466]
[176]
Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15(7): 1957-97.
[http://dx.doi.org/10.1089/ars.2010.3586] [PMID: 21087145]
[177]
Sedighi O, Makhlough A, Shokrzadeh M, Hoorshad S. Association between plasma selenium and glutathione peroxidase levels and severity of diabetic nephropathy in patients with type two diabetes mellitus. Nephrourol Mon 2014; 6(5): e21355.
[http://dx.doi.org/10.5812/numonthly.21355] [PMID: 25695036]
[178]
Socha K, Kochanowicz J, Karpińska E, et al. Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis. Nutr J 2014; 13: 62.
[http://dx.doi.org/10.1186/1475-2891-13-62] [PMID: 24943732]
[179]
Katar M, Ozugurlu AF, Ozyurt H, Benli I. Evaluation of glutathione peroxidase and superoxide dismutase enzyme polymorphisms in celiac disease patients. Genet Mol Res 2014; 13(1): 1030-7.
[http://dx.doi.org/10.4238/2014.February.20.4] [PMID: 24634124]
[180]
Lushchak VI. Glutathione homeostasis and functions: Potential targets for medical interventions. J Amino Acids 2012; 2012: 736837.
[http://dx.doi.org/10.1155/2012/736837] [PMID: 22500213]
[181]
Singh S, Khan AR, Gupta AK. Role of glutathione in cancer pathophysiology and therapeutic interventions. J Exp Ther Oncol 2012; 9(4): 303-16.
[PMID: 22545423]
[182]
Anderson ME. Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 1998; 111-112: 1-14.
[http://dx.doi.org/10.1016/S0009-2797(97)00146-4] [PMID: 9679538]
[183]
Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother 2003; 57(3-4): 145-55.
[http://dx.doi.org/10.1016/S0753-3322(03)00043-X] [PMID: 12818476]
[184]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[185]
Schmölz L, Birringer M, Lorkowski S, Wallert M. Complexity of vitamin E metabolism. World J Biol Chem 2016; 7(1): 14-43.
[http://dx.doi.org/10.4331/wjbc.v7.i1.14] [PMID: 26981194]
[186]
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 2016; 15(1): 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[187]
Lee GY, Han SN. The role of vitamin E in immunity. Nutrients 2018; 10(11): 1614.
[http://dx.doi.org/10.3390/nu10111614] [PMID: 30388871]
[188]
Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 14985, Vitamin E. 2004. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Vitamin-E (accessed on November 25, 2021).
[189]
Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013; 28(4): 314-28.
[http://dx.doi.org/10.1007/s12291-013-0375-3] [PMID: 24426232]
[190]
Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis 2016; 22(6): 463-93.
[http://dx.doi.org/10.1111/odi.12446] [PMID: 26808119]
[191]
Milisav I, Ribarič S, Poljsak B. Antioxidant vitamins and ageing. Subcell Biochem 2018; 90: 1-23.
[http://dx.doi.org/10.1007/978-981-13-2835-0_1] [PMID: 30779004]
[192]
Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989; 264(24): 13963-6.
[http://dx.doi.org/10.1016/S0021-9258(18)71625-6] [PMID: 2668278]
[193]
Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001; 31(11): 1287-312.
[http://dx.doi.org/10.1016/S0891-5849(01)00724-9] [PMID: 11728801]
[194]
Mustacich D, Powis G. Thioredoxin reductase. Biochem J 2000; 346(Pt 1): 1-8.
[PMID: 10657232] [http://dx.doi.org/10.1042/bj3460001]
[195]
Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000; 267(20): 6102-9.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01701.x] [PMID: 11012661]
[196]
Ouyang Y, Peng Y, Li J, Holmgren A, Lu J. Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems. Metallomics 2018; 10(2): 218-28.
[http://dx.doi.org/10.1039/C7MT00327G] [PMID: 29410996]
[197]
Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 1997; 15: 351-69.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.351] [PMID: 9143692]
[198]
Nagarajan N, Oka S, Sadoshima J. Modulation of signaling mechanisms in the heart by thioredoxin 1. Free Radic Biol Med 2017; 109: 125-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.020] [PMID: 27993729]
[199]
Gomes MB, Negrato CA. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndr 2014; 6(1): 80.
[http://dx.doi.org/10.1186/1758-5996-6-80] [PMID: 25104975]
[200]
Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 1995; 19(2): 227-50.
[http://dx.doi.org/10.1016/0891-5849(95)00017-R] [PMID: 7649494]
[201]
Packer L, Roy S, Sen CK. Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv Pharmacol 1997; 38: 79-101.
[http://dx.doi.org/10.1016/S1054-3589(08)60980-1] [PMID: 8895805]
[202]
Salehi B, Berkay Yılmaz Y, Antika G, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules 2019; 9(8): 356.
[http://dx.doi.org/10.3390/biom9080356] [PMID: 31405030]
[203]
Persson HL, Svensson AI, Brunk UT. Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rupture and apoptosis. Redox Rep 2001; 6(5): 327-34.
[http://dx.doi.org/10.1179/135100001101536472] [PMID: 11778851]
[204]
Ying Z, Kampfrath T, Sun Q, Parthasarathy S, Rajagopalan S. Evidence that α-lipoic acid inhibits NF-κB activation independent of its antioxidant function. Inflamm Res 2011; 60(3): 219-25.
[http://dx.doi.org/10.1007/s00011-010-0256-7] [PMID: 20927568]
[205]
Dong Y, Wang H, Chen Z. Alpha-lipoic acid attenuates cerebral ischemia and reperfusion injury via insulin receptor and PI3k/Akt-dependent inhibition of NADPH oxidase. Int J Endocrinol 2015; 2015: 903186.
[http://dx.doi.org/10.1155/2015/903186] [PMID: 26294909]
[206]
Adil M, Amin SS, Mohtashim M. N-acetylcysteine in dermatology. Indian J Dermatol Venereol Leprol 2018; 84(6): 652-9.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_33_18] [PMID: 30246706]
[207]
Hołyńska-Iwan I, Wróblewski M, Olszewska-Słonina D, Tyrakowski T. The application of N-acetylcysteine in optimization of specific pharmacological therapies. Pol Merkur Lekarski 2017; 43(255): 140-4.
[PMID: 28987048]
[208]
Prescott LF, Illingworth RN, Critchley JA, Stewart MJ, Adam RD, Proudfoot AT. Intravenous N-acetylcystine: The treatment of choice for paracetamol poisoning. BMJ 1979; 2(6198): 1097-100.
[http://dx.doi.org/10.1136/bmj.2.6198.1097] [PMID: 519312]
[209]
Waring WS. Novel acetylcysteine regimens for treatment of paracetamol overdose. Ther Adv Drug Saf 2012; 3(6): 305-15.
[http://dx.doi.org/10.1177/2042098612464265] [PMID: 25083244]
[210]
Aldini G, Altomare A, Baron G, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res 2018; 52(7): 751-62.
[http://dx.doi.org/10.1080/10715762.2018.1468564] [PMID: 29742938]
[211]
Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain Behav 2014; 4(2): 108-22.
[http://dx.doi.org/10.1002/brb3.208] [PMID: 24683506]
[212]
Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z. Melatonin as an antioxidant: Biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 2003; 50(4): 1129-46.
[http://dx.doi.org/10.18388/abp.2003_3637] [PMID: 14740000]
[213]
Reiter RJ, Acuña-Castroviejo D, Tan DX, Burkhardt S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci 2001; 939: 200-15.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03627.x] [PMID: 11462772]
[214]
Dziegiel P, Murawska-Ciałowicz E, Jethon Z, et al. Melatonin stimulates the activity of protective antioxidative enzymes in myocardial cells of rats in the course of doxorubicin intoxication. J Pineal Res 2003; 35(3): 183-7.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00079.x] [PMID: 12932202]
[215]
Xavier AA, Pérez-Gálvez A. Carotenoids as a source of antioxidants in the diet. Subcell Biochem 2016; 79: 359-75.
[http://dx.doi.org/10.1007/978-3-319-39126-7_14] [PMID: 27485230]
[216]
Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 2017; 174(11): 1290-324.
[http://dx.doi.org/10.1111/bph.13625] [PMID: 27638711]
[217]
Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 2014; 34(11): 907-29.
[http://dx.doi.org/10.1016/j.nutres.2014.07.010] [PMID: 25134454]
[218]
Stefanson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 2014; 6(9): 3777-801.
[http://dx.doi.org/10.3390/nu6093777] [PMID: 25244368]
[219]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[220]
Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000; 63(7): 1035-42.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[221]
Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL, Fraga CG. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin Dev Immunol 2005; 12(1): 19-25.
[http://dx.doi.org/10.1080/10446670410001722168] [PMID: 15712595]
[222]
Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev 2016; 2016: 7432797.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[223]
Bode AM, Dong Z. Signal transduction and molecular targets of selected flavonoids. Antioxid Redox Signal 2013; 19(2): 163-80.
[http://dx.doi.org/10.1089/ars.2013.5251] [PMID: 23458437]
[224]
Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 2004; 36(7): 838-49.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[225]
Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc 2010; 69(3): 273-8.
[http://dx.doi.org/10.1017/S002966511000162X] [PMID: 20569521]
[226]
Frigo DE, Duong BN, Melnik LI, et al. Flavonoid phytochemicals regulate activator protein-1 signal transduction pathways in endometrial and kidney stable cell lines. J Nutr 2002; 132(7): 1848-53.
[http://dx.doi.org/10.1093/jn/132.7.1848] [PMID: 12097658]
[227]
Bajčetić M, Spasić S, Spasojević I. Redox therapy in neonatal sepsis: reasons, targets, strategy, and agents. Shock 2014; 42(3): 179-84.
[http://dx.doi.org/10.1097/SHK.0000000000000198] [PMID: 24827393]
[228]
Engelhardt JF, Sen CK, Oberley L. Redox-modulating gene therapies for human diseases. Antioxid Redox Signal 2001; 3(3): 341-6.
[http://dx.doi.org/10.1089/15230860152408997] [PMID: 11491648]
[229]
Chaiswing L, St Clair WH, St Clair DK. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid Redox Signal 2018; 29(13): 1237-72.
[http://dx.doi.org/10.1089/ars.2017.7485] [PMID: 29325444]
[230]
Malik A, Sultana M, Qazi A, et al. Role of natural radiosensitizers and cancer cell radioresistance: an update. Anal Cell Pathol (Amst) 2016; 2016: 6146595.
[http://dx.doi.org/10.1155/2016/6146595] [PMID: 26998418]
[231]
Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 2009; 11(12): 2985-3011.
[http://dx.doi.org/10.1089/ars.2009.2513] [PMID: 19505186]
[232]
Goswami PC, Sheren J, Albee LD, et al. Cell cycle-coupled variation in topoisomerase IIalpha mRNA is regulated by the 3′-untranslated region. Possible role of redox-sensitive protein binding in mRNA accumulation. J Biol Chem 2000; 275(49): 38384-92.
[http://dx.doi.org/10.1074/jbc.M005298200] [PMID: 10986283]
[233]
Conour JE, Graham WV, Gaskins HR. A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiol Genomics 2004; 18(2): 196-205.
[http://dx.doi.org/10.1152/physiolgenomics.00058.2004] [PMID: 15138307]
[234]
Menon SG, Sarsour EH, Spitz DR, et al. Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res 2003; 63(9): 2109-17.
[PMID: 12727827]
[235]
Menon SG, Sarsour EH, Kalen AL, et al. Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer Res 2007; 67(13): 6392-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0225] [PMID: 17616699]
[236]
Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev 2010; 3(1): 23-34.
[http://dx.doi.org/10.4161/oxim.3.1.10095] [PMID: 20716925]
[237]
Fang J, Nakamura H, Iyer AK. Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 2007; 15(7-8): 475-86.
[http://dx.doi.org/10.1080/10611860701498286] [PMID: 17671894]
[238]
Sadiq IZ, Babagana K, Danlami D, Abdullahi LI, Khan AR. Molecular therapeutic cancer peptides: a closer look at bovine lactoferricin. Asian J Biochem Genet Mol Biol 2018; 1(2): 1-9.
[http://dx.doi.org/10.9734/ajbgmb/2018/v1i2471]
[239]
Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev 2019; 2019: 5381692.
[http://dx.doi.org/10.1155/2019/5381692] [PMID: 31929855]
[240]
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 2017; 38(7): 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[241]
Pellegrini M, Baldari CT. Apoptosis and oxidative stress-related diseases: the p66Shc connection. Curr Mol Med 2009; 9(3): 392-8.
[http://dx.doi.org/10.2174/156652409787847254] [PMID: 19355920]
[242]
Barnum KJ, O’Connell MJ. Cell cycle regulation by checkpoints. Methods Mol Biol 2014; 1170: 29-40.
[http://dx.doi.org/10.1007/978-1-4939-0888-2_2] [PMID: 24906307]
[243]
Migliore L, Coppedè F. Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat Res 2002; 512(2-3): 135-53.
[http://dx.doi.org/10.1016/S1383-5742(02)00046-7] [PMID: 12464348]
[244]
Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 2003; 111(6): 785-93.
[http://dx.doi.org/10.1172/JCI200318182] [PMID: 12639981]
[245]
Chen QM, Liu J, Merrett JB. Apoptosis or senescence-like growth arrest: Influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 2000; 347(Pt 2): 543-51.
[http://dx.doi.org/10.1042/bj3470543] [PMID: 10749685]
[246]
Patterson JC, Joughin BA, van de Kooij B, Lim DC, Lauffenburger DA, Yaffe MB. ROS and oxidative stress are elevated in mitosis during asynchronous cell cycle progression and are exacerbated by mitotic arrest. Cell Syst 2019; 8(2): 163-7.
[http://dx.doi.org/10.1016/j.cels.2019.01.005] [PMID: 30797774]
[247]
Márton M, Tihanyi N, Gyulavári P, Bánhegyi G, Kapuy O. NRF2-regulated cell cycle arrest at early stage of oxidative stress response mechanism. PLoS One 2018; 13(11): e0207949.
[http://dx.doi.org/10.1371/journal.pone.0207949] [PMID: 30485363]
[248]
Heo S, Kim S, Kang D. The role of hydrogen peroxide and peroxiredoxins throughout the cell cycle. Antioxidants 2020; 9(4): 280.
[http://dx.doi.org/10.3390/antiox9040280] [PMID: 32224940]
[249]
Sarsour EH, Kalen AL, Goswami PC. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal 2014; 20(10): 1618-27.
[http://dx.doi.org/10.1089/ars.2013.5303] [PMID: 23590434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy