Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review

Author(s): Mohini Singh* and Bhaskar Mazumder

Volume 10, Issue 1, 2022

Published on: 03 March, 2022

Page: [42 - 55] Pages: 14

DOI: 10.2174/2211738510666211222111938

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the “Blood-Brain Barrier”, which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier.

Objective: This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented.

Discussion: NDs could be the next“revolution ”in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities.

Conclusion: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.

Keywords: Blood brain barrier, nanodiamonds, brain targeting, bioimaging, nanothernostics, alzheimer’s, glioblastomas, neuro- degenerative diseases.

Graphical Abstract
[1]
Lombardo SM, Schneider M, Türeli AE, Günday TN. Key for crossing the BBB with nanoparticles: the rational design. Beilstein J Nanotechnol 2020; 11: 866-83.
[http://dx.doi.org/10.3762/bjnano.11.72] [PMID: 32551212]
[2]
Lingineni K, Belekar V, Tangadpalliwar SR, Garg P. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability. Mol Divers 2017; 21(2): 355-65.
[http://dx.doi.org/10.1007/s11030-016-9715-6] [PMID: 28050687]
[3]
Banks WA. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery. Nat Rev Drug Discov 2016; 15(4): 275-92.
[http://dx.doi.org/10.1038/nrd.2015.21] [PMID: 26794270]
[4]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[5]
Gradhand U, Kim RB. Pharmacogenomics of MRP transporters (ABCC1-5) and BCRP (ABCG2). Drug Metab Rev 2008; 40(2): 317-54.
[http://dx.doi.org/10.1080/03602530801952617] [PMID: 18464048]
[6]
Strazielle N, Belin MF, Ghersi-Egea JF. Choroid plexus controls brain availability of anti-HIV nucleoside analogs via pharmacologically inhibitable organic anion transporters. AIDS 2003; 17(10): 1473-85.
[http://dx.doi.org/10.1097/00002030-200307040-00008] [PMID: 12824785]
[7]
Daniel H, Rubio-Aliaga I. An update on renal peptide transporters. Am J Physiol Renal Physiol 2003; 284(5): F885-92.
[http://dx.doi.org/10.1152/ajprenal.00123.2002] [PMID: 12676733]
[8]
Joó F. Endothelial cells of the brain and other organ systems: Some similarities and differences. Prog Neurobiol 1996; 48(3): 255-73.
[http://dx.doi.org/10.1016/0301-0082(95)00046-1] [PMID: 8735879]
[9]
Wei EP, Kukreja RC, Ellis EF, Hess ML. Differencesinendothelium-dependent cerebral dilation by bradykinin and acetylcholine. Am J Physiol 1990; 258(5Pt 2): H1261-6.
[http://dx.doi.org/10.1152/ajpheart.1990.258.5.H1261] [PMID: 2337161]
[10]
Reyes TM, Fabry Z, Coe CL. Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res 1999; 851(1-2): 215-20.
[http://dx.doi.org/10.1016/S0006-8993(99)02189-7] [PMID: 10642846]
[11]
Kapitulnik J. Drug metabolizing enzymes and transporters a the blood-brain barrier. Front Pharmacol. In: Conference Abstract: 8th Southeast European Congress on Xenobiotic Metabolism and Toxicity - XEMET 2010; Jerusalem; Isreal.
[http://dx.doi.org/10.3389/conf.fphar.2010.60.00135]
[12]
Lizama CO, Zovein AC. Polarizing pathways: Balancing endothelial polarity, permeability, and lumen formation. Exp Cell Res 2013; 319(9): 1247-54.
[13]
Mäger I, Meyer AH, Li J, et al. Targeting blood-brain-barrier transcytosis - Perspectives for drug delivery. Neuropharmacology 2017; 120: 4-7.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.025] [PMID: 27561970]
[14]
Artus C, Glacial F, Ganeshamoorthy K, et al. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J Cereb Blood Flow Metab 2014; 34(3): 433-40.
[http://dx.doi.org/10.1038/jcbfm.2013.213] [PMID: 24346691]
[15]
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: Delivering optical label stobrain tumors. Front Oncol 2020; 10: 739.
[16]
Kheirollahi M, Dashti S, Khalaj Z, Nazemroaia F, Mahzouni P. Brain tumors: Special characters for research and banking. Adv Biomed Res 2015; 4: 4.
[http://dx.doi.org/10.4103/2277-9175.148261] [PMID: 25625110]
[17]
Kleihues P, Ed. Worldhealth organizationclassificationof tumours. Pathology and genetic sof tumours of the nervous system. Cavenee WK, Ed. Lyon. 2000.
[18]
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier inbrain tumours and metastases. Nat Rev Cancer 2020; 20(1): 26-41.
[19]
Hobbs SU, Mousley WL, Yuan F, etal. Regulation of transport pathways in tumor vessels: Role of tumor type and micro environment. Proc Natl Acad Sci USA 1998; 95(8): 4607-12.
[http://dx.doi.org/10.1073/pnas.95.8.4607]
[20]
Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents. J Pharm Anal 2020; 10(1): 1-12.
[http://dx.doi.org/10.1016/j.jpha.2019.09.003] [PMID: 32123595]
[21]
Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-basednanomaterials: multifunctional materials for biomedical engineering. ACS Nano 2013; 7(4): 2891-7.
[http://dx.doi.org/10.1021/nn401196a] [PMID: 23560817]
[22]
Bahadur S, Sahu AK, Baghel P, Saha S. Current promising treatment strategy for glioblastoma multiform: A review. Oncol Rev 2019; 13(2): 417.
[http://dx.doi.org/10.4081/oncol.2019.417] [PMID: 31410248]
[23]
Slocombe D, Porch A, Bustarret E, Adrian P, Etienne B, Williams OA. Micro wave properties of nano diamond particles. Appl Phys Lett 2013; 102: 244102.
[http://dx.doi.org/10.1063/1.4809823]
[24]
Zhu Y, Li J, Li W, Zhang Y, Yang X, Chen N. The bio compatibility of nano diamonds and their application in drug delivery systems. Theranostics 2012; 2(3): 302-12.
[25]
Ho D, Wang CH, Chow EK. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Sci Adv 2015; 1(7): 1500439.
[http://dx.doi.org/10.1126/sciadv.1500439]
[26]
Kaur R, Badea I. Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems. Int J Nanomedicine 2013; 8(8): 203-20.
[http://dx.doi.org/10.2147/IJN.S37348.Epub] [PMID: 23326195]
[27]
Lai L, Barnard AS. Functionalized nanodiamonds for biological and medical applications. J Nanosci Nanotechnol 2015; 15(2): 989-99.
[http://dx.doi.org/10.1166/jnn.2015.9735] [PMID: 26353604]
[28]
Sharma G, Sharma AR, Lee SS, Bhattacharya M, Nam JS, Chakraborty C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int J Pharm 2019; 559: 360-72.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.056] [PMID: 30721725]
[29]
Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K. Carbon nanostructures: The drug and the delivery system for brain disorders. Int J Pharm 2020; 587: 119701.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119701] [PMID: 32736018]
[30]
Kong XL, Huang LC, Hsu CM, Chen WH, Han CC, Chang HC. High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem 2005; 77(1): 259-65.
[http://dx.doi.org/10.1021/ac048971a] [PMID: 15623304]
[31]
Balasubramanian G, Chan IY, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008; 455(7213): 648-51.
[http://dx.doi.org/10.1038/nature07278] [PMID: 18833276]
[32]
Zhang XQ, Chen M, Lam R, Xu X, Osawa E, Ho D. Polymer- functionalized nanodiamond platforms asvehicles for gene delivery. ACS Nano 2009; 3(9): 2609-16.
[http://dx.doi.org/10.1021/nn900865g]
[33]
Chow EK, Ho D. Cancer nanomedicine: From drug delivery to imaging. Sci Transl Med 2013; 18(5): 216.
[http://dx.doi.org/10.1126/scitranslmed.3005872]
[34]
Zhang Q, Mochalin VN, Neitzel I, et al. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 2011; 32(1): 87-94.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.090] [PMID: 20869765]
[35]
Tisler J, Balasubramanian G, Naydenov B, et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 2009; 3(7): 1959-65.
[http://dx.doi.org/10.1021/nn9003617] [PMID: 21452865]
[36]
K, Cheung L, Hossain KR, Aharonovich I, Valenzuela SM, Shimoni O. Versatile multicolor nanodiamond probes for intracellular imaging and targeted labeling. J Mater Chem B Mater Biol Med 2018; 6(19): 3078-84.
[http://dx.doi.org/10.1039/C8TB00508G] [PMID: 32254342]
[37]
Torelli MD, Nunn NA, Shenderova OA. A perspective on fluorescent nanodiamond bioimaging. Small 2019; 15(48): 1902151.
[http://dx.doi.org/10.1002/smll.201902151]
[38]
Gao G, Guo Q, Zhi J. Nanodiamond-based theranostic platform for drug delivery and bioimaging. Small 2019; 15(48): 1902238.
[http://dx.doi.org/10.1002/smll.201902238]
[39]
Laube C, Oeckinghaus T, Lehnert J, et al. Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. Nanoscale 2019; 11(4): 1770-83.
[http://dx.doi.org/10.1039/C8NR07828A]
[40]
Nagl A, Hemelaar SR, Schirhagl R. Improving surface and defect center chemistry off luorescent nanodiamonds for imaging purposes-A review. Anal Bioanal Chem 2015; 407(25): 7521-36.
[http://dx.doi.org/10.1007/s00216-015-8849-1]
[41]
Wang D, Li Y, Tian Z, Cao R, Yang B. Transferrin-conjugated nanodiamond as an intracellular transporter of chemotherapeutic drug and targeting therapy for cancer cells. Ther Deliv 2014; 5(5): 511-24.
[http://dx.doi.org/10.4155/tde.14.17] [PMID: 24998271]
[42]
Claveau S, Bertrand JR, Treussart F. Fluorescent nanodiamond applications for cellular process sensing and cell tracking. Micromachines (Basel) 2018; 9(5): 247.
[http://dx.doi.org/10.3390/mi9050247] [PMID: 30424180]
[43]
Prabhakar N, Rosenholm JM. Nanodiamonds for advanced optical bioimaging and beyond. Curr Opinion Colloid Interface Sci 2019; 39: 220-31.
[http://dx.doi.org/10.1016/j.cocis.2019.02.014]
[44]
Yang G-W, Wang J-B, Qui-Xiang . Preparation of nanocrystalline diamond susing pulsed laser induced reactive quenching. J Phys Condens Matter 1998; 10(35): 7923.
[http://dx.doi.org/10.1088/0953-8984/10/35/024]
[45]
Boudou JP, Curmi PA, Jelezko F, et al. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 2009; 20(23): 235602.
[http://dx.doi.org/10.1088/0957-4484/20/23/235602] [PMID: 19451687]
[46]
Gogotsi YG. Structure of carbon produced by hydrothermal treatment of SiC powder. J Mater Chem 1996; 6: 595-604.
[http://dx.doi.org/10.1039/JM9960600595]
[47]
Frenklach M. Induced nucleation of diamond powder. Appl Phys Lett 1991; 59: 546-8.
[http://dx.doi.org/10.1063/1.105434]
[48]
Daulton TL, Kirk MA, Lewis RS, Rehn LE. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl Instrum Meth B 2001; 175: 12-20.
[http://dx.doi.org/10.1016/S0168-583X(00)00603-0]
[49]
Gogotsi Y, Welz S, Ersoy DA, McNallan MJ. Conversion of silicon carbide to crystal line diamond-structured carbon at ambient pressure. Nature 2001; 411(6835): 283-7.
[http://dx.doi.org/10.1038/35077031]
[50]
Gailmov É. Experimental corroboration of the synthesis of diamond in the cavitation process. Dokl Phys 2004; 49: 150-3.
[http://dx.doi.org/10.1134/1.1710678]
[51]
Al-Tamimi BH, Jabbar II, Al-Tamimi HM. Synthesis and characterization of nanocrystalline diamond from graphite flakes via a cavitation-promoted process. Heliyon 2019; 5(5): e01682.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01682] [PMID: 31193105]
[52]
Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Eng C Mater Biol Appl 2020; 113: 110996.
[http://dx.doi.org/10.1016/j.msec.2020.110996]
[53]
Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater Sci Eng C 2019; 97: 913-31.
[http://dx.doi.org/10.1016/j.msec.2018.12.073] [PMID: 30678981]
[54]
Shenderova OA, Shames AI, Nunn NA, Torelli MD, Vlasov I, Zaitsev A. Review Article: Synthesis, properties, and applications of fluorescent diamond particles. J Vac Sci Technol B Nanotechnol Microelectron 2019; 37(3): 030802.
[http://dx.doi.org/10.1116/1.5089898] [PMID: 31032146]
[55]
Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 2012(14): 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[56]
Zhang B, Feng X, Yin H, Ge Z, Wang Y, Chu Z. Anchored but not internalized: Shape-dependent endocytosis of nanodiamond. Sci Rep 2017; 7: 46462.
[57]
Hemelaar SR, van der Laan KJ, Hinterding SR, Koot MV, Ellermann E, Perona MFP. Generally applicable transformation protocols for fluorescent nanodiamond internalization in to cells. Sci Rep 2017; 7(1): 5862.
[58]
Prabhakar N, Khan MH, Peurla M, Chang HC, Hänninen PE, Rosenholm JM. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity. ACS Omega 2017; 2(6): 2689-93.
[http://dx.doi.org/10.1021/acsomega.7b00339] [PMID: 30023673]
[59]
Moscariello P, Raabe M, Liu W, et al. Unraveling in vivo brain transport of protein-coated fluorescent nanodiamonds. Small 2019; 15(42): e1902992.
[http://dx.doi.org/10.1002/smll.201902992] [PMID: 31465151]
[60]
Gerdes HH, Rustom A, Wang X. Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 2012; 130(6-8): 381-7.
[http://dx.doi.org/10.1016/j.mod.2012.11.006] [PMID: 23246917]
[61]
Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2017; 13(1): 89.
[http://dx.doi.org/10.1186/1475-2867-13-89] [PMID: 24004445]
[62]
Mochalin VN, Pentecost A, Li XM, et al. Adsorption of drugs on nanodiamond: Toward development of a drug delivery platform. Mol Pharm 2013; 10(10): 3728-35.
[http://dx.doi.org/10.1021/mp400213z] [PMID: 23941665]
[63]
Wang X, Low XC, Hou W, Abdullah LN, Toh TB, Mohd Abdul RM. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano 2014; 8(12): 12151-66.
[http://dx.doi.org/10.1021/nn503491e] [PMID: 25437772]
[64]
Sampson JH, Maus MV, June CH. Immunotherapy for brain tumors. J Clin Oncol 2017; 35(21): 2450-6.
[http://dx.doi.org/10.1200/JCO.2017.72.8089]
[65]
Jackson CM, Lim M. Immunotherapy for Glioblastoma: Playing chess, not checkers. Clin Cancer Res 2018; 24(17): 4059-61.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0491] [PMID: 29691293]
[66]
Zhao L, Xu YH, Akasaka T, et al. Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 2014; 35(20): 5393-406.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.041] [PMID: 24720879]
[67]
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci Rep 2020; 10(1): 11292.
[http://dx.doi.org/10.1038/s41598-020-68017-y] [PMID: 32647151]
[68]
Dudel C, Hübner F, Jauch T, Drechsel E, Kleiter I, Wismeth C. Pegylated liposomal doxorubicin efficacy in patients with recurrent high-grade glioma. Cancer 2004; 100(6): 1199-207.
[http://dx.doi.org/10.1002/cncr.20073]
[69]
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10(5): 459-66.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[70]
Saraf J, Kalia K, Bhattacharya P, Tekade RK. Growing synergy of nanodiamonds in neurodegenerative interventions Drug Discov Today 2019; 24(2): 584-94.
[http://dx.doi.org/10.1016/j.drudis.2018.10.012] [PMID: 30408527]
[71]
Li TF, Xu YH, Li K, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater 2019; 86: 381-94.
[http://dx.doi.org/10.1016/j.actbio.2019.01.020] [PMID: 30654213]
[72]
Chen Z, Wang C, Li TF, et al. Doxorubicin conjugated with nanodiamonds and in free form commit glioblastoma cells to heterodromous fates. Nanomedicine (Lond) 2019; 14(3): 335-51.
[http://dx.doi.org/10.2217/nnm-2018-0330] [PMID: 30676239]
[73]
Xi G, Robinson E, Mania-Farnell B, et al. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine 2014; 10(2): 381-91.
[http://dx.doi.org/10.1016/j.nano.2013.07.013] [PMID: 23916888]
[74]
Chin JH, Vora N. The global burden of neurologic diseases. Neurology 2014; 43(4): 349-51.
[http://dx.doi.org/10.1212/WNL.0000000000000610]
[75]
Chen Z, Yuan SJ, Li K, Zhang Q, Li TF, An HC. Doxorubicin-polyglycerol-nanodiamond conjugates disrupt STAT3/IL-6-mediated reciprocal activation loop between glioblastoma cells and astrocytes. J Controlled Release 2020; 320: 469-83.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.044]
[76]
Maziukiewicz D, Grzeskowiak BF, Coy E, Jurga S, Mrowczynski R. NDs@PDA@ICG conjugates for photothermal therapy of glioblastoma multiforme. Biomimetics (Basel) 2019; 4(1): 3.
[http://dx.doi.org/10.3390/biomimetics4010003] [PMID: 31105189]
[77]
World Population Prospects: The 2015 revision, key findings and advances, tables. United Nations Department of Economic and Social Affairs 2015.
[78]
Przedborski S, Vila M, Jackson-Lewis V. Neurodegeneration: what is it and where are we? J Clin Invest 2003; 111(1): 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[79]
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016; 239(7628): 180-6.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[80]
Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: An overview of environmental risk factors. Environ Health Perspect 2005; 113(9): 1250-6.
[http://dx.doi.org/10.1289/ehp.7567] [PMID: 16140637]
[81]
Pardridge WM. Alzheimer’s disease drug development and the problem of the blood-brain barrier. Alzheimers Dement 2009; 5(5): 427-32.
[http://dx.doi.org/10.1016/j.jalz.2009.06.003] [PMID: 19751922]
[82]
Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 2013; 14(6): 401-16.
[http://dx.doi.org/10.1038/nrn3505] [PMID: 23674053]
[83]
DeKosky ST, Marek K. Looking backward to move forward: Early detection of neurodegenerative disorders. Science 2003; 302(5646): 830-4.
[http://dx.doi.org/10.1126/science.1090349] [PMID: 14593169]
[84]
Haziza S, Mohan N, Loe-Mie Y, Lepagnol-Bestel AM, Massou S, Adam MP. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat Nanotechnol 2017; 12(4): 322-8.
[http://dx.doi.org/10.1038/nnano.2016.260] [PMID: 27893730]
[85]
Morales-Zavala F, Casanova-Morales N, Gonzalez RB, et al. Functionalization of stable fluorescent nanodiamonds towards reliable detection of biomarkers for Alzheimer's disease. J Nanobiotechnol 2018; 16(1): 60.
[http://dx.doi.org/10.1186/s12951-018-0385-7]
[86]
Altmann P, Cunningham J, Dhanesha U, Ballard M, Thompson J, Marsh F. Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: Retrospective study of the camelford water incident. BMJ 1999; 319(7213): 807-11.
[http://dx.doi.org/10.1136/bmj.319.7213.807] [PMID: 10496822]
[87]
Alawdi SH, El-Denshary ES, Safar MM, Eidi H, David MO, Abdel-Wahhab MA. Neuroprotective effect of nanodiamond in Alzheimer's disease rat model: A pivotal role for modulating NF-κB and STAT3 signaling. Mol Neurobiol 2017; 54(3): 1906-18.
[http://dx.doi.org/10.1007/s12035-016-9762-0] [PMID: 26897372]
[88]
Zhao Y, Hill JM, Bhattacharjee S, Percy ME, Pogue AI, Lukiw WJ. Aluminum-induceda myloidogenesis and impairment in the clearance of amyloid peptides from the central nervous systemin Alzheimer'sdisease. Front Neurol 2014; 5: 167.
[http://dx.doi.org/10.3389/fneur.2014.00167] [PMID: 25250012]
[89]
Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med 2009; 15(3): 331-7.
[http://dx.doi.org/10.1038/nm.1912] [PMID: 19198615]
[90]
Palmer AM, Stratmann GC, Procter AW, Bowen DM. Possible neurotransmitter basis of behavioral changes in Alzheimer’s disease. Ann Neurol 1988; 23(6): 616-20.
[http://dx.doi.org/10.1002/ana.410230616] [PMID: 2457353]
[91]
Spehlmann R, Stahl SM. Dopamine acetylcholine imbalance in Parkinson's disease. Possible regenerative overgrowth of cholinergic axon terminals. Lancet 1976; 1(7962): 724-6.
[http://dx.doi.org/10.1016/S0140-6736(76)93095-6] [PMID: 56538]
[92]
Müller SA, Scilabra SD, Lichtenthaler SF. Proteomic substrate identification for membrane proteases in the brain. Front Mol Neurosci 2016; 9: 96.
[http://dx.doi.org/10.3389/fnmol.2016.00096] [PMID: 27790089]
[93]
Pozdnyakova N, Pastukhov A, Dudarenko M, Galkin M, Borysov A, Borisova T. Neuroactivity of detonation nanodiamonds: Dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals. J Nanobiotechnol 2016; 14: 25.
[http://dx.doi.org/10.1186/s12951-016-0176-y] [PMID: 27036406]
[94]
Huang YA, Kao CW, Liu KK, et al. The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci Rep 2014; 4: 6919.
[http://dx.doi.org/10.1038/srep06919] [PMID: 25370150]
[95]
Liu Y-Y, Chang B-M, Chang H-C. Nanodiamond-enabled biomedical imaging. Nanomedicine (Lond) 2020; 15(16): 1599-616.
[http://dx.doi.org/10.2217/nnm-2020-0091] [PMID: 32662335]
[96]
Leung HM, Lau CH, Ho JW, et al. Targeted brain tumor imaging by using discrete biopolymer-coated nanodiamonds across the blood-brain barrier. Nanoscale 2021; 13(5): 3184-93.
[http://dx.doi.org/10.1039/D0NR06765B] [PMID: 33527933]
[97]
Simpson DA, Morrisroe E, McCoey JM, et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 2017; 11(12): 12077-86.
[http://dx.doi.org/10.1021/acsnano.7b04850] [PMID: 29111670]
[98]
Charnley M, Russell S, Gu M. Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labeled by iron oxide nanoparticles. Nanoscale 2020; 12(16): 8847-57.
[http://dx.doi.org/10.1039/C9NR10701K]
[99]
Roy U, Drozd V, Durygin A, et al. Characterization of nanodiamond-based anti-HIV drug delivery to the brain. Sci Rep 2018; 8(1): 1603.
[http://dx.doi.org/10.1038/s41598-017-16703-9] [PMID: 29371638]
[100]
Reina G, Zhao L, Bianco A, Komatsu N. Chemical functionalization of nanodiamonds: Opportunities and challenges ahead. Angew Chem Int Ed Engl 2019; 58(50): 17918-29.
[http://dx.doi.org/10.1002/anie.201905997] [PMID: 31246341]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy