Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Mini-Review Article

Therapeutic Potential of Resveratrol in Diabetic Nephropathy According to Molecular Signaling

Author(s): Marziyeh Salami, Raziyeh Salami, Alireza Mafi, Mohammad-Hossein Aarabi, Omid Vakili and Zatollah Asemi*

Volume 15, Issue 5, 2022

Published on: 01 March, 2022

Article ID: e171221199120 Pages: 20

DOI: 10.2174/1874467215666211217122523

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Diabetic nephropathy (DN), as a severe complication of diabetes mellitus (DM), is a crucial menace for human health and survival and remarkably elevates the healthcare systems’ costs. Therefore, it is worth noting to identify novel preventive and therapeutic strategies to alleviate the disease conditions. Resveratrol, as a well-defined anti-diabetic/ antioxidant agent has capabilities to counteract diabetic complications. It has been predicted that resveratrol will be a fantastic natural polyphenol for diabetes therapy in the next few years.

Objective: Accordingly, the current review aims to depict the role of resveratrol in the regulation of different signaling pathways that are involved in the reactive oxygen species (ROS) production, inflammatory processes, autophagy, and mitochondrial dysfunction, as critical contributors to DN pathophysiology.

Results: The pathogenesis of DN can be multifactorial; hyperglycemia is one of the prominent risk factors of DN development that is closely related to oxidative stress. Resveratrol, as a well-defined polyphenol, has various biological and medicinal properties, including anti-diabetic, anti-inflammatory, and anti-oxidative effects.

Conclusion: Resveratrol prevents kidney damages that are caused by oxidative stress, enhances antioxidant capacity, and attenuates the inflammatory and fibrotic responses. For this reason, resveratrol is considered an interesting target in DN research due to its therapeutic possibilities during diabetic disorders and renal protection.

Keywords: Diabetic nephropathy, resveratrol, signaling pathway, oxidative stress, inflammation, cellular mechanisms.

Graphical Abstract
[1]
Fox, C.S.; Matsushita, K.; Woodward, M.; Bilo, H.J.; Chalmers, J.; Heerspink, H.J.L.; Lee, B.J.; Perkins, R.M.; Rossing, P.; Sairenchi, T.; Tonelli, M.; Vassalotti, J.A.; Yamagishi, K.; Coresh, J.; de Jong, P.E.; Wen, C.P.; Nelson, R.G. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet, 2012, 380(9854), 1662-1673.
[http://dx.doi.org/10.1016/S0140-6736(12)61350-6] [PMID: 23013602]
[2]
Haneda, M.; Utsunomiya, K.; Koya, D.; Babazono, T.; Moriya, T.; Makino, H.; Kimura, K.; Suzuki, Y.; Wada, T.; Ogawa, S.; Inaba, M.; Kanno, Y.; Shigematsu, T.; Masakane, I.; Tsuchiya, K.; Honda, K.; Ichikawa, K.; Shide, K. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy. J. Diabetes Investig., 2015, 6(2), 242-246.
[http://dx.doi.org/10.1111/jdi.12319] [PMID: 25802733]
[3]
Association, I.D.A.T.I.D. Guidelines on the management and prevention of prediabetes. Acta Med. Indones., 2014, 46(4), 348-359.
[PMID: 25633555]
[4]
Loeffler, I.; Liebisch, M.; Wolf, G. Collagen VIII influences epithelial phenotypic changes in experimental diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2012, 303(5), F733-F745.
[http://dx.doi.org/10.1152/ajprenal.00212.2012] [PMID: 22759394]
[5]
Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int. J. Endocrinol., 2018, 2018, 1875870.
[http://dx.doi.org/10.1155/2018/1875870] [PMID: 29808088]
[6]
Gheith, O.; Farouk, N.; Nampoory, N.; Halim, M.A.; Al-Otaibi, T. Diabetic kidney disease: world wide difference of prevalence and risk factors. J. Nephropharmacol., 2015, 5(1), 49-56.
[PMID: 28197499]
[7]
Van Krieken, R.; Krepinsky, J.C. Caveolin-1 in the pathogenesis of diabetic nephropathy: potential therapeutic target? Curr. Diab. Rep., 2017, 17(3), 19.
[http://dx.doi.org/10.1007/s11892-017-0844-9] [PMID: 28283950]
[8]
Macisaac, R.J.; Ekinci, E.I.; Jerums, G. Markers of and risk factors for the development and progression of diabetic kidney disease. Am. J. Kidney Dis., 2014, 63(2), S39-S62.
[http://dx.doi.org/10.1053/j.ajkd.2013.10.048] [PMID: 24461729]
[9]
Ju, Y.; Su, Y.; Chen, Q.; Ma, K.; Ji, T.; Wang, Z.; Li, W.; Li, W. Protective effects of Astragaloside IV on endoplasmic reticulum stress-induced renal tubular epithelial cells apoptosis in type 2 diabetic nephropathy rats. Biomed. Pharmacother., 2019, 109, 84-92.
[http://dx.doi.org/10.1016/j.biopha.2018.10.041] [PMID: 30396095]
[10]
Hatanaka, T.; Ogawa, D.; Tachibana, H.; Eguchi, J.; Inoue, T.; Yamada, H.; Takei, K.; Makino, H.; Wada, J. Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice. Pharmacol. Res. Perspect., 2016, 4(4), e00239.
[http://dx.doi.org/10.1002/prp2.239] [PMID: 28116093]
[11]
Liu, D.; Li, B.; Liu, H.; Guo, X.; Yuan, Y. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Front. Chem. Sci. Eng., 2017, 11(1), 117-125.
[http://dx.doi.org/10.1007/s11705-016-1601-3]
[12]
Tian, B.; Liu, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2020, 100(4), 1392-1404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]
[13]
Qiao, Y.; Gao, K.; Wang, Y.; Wang, X.; Cui, B. Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-β1 pathway. Exp. Ther. Med., 2017, 13(6), 3223-3230.
[http://dx.doi.org/10.3892/etm.2017.4420] [PMID: 28588674]
[14]
Zhang, J.; Dong, X.J.; Ding, M.R.; You, C.Y.; Lin, X.; Wang, Y.; Wu, M.J.Y.; Xu, G.F.; Wang, G.D. Resveratrol decreases high glucose-induced apoptosis in renal tubular cells via suppressing endoplasmic reticulum stress. Mol. Med. Rep., 2020, 22(5), 4367-75.
[15]
Wang, F.; Li, R.; Zhao, L.; Ma, S.; Qin, G. Resveratrol ameliorates renal damage by inhibiting oxidative stress-mediated apoptosis of podocytes in diabetic nephropathy. Eur. J. Pharmacol., 2020, 885, 173387.
[http://dx.doi.org/10.1016/j.ejphar.2020.173387] [PMID: 32710953]
[16]
Kitada, M.; Kume, S.; Imaizumi, N.; Koya, D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes, 2011, 60(2), 634-643.
[http://dx.doi.org/10.2337/db10-0386] [PMID: 21270273]
[17]
Huang, S.S.; Ding, D.F.; Chen, S.; Dong, C.L.; Ye, X.L.; Yuan, Y.G.; Feng, Y.M.; You, N.; Xu, J.R.; Miao, H.; You, Q.; Lu, X.; Lu, Y.B. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci. Rep., 2017, 7, 45692.
[http://dx.doi.org/10.1038/srep45692] [PMID: 28374806]
[18]
Xu, F.; Wang, Y.; Cui, W.; Yuan, H.; Sun, J.; Wu, M.; Guo, Q.; Kong, L.; Wu, H.; Miao, L. Resveratrol prevention of diabetic nephropathy is associated with the suppression of renal inflammation and mesangial cell proliferation: possible roles of Akt/NF-B pathway. Int. J. Endocrinol., 2014, 289327.
[http://dx.doi.org/10.1155/2014/289327]
[19]
Pourghasem, M.; Shafi, H.; Babazadeh, Z. Histological changes of kidney in diabetic nephropathy. Caspian J. Intern. Med., 2015, 6(3), 120-127.
[PMID: 26644877]
[20]
Dalla Vestra, M.; Saller, A.; Bortoloso, E.; Mauer, M.; Fioretto, P. Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab., 2000, 26, 8-14.
[PMID: 10922968]
[21]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[22]
Han, Q.; Zhu, H.; Chen, X.; Liu, Z. Non-genetic mechanisms of diabetic nephropathy. Front. Med., 2017, 11(3), 319-332.
[http://dx.doi.org/10.1007/s11684-017-0569-9] [PMID: 28871454]
[23]
Miranda-Díaz, A.G.; Pazarín-Villaseñor, L.; Yanowsky-Escatell, F.G.; Andrade-Sierra, J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J. Diabetes Res., 2016, 2016, 7047238.
[http://dx.doi.org/10.1155/2016/7047238] [PMID: 27525285]
[24]
Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; García-Pérez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol., 2011, 7(6), 327-340.
[http://dx.doi.org/10.1038/nrneph.2011.51] [PMID: 21537349]
[25]
Kume, S.; Koya, D. Autophagy: a novel therapeutic target for diabetic nephropathy. Diabetes Metab. J., 2015, 39(6), 451-460.
[http://dx.doi.org/10.4093/dmj.2015.39.6.451] [PMID: 26706914]
[26]
Zhou, G.; Cheung, A.K.; Liu, X.; Huang, Y. Valsartan slows the progression of diabetic nephropathy in db/db mice via a reduction in podocyte injury, and renal oxidative stress and inflammation. Clin. Sci. (Lond.), 2014, 126(10), 707-720.
[http://dx.doi.org/10.1042/CS20130223] [PMID: 24195695]
[27]
Forbes, J.M.; Thallas, V.; Thomas, M.C.; Founds, H.W.; Burns, W.C.; Jerums, G.; Cooper, M.E. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J., 2003, 17(12), 1762-1764.
[http://dx.doi.org/10.1096/fj.02-1102fje] [PMID: 12958202]
[28]
Manda, G.; Checherita, A-I.; Comanescu, M.V.; Hinescu, M.E. Redox signaling in diabetic nephropathy: hypertrophy versus death choices in mesangial cells and podocytes. Mediators Inflamm., 2015, 2015, 604208.
[http://dx.doi.org/10.1155/2015/604208] [PMID: 26491232]
[29]
Wei, P.Z.; Szeto, C.C. Mitochondrial dysfunction in diabetic kidney disease. Clin. Chim. Acta, 2019, 496, 108-116.
[http://dx.doi.org/10.1016/j.cca.2019.07.005] [PMID: 31276635]
[30]
Vodošek Hojs, N.; Bevc, S.; Ekart, R.; Hojs, R. Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants, 2020, 9(10), 925.
[http://dx.doi.org/10.3390/antiox9100925] [PMID: 32992565]
[31]
Jha, J.C.; Banal, C.; Chow, B.S.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox Signal., 2016, 25(12), 657-684.
[http://dx.doi.org/10.1089/ars.2016.6664] [PMID: 26906673]
[32]
Nayak, B.K.; Shanmugasundaram, K.; Friedrichs, W.E.; Cavaglierii, R.C.; Patel, M.; Barnes, J.; Block, K. HIF-1 mediates renal fibrosis in OVE26 type 1 diabetic mice. Diabetes, 2016, 65(5), 1387-1397.
[http://dx.doi.org/10.2337/db15-0519] [PMID: 26908870]
[33]
Jha, J.C.; Banal, C.; Okabe, J.; Gray, S.P.; Hettige, T.; Chow, B.S.M.; Thallas-Bonke, V.; De Vos, L.; Holterman, C.E.; Coughlan, M.T.; Power, D.A.; Skene, A.; Ekinci, E.I.; Cooper, M.E.; Touyz, R.M.; Kennedy, C.R.; Jandeleit-Dahm, K. NADPH oxidase nox5 accelerates renal injury in diabetic nephropathy. Diabetes, 2017, 66(10), 2691-2703.
[http://dx.doi.org/10.2337/db16-1585] [PMID: 28747378]
[34]
Al-Waili, N.; Al-Waili, H.; Al-Waili, T.; Salom, K. Natural antioxidants in the treatment and prevention of diabetic nephropathy; a potential approach that warrants clinical trials. Redox Rep., 2017, 22(3), 99-118.
[http://dx.doi.org/10.1080/13510002.2017.1297885] [PMID: 28276289]
[35]
Fernandes, S.M.; Cordeiro, P.M.; Watanabe, M.; Fonseca, C.D.; Vattimo, M.F.F. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats. Arch. Endocrinol. Metab., 2016, 60(5), 443-449.
[http://dx.doi.org/10.1590/2359-3997000000188] [PMID: 27812607]
[36]
Lindblom, R.; Higgins, G.; Coughlan, M.; de Haan, J.B. Targeting mitochondria and reactive oxygen species-driven pathogenesis in diabetic nephropathy. Rev. Diabet. Stud., 2015, 12(1-2), 134-156.
[http://dx.doi.org/10.1900/RDS.2015.12.134] [PMID: 26676666]
[37]
Dludla, P.V.; Joubert, E.; Muller, C.J.F.; Louw, J.; Johnson, R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside. Nutr. Metab. (Lond.), 2017, 14, 45.
[http://dx.doi.org/10.1186/s12986-017-0200-8] [PMID: 28702068]
[38]
Zhuang, K.; Jiang, X.; Liu, R.; Ye, C.; Wang, Y.; Wang, Y.; Quan, S.; Huang, H. Formononetin activates the nrf2/are signaling pathway via sirt1 to improve diabetic renal fibrosis. Front. Pharmacol., 2021, 11, 616378.
[http://dx.doi.org/10.3389/fphar.2020.616378] [PMID: 33519483]
[39]
Kim, J.Y.; Leem, J.; Jeon, E.J. Protective effects of melatonin against aristolochic acid-induced nephropathy in mice. Biomolecules, 2019, 10(1), E11.
[http://dx.doi.org/10.3390/biom10010011] [PMID: 31861726]
[40]
Xie, Z.; Zhong, L.; Wu, Y.; Wan, X.; Yang, H.; Xu, X.; Li, P. Carnosic acid improves diabetic nephropathy by activating Nrf2/ARE and inhibition of NF-κB pathway. Phytomedicine, 2018, 47, 161-173.
[41]
Chang, L.; Wang, Q.; Ju, J.; Li, Y.; Cai, Q.; Hao, L.; Zhou, Y. Magnoflorine ameliorates inflammation and fibrosis in rats with diabetic nephropathy by mediating the stability of lysine-specific demethylase 3A. Front. Physiol., 2020, 11, 580406.
[http://dx.doi.org/10.3389/fphys.2020.580406] [PMID: 33414721]
[42]
Lu, H.; Xu, S.; Liang, X.; Dai, Y.; Huang, Z.; Ren, Y.; Lin, J.; Liu, X. Advanced glycated end products alter neutrophil effect on regulation of CD4+ T cell differentiation through induction of myeloperoxidase and neutrophil elastase activities. Inflammation, 2019, 42(2), 559-571.
[http://dx.doi.org/10.1007/s10753-018-0913-5] [PMID: 30343390]
[43]
Chen, X.; Fang, M. Oxidative stress mediated mitochondrial damage plays roles in pathogenesis of diabetic nephropathy rat. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(16), 5248-5254.
[PMID: 30178848]
[44]
Flemming, N.B.; Gallo, L.A.; Forbes, J.M. Mitochondrial dysfunction and signaling in diabetic kidney disease: oxidative stress and beyond. Semin. Nephrol., 2018, 38(2), 101-110.
[http://dx.doi.org/10.1016/j.semnephrol.2018.01.001] [PMID: 29602393]
[45]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[46]
Addabbo, F.; Montagnani, M.; Goligorsky, M.S. Goligorsky, Mitochondria and reactive oxygen species. Hypertension (Dallas, Tex. : 1979), 2009, 53(6), 885-892.
[47]
Saxena, S.; Mathur, A.; Kakkar, P. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy. J. Cell. Physiol., 2019, 234(11), 19223-19236.
[http://dx.doi.org/10.1002/jcp.28712] [PMID: 31032918]
[48]
Liu, L.; Yang, L.; Chang, B.; Zhang, J.; Guo, Y.; Yang, X. The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3II signaling pathway. Ren. Fail., 2018, 40(1), 492-497.
[http://dx.doi.org/10.1080/0886022X.2018.1489287] [PMID: 30200803]
[49]
Jung, E.; Kim, J.; Ho Kim, S.; Kim, S.; Cho, M.H. Gemigliptin improves renal function and attenuates podocyte injury in mice with diabetic nephropathy. Eur. J. Pharmacol., 2015, 761, 116-124.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.055] [PMID: 25977232]
[50]
Ma, J.; Wang, Y.; Xu, H.T.; Ren, N.; Zhao, N.; Wang, B.M.; Du, L.K.; Micro, R.N.A. MicroRNA: a novel biomarker and therapeutic target to combat autophagy in diabetic nephropathy. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(14), 6257-6263.
[PMID: 31364128]
[51]
Koch, E.A.T.; Nakhoul, R.; Nakhoul, F.; Nakhoul, N. Autophagy in diabetic nephropathy: a review. Int. Urol. Nephrol., 2020, 52(9), 1705-1712.
[http://dx.doi.org/10.1007/s11255-020-02545-4] [PMID: 32661628]
[52]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[53]
Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[54]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 837042.
[http://dx.doi.org/10.1155/2015/837042] [PMID: 26221416]
[55]
Anisimova, N.Y.; Kiselevsky, M.V.; Sosnov, A.V.; Sadovnikov, S.V.; Stankov, I.N.; Gakh, A.A. Trans-, cis-, and dihydro-resveratrol: a comparative study. Chem. Cent. J., 2011, 5(1), 88.
[http://dx.doi.org/10.1186/1752-153X-5-88] [PMID: 22185600]
[56]
Camacho-Zaragoza, J.M.; Hernández-Chávez, G.; Moreno-Avitia, F.; Ramírez-Iñiguez, R.; Martínez, A.; Bolívar, F.; Gosset, G. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb. Cell Fact., 2016, 15(1), 163.
[http://dx.doi.org/10.1186/s12934-016-0562-z] [PMID: 27680538]
[57]
Hasan, M.; Bae, H. An overview of stress-induced resveratrol synthesis in grapes: perspectives for resveratrol-enriched grape products. Molecules, 2017, 22(2), 294.
[http://dx.doi.org/10.3390/molecules22020294] [PMID: 28216605]
[58]
Montero, C.; Cristescu, S.M.; Jiménez, J.B.; Orea, J.M.; te Lintel Hekkert, S.; Harren, F.J.; González Ureña, A. trans-Resveratrol and grape disease resistance. A dynamical study by high-resolution laser-based techniques. Plant Physiol., 2003, 131(1), 129-138.
[http://dx.doi.org/10.1104/pp.010074] [PMID: 12529521]
[59]
Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[60]
Kopp, P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur. J. Endocrinol., 1998, 138(6), 619-620.
[http://dx.doi.org/10.1530/eje.0.1380619] [PMID: 9678525]
[61]
Wu, J.M.; Wang, Z-R.; Hsieh, T-C.; Bruder, J.L.; Zou, J-G.; Huang, Y-Z. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine (Review). Int. J. Mol. Med., 2001, 8(1), 3-17.
[http://dx.doi.org/10.3892/ijmm.8.1.3] [PMID: 11408943]
[62]
Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R. Chemistry and biology of resveratrol-derived natural products. Chem. Rev., 2015, 115(17), 8976-9027.
[http://dx.doi.org/10.1021/cr500689b] [PMID: 25835567]
[63]
Soleas, G.J.; Angelini, M.; Grass, L.; Diamandis, E.P.; Goldberg, D.M. Absorption of trans-resveratrol in rats. Methods Enzymol., 2001, 335, 145-154.
[64]
Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci., 2019, 20(6), E1381.
[http://dx.doi.org/10.3390/ijms20061381] [PMID: 30893846]
[65]
Wang, L.X.; Heredia, A.; Song, H.; Zhang, Z.; Yu, B.; Davis, C.; Redfield, R. Resveratrol glucuronides as the metabolites of resveratrol in humans: characterization, synthesis, and anti-HIV activity. J. Pharm. Sci., 2004, 93(10), 2448-2457.
[http://dx.doi.org/10.1002/jps.20156] [PMID: 15349955]
[66]
Vitrac, X.; Desmoulière, A.; Brouillaud, B.; Krisa, S.; Deffieux, G.; Barthe, N.; Rosenbaum, J.; Mérillon, J.M. Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci., 2003, 72(20), 2219-2233.
[http://dx.doi.org/10.1016/S0024-3205(03)00096-1] [PMID: 12628442]
[67]
Marier, J.F.; Vachon, P.; Gritsas, A.; Zhang, J.; Moreau, J.P.; Ducharme, M.P. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther., 2002, 302(1), 369-373.
[http://dx.doi.org/10.1124/jpet.102.033340] [PMID: 12065739]
[68]
Lançon, A.; Delmas, D.; Osman, H.; Thénot, J.P.; Jannin, B.; Latruffe, N. Human hepatic cell uptake of resveratrol: involvement of both passive diffusion and carrier-mediated process. Biochem. Biophys. Res. Commun., 2004, 316(4), 1132-1137.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.164] [PMID: 15044102]
[69]
Delmas, D.; Aires, V.; Colin, D.J.; Limagne, E.; Scagliarini, A.; Cotte, A.K.; Ghiringhelli, F. Importance of lipid microdomains, rafts, in absorption, delivery, and biological effects of resveratrol. Ann. N.Y. Acad. Sci., 2013, 1290, 90-97.
[http://dx.doi.org/10.1111/nyas.12177] [PMID: 23855470]
[70]
Lin, H.Y.; Lansing, L.; Merillon, J.M.; Davis, F.B.; Tang, H.Y.; Shih, A.; Vitrac, X.; Krisa, S.; Keating, T.; Cao, H.J.; Bergh, J.; Quackenbush, S.; Davis, P.J. Integrin alphaVbeta3 contains a receptor site for resveratrol. FASEB J., 2006, 20(10), 1742-1744.
[http://dx.doi.org/10.1096/fj.06-5743fje] [PMID: 16790523]
[71]
Haddad-Kashani, H.; Seyed-Hosseini, E.; Nikzad, H.; Aarabi, M.H. Pharmacological properties of medicinal herbs by focus on secondary metabolites. Life Sci. J., 2012, 9(1), 509-520.
[72]
Petrelli, A.; Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem., 2008, 15(5), 422-432.
[http://dx.doi.org/10.2174/092986708783503212] [PMID: 18288997]
[73]
Csermely, P.; Agoston, V.; Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci., 2005, 26(4), 178-182.
[http://dx.doi.org/10.1016/j.tips.2005.02.007] [PMID: 15808341]
[74]
Den Hartogh, D.J.; Tsiani, E. Health benefits of resveratrol in kidney disease: Evidence from in vitro and in vivo studies. Nutrients, 2019, 11(7), E1624.
[http://dx.doi.org/10.3390/nu11071624] [PMID: 31319485]
[75]
Oh, W.Y.; Shahidi, F. Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chem., 2018, 261, 267-273.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.085] [PMID: 29739593]
[76]
Pandey, K.B.; Rizvi, S.I. Anti-oxidative action of resveratrol: Implications for human health. Arab. J. Chem., 2011, 4(3), 293-298.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.049]
[77]
Csiszar, A.; Labinskyy, N.; Pinto, J.T.; Ballabh, P.; Zhang, H.; Losonczy, G.; Pearson, K.; de Cabo, R.; Pacher, P.; Zhang, C.; Ungvari, Z. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1), H13-H20.
[http://dx.doi.org/10.1152/ajpheart.00368.2009] [PMID: 19429820]
[78]
Xia, N.; Daiber, A.; Habermeier, A.; Closs, E.I.; Thum, T.; Spanier, G.; Lu, Q.; Oelze, M.; Torzewski, M.; Lackner, K.J.; Münzel, T.; Förstermann, U.; Li, H. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J. Pharmacol. Exp. Ther., 2010, 335(1), 149-154.
[http://dx.doi.org/10.1124/jpet.110.168724] [PMID: 20610621]
[79]
Truong, V-L.; Jun, M.; Jeong, W-S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[80]
Imai, S. The sirtuin family : regulators that connect metabolism, aging, and longevity. Clin. Calcium, 2013, 23(1), 29-38.
[PMID: 23268299]
[81]
Kyrylenko, S.; Baniahmad, A. Sirtuin family: a link to metabolic signaling and senescence. Curr. Med. Chem., 2010, 17(26), 2921-2932.
[http://dx.doi.org/10.2174/092986710792065009] [PMID: 20858173]
[82]
Milne, J.C.; Denu, J.M. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr. Opin. Chem. Biol., 2008, 12(1), 11-17.
[http://dx.doi.org/10.1016/j.cbpa.2008.01.019] [PMID: 18282481]
[83]
Vassilopoulos, A.; Fritz, K.S.; Petersen, D.R.; Gius, D. The human sirtuin family: evolutionary divergences and functions. Hum. Genomics, 2011, 5(5), 485-496.
[http://dx.doi.org/10.1186/1479-7364-5-5-485] [PMID: 21807603]
[84]
Cencioni, C.; Spallotta, F.; Mai, A.; Martelli, F.; Farsetti, A.; Zeiher, A.M.; Gaetano, C. Sirtuin function in aging heart and vessels. J. Mol. Cell. Cardiol., 2015, 83, 55-61.
[http://dx.doi.org/10.1016/j.yjmcc.2014.12.023] [PMID: 25579854]
[85]
Tong, L.; Denu, J.M. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta, 2010, 1804(8), 1617-1625.
[http://dx.doi.org/10.1016/j.bbapap.2010.02.007] [PMID: 20176146]
[86]
Cho, J.H.; Kim, G.Y.; Mansfield, B.C.; Chou, J.Y. Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia. J. Inherit. Metab. Dis., 2018.
[http://dx.doi.org/10.1007/s10545-018-0192-1] [PMID: 29740774]
[87]
Fernandez-Marcos, P.J.; Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr., 2011, 93(4), 884S-90.
[http://dx.doi.org/10.3945/ajcn.110.001917] [PMID: 21289221]
[88]
Funk, J.A.; Schnellmann, R.G. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury. Toxicol. Appl. Pharmacol., 2013, 273(2), 345-354.
[http://dx.doi.org/10.1016/j.taap.2013.09.026] [PMID: 24096033]
[89]
Khader, A.; Yang, W-L.; Kuncewitch, M.; Jacob, A.; Prince, J.M.; Asirvatham, J.R.; Nicastro, J.; Coppa, G.F.; Wang, P. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation, 2014, 98(2), 148-156.
[http://dx.doi.org/10.1097/TP.0000000000000194] [PMID: 24918615]
[90]
Xu, Y.; Nie, L.; Yin, Y.G.; Tang, J.L.; Zhou, J.Y.; Li, D.D.; Zhou, S.W. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol. Appl. Pharmacol., 2012, 259(3), 395-401.
[http://dx.doi.org/10.1016/j.taap.2011.09.028] [PMID: 22015446]
[91]
Zhang, T.; Chi, Y.; Ren, Y.; Du, C.; Shi, Y.; Li, Y. Resveratrol reduces oxidative stress and apoptosis in podocytes via Sir2-related enzymes, sirtuins1 (SIRT1)/peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) axis. Med. Sci. Monit., 2019, 25, 1220-1231.
[http://dx.doi.org/10.12659/MSM.911714] [PMID: 30765684]
[92]
Xu, X.; Zhu, X.; Ma, M.; Han, Y.; Hu, C.; Yuan, S.; Yang, Y.; Xiao, L.; Liu, F.; Kanwar, Y.S.; Sun, L. p66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Sci. Rep., 2016, 6(1), 29302.
[http://dx.doi.org/10.1038/srep29302] [PMID: 27377870]
[93]
Zhou, S.; Chen, H-Z.; Wan, Y.Z.; Zhang, Q-J.; Wei, Y-S.; Huang, S.; Liu, J-J.; Lu, Y-B.; Zhang, Z-Q.; Yang, R-F.; Zhang, R.; Cai, H.; Liu, D.P.; Liang, C.C. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ. Res., 2011, 109(6), 639-648.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243592] [PMID: 21778425]
[94]
Kumar, S.; Kim, Y-R.; Vikram, A.; Naqvi, A.; Li, Q.; Kassan, M.; Kumar, V.; Bachschmid, M.M.; Jacobs, J.S.; Kumar, A.; Irani, K. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1714-1719.
[http://dx.doi.org/10.1073/pnas.1614112114] [PMID: 28137876]
[95]
Cantó, C.; Gerhart-Hines, Z.; Feige, J.N.; Lagouge, M.; Noriega, L.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241), 1056-1060.
[http://dx.doi.org/10.1038/nature07813] [PMID: 19262508]
[96]
Ruderman, N.B.; Xu, X.J.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: a long-standing partnership? Am. J. Physiol. Endocrinol. Metab., 2010, 298(4), E751-E760.
[http://dx.doi.org/10.1152/ajpendo.00745.2009] [PMID: 20103737]
[97]
Kulashekar, M.; Stom, S.M.; Peuler, J.D. Resveratrol’s potential in the adjunctive management of cardiovascular disease, obesity, diabetes, alzheimer disease, and cancer. J. Am. Osteopath. Assoc., 2018, 118(9), 596-605.
[http://dx.doi.org/10.7556/jaoa.2018.133] [PMID: 30178049]
[98]
Du, L.; Wang, L.; Wang, B.; Wang, J.; Hao, M.; Chen, Y.B.; Li, X.Z.; Li, Y.; Jiang, Y.F.; Li, C.C.; Yang, H.; Gu, X.K.; Yin, X.X.; Lu, Q. A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling. Acta Pharmacol. Sin., 2020, 41(3), 358-372.
[http://dx.doi.org/10.1038/s41401-019-0297-6] [PMID: 31645661]
[99]
Zhou, L.; Xu, D.Y.; Sha, W.G.; Shen, L.; Lu, G.Y.; Yin, X.; Wang, M.J. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J. Transl. Med., 2015, 13(1), 352.
[http://dx.doi.org/10.1186/s12967-015-0710-y] [PMID: 26552447]
[100]
Ryoo, I.G.; Kwak, M.K. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol. Appl. Pharmacol., 2018, 359, 24-33.
[http://dx.doi.org/10.1016/j.taap.2018.09.014] [PMID: 30236989]
[101]
Farooqui, Z.; Mohammad, R.S.; Lokhandwala, M.F.; Banday, A.A. Nrf2 inhibition induces oxidative stress, renal inflammation and hypertension in mice. Clin. Exp. Hypertens., 2021, 43(2), 175-180.
[102]
Huang, K.; Gao, X.; Wei, W. The crosstalk between Sirt1 and Keap1/Nrf2/ARE anti-oxidative pathway forms a positive feedback loop to inhibit FN and TGF-β1 expressions in rat glomerular mesangial cells. Exp. Cell Res., 2017, 361(1), 63-72.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.042] [PMID: 28986066]
[103]
Huang, K.; Chen, C.; Hao, J.; Huang, J.; Wang, S.; Liu, P.; Huang, H. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells. Mol. Cell. Endocrinol., 2015, 399, 178-189.
[http://dx.doi.org/10.1016/j.mce.2014.08.014] [PMID: 25192797]
[104]
Gong, W.; Li, J.; Chen, Z.; Huang, J.; Chen, Q.; Cai, W.; Liu, P.; Huang, H. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating CKIP-1 to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabetic mice kidneys. Free Radic. Biol. Med., 2017, 106, 393-405.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.003] [PMID: 28286065]
[105]
Gong, W.; Chen, C.; Xiong, F.; Yang, Z.; Wang, Y.; Huang, J.; Liu, P.; Huang, H. CKIP-1 ameliorates high glucose-induced expression of fibronectin and intercellular cell adhesion molecule-1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Biochem. Pharmacol., 2016, 116, 140-152.
[http://dx.doi.org/10.1016/j.bcp.2016.07.019] [PMID: 27481061]
[106]
Kim, E.N.; Lim, J.H.; Kim, M.Y.; Ban, T.H.; Jang, I.A.; Yoon, H.E.; Park, C.W.; Chang, Y.S.; Choi, B.S. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY), 2018, 10(1), 83-99.
[http://dx.doi.org/10.18632/aging.101361] [PMID: 29326403]
[107]
Sedeek, M.; Nasrallah, R.; Touyz, R.M.; Hébert, R.L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol., 2013, 24(10), 1512-1518.
[http://dx.doi.org/10.1681/ASN.2012111112] [PMID: 23970124]
[108]
He, T.; Xiong, J.; Nie, L.; Yu, Y.; Guan, X.; Xu, X.; Xiao, T.; Yang, K.; Liu, L.; Zhang, D.; Huang, Y.; Zhang, J.; Wang, J.; Sharma, K.; Zhao, J. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J. Mol. Med. (Berl.), 2016, 94(12), 1359-1371.
[http://dx.doi.org/10.1007/s00109-016-1451-y] [PMID: 27488452]
[109]
Ma, L.; Wang, R.; Wang, H.; Zhang, Y.; Zhao, Z. Long-term caloric restriction activates the myocardial SIRT1/AMPK/PGC-1α pathway in C57BL/6J male mice. Food Nutr. Res., 2020, 64-102919.
[http://dx.doi.org/10.29219/fnr.v64.3668]
[110]
Kim, M.Y.; Lim, J.H.; Youn, H.H.; Hong, Y.A.; Yang, K.S.; Park, H.S.; Chung, S.; Ko, S.H.; Shin, S.J.; Choi, B.S.; Kim, H.W.; Kim, Y.S.; Lee, J.H.; Chang, Y.S.; Park, C.W. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia, 2013, 56(1), 204-217.
[http://dx.doi.org/10.1007/s00125-012-2747-2] [PMID: 23090186]
[111]
Park, H.S.; Lim, J.H.; Kim, M.Y.; Kim, Y.; Hong, Y.A.; Choi, S.R.; Chung, S.; Kim, H.W.; Choi, B.S.; Kim, Y.S.; Chang, Y.S.; Park, C.W. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J. Transl. Med., 2016, 14(1), 176.
[http://dx.doi.org/10.1186/s12967-016-0922-9] [PMID: 27286657]
[112]
Lan, F.; Weikel, K.A.; Cacicedo, J.M.; Ido, Y. Resveratrol-induced AMP-activated protein kinase activation is cell-type dependent: lessons from basic research for clinical application. Nutrients, 2017, 9(7), E751.
[http://dx.doi.org/10.3390/nu9070751] [PMID: 28708087]
[113]
Yun, H.; Park, S.; Kim, M.J.; Yang, W.K.; Im, D.U.; Yang, K.R.; Hong, J.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J., 2014, 281(19), 4421-4438.
[http://dx.doi.org/10.1111/febs.12949] [PMID: 25065674]
[114]
Gajjala, P.R.; Sanati, M.; Jankowski, J. Cellular and molecular mechanisms of chronic kidney disease with diabetes mellitus and cardiovascular diseases as its comorbidities. Front. Immunol., 2015, 6, 340.
[http://dx.doi.org/10.3389/fimmu.2015.00340] [PMID: 26217336]
[115]
Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-inflammatory action and mechanisms of resveratrol. Molecules, 2021, 26(1), E229.
[http://dx.doi.org/10.3390/molecules26010229] [PMID: 33466247]
[116]
Kundu, J.K.; Shin, Y.K.; Surh, Y-J. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets. Biochem. Pharmacol., 2006, 72(11), 1506-1515.
[http://dx.doi.org/10.1016/j.bcp.2006.08.005] [PMID: 16999939]
[117]
Fuggetta, M.P.; Bordignon, V.; Cottarelli, A.; Macchi, B.; Frezza, C.; Cordiali-Fei, P.; Ensoli, F.; Ciafrè, S.; Marino-Merlo, F.; Mastino, A.; Ravagnan, G. Downregulation of proinflammatory cytokines in HTLV-1-infected T cells by Resveratrol, Journal of experimental & clinical cancer research. CR (East Lansing Mich.), 2016, 35(1), 118.
[118]
Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell, 2017, 168(1-2), 37-57.
[http://dx.doi.org/10.1016/j.cell.2016.12.012] [PMID: 28086098]
[119]
Liu, T.; Zhang, L.; Joo, D.; Sun, S-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[120]
Napetschnig, J.; Wu, H. Molecular basis of NF-κB signaling. Annu. Rev. Biophys., 2013, 42, 443-468.
[http://dx.doi.org/10.1146/annurev-biophys-083012-130338] [PMID: 23495970]
[121]
Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab., 2011, 13(1), 11-22.
[http://dx.doi.org/10.1016/j.cmet.2010.12.008] [PMID: 21195345]
[122]
Mezzano, S.; Aros, C.; Droguett, A.; Burgos, M.E.; Ardiles, L.; Flores, C.; Schneider, H.; Ruiz-Ortega, M.; Egido, J. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol. Dial. Transplant., 2004, 19(10), 2505-2512.
[http://dx.doi.org/10.1093/ndt/gfh207] [PMID: 15280531]
[123]
Guijarro, C.; Egido, J. Transcription factor-κ B (NF-κ B) and renal disease. Kidney Int., 2001, 59(2), 415-424.
[http://dx.doi.org/10.1046/j.1523-1755.2001.059002415.x] [PMID: 11168923]
[124]
Zhang, H.F.; Wang, Y.L.; Gao, C.; Gu, Y.T.; Huang, J.; Wang, J.H.; Wang, J.H.; Zhang, Z. Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-κB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol. Sin., 2018, 39(12), 1855-1864.
[http://dx.doi.org/10.1038/s41401-018-0026-6] [PMID: 29795135]
[125]
Wang, J.; Huang, H.; Liu, P.; Tang, F.; Qin, J.; Huang, W.; Chen, F.; Guo, F.; Liu, W.; Yang, B. Inhibition of phosphorylation of p38 MAPK involved in the protection of nephropathy by emodin in diabetic rats. Eur. J. Pharmacol., 2006, 553(1-3), 297-303.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.087] [PMID: 17074319]
[126]
Wilmer, W.A.; Dixon, C.L.; Hebert, C. Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway. Kidney Int., 2001, 60(3), 858-871.
[http://dx.doi.org/10.1046/j.1523-1755.2001.060003858.x] [PMID: 11532081]
[127]
Yamada, T.; Egashira, N.; Bando, A.; Nishime, Y.; Tonogai, Y.; Imuta, M.; Yano, T.; Oishi, R. Activation of p38 MAPK by oxidative stress underlying epirubicin-induced vascular endothelial cell injury. Free Radic. Biol. Med., 2012, 52(8), 1285-1293.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.003] [PMID: 22330067]
[128]
Mulay, S.R.; Gaikwad, A.B.; Tikoo, K. Combination of aspirin with telmisartan suppresses the augmented TGFbeta/smad signaling during the development of streptozotocin-induced type I diabetic nephropathy. Chem. Biol. Interact., 2010, 185(2), 137-142.
[http://dx.doi.org/10.1016/j.cbi.2010.03.008] [PMID: 20223228]
[129]
Fujita, H.; Omori, S.; Ishikura, K.; Hida, M.; Awazu, M. ERK and p38 mediate high-glucose-induced hypertrophy and TGF-β expression in renal tubular cells. Am. J. Physiol. Renal Physiol., 2004, 286(1), F120-F126.
[http://dx.doi.org/10.1152/ajprenal.00351.2002] [PMID: 12952860]
[130]
Chen, K-H.; Hung, C-C.; Hsu, H-H.; Jing, Y-H.; Yang, C-W.; Chen, J-K. Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 2011, 190(1), 45-53.
[http://dx.doi.org/10.1016/j.cbi.2011.01.033] [PMID: 21300041]
[131]
Xie, X.; Peng, J.; Huang, K.; Huang, J.; Shen, X.; Liu, P.; Huang, H. Polydatin ameliorates experimental diabetes-induced fibronectin through inhibiting the activation of NF-κB signaling pathway in rat glomerular mesangial cells. Mol. Cell. Endocrinol., 2012, 362(1-2), 183-193.
[http://dx.doi.org/10.1016/j.mce.2012.06.008] [PMID: 22732364]
[132]
Gugliucci, A.; Menini, T. The axis AGE-RAGE-soluble RAGE and oxidative stress in chronic kidney disease. In: Oxidative Stress and Inflammation in Non-communicable Diseases-Molecular Mechanisms and Perspectives in Therapeutics; Springer, 2014; pp. 191-208.
[133]
Petrica, L.; Petrica, M.; Vlad, A.; Jianu, D.C.; Gluhovschi, G.; Ianculescu, C.; Firescu, C.; Dumitrascu, V.; Giju, S.; Gluhovschi, C.; Bob, F.; Gadalean, F.; Ursoniu, S.; Velciov, S.; Bozdog, G.; Milas, O. Proximal tubule dysfunction is dissociated from endothelial dysfunction in normoalbuminuric patients with type 2 diabetes mellitus: a cross-sectional study. Nephron Clin. Pract., 2011, 118(2), c155-c164.
[http://dx.doi.org/10.1159/000320038] [PMID: 21150223]
[134]
Xian, Y.; Gao, Y.; Lv, W.; Ma, X.; Hu, J.; Chi, J.; Wang, W.; Wang, Y. Resveratrol prevents diabetic nephropathy by reducing chronic inflammation and improving the blood glucose memory effect in non-obese diabetic mice. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(10), 2009-2017.
[http://dx.doi.org/10.1007/s00210-019-01777-1] [PMID: 31970441]
[135]
Zhu, X.; Liu, Q.; Wang, M.; Liang, M.; Yang, X.; Xu, X.; Zou, H.; Qiu, J. Activation of Sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts. PLoS One, 2011, 6(11), e27081.
[http://dx.doi.org/10.1371/journal.pone.0027081] [PMID: 22069489]
[136]
Rothgiesser, K.M.; Erener, S.; Waibel, S.; Lüscher, B.; Hottiger, M.O. SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310. J. Cell Sci., 2010, 123(Pt 24), 4251-4258.
[http://dx.doi.org/10.1242/jcs.073783] [PMID: 21081649]
[137]
Kumar, A.; Sharma, S.S. NF-kappaB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem. Biophys. Res. Commun., 2010, 394(2), 360-365.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.014] [PMID: 20211601]
[138]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[139]
Ding, Y.; Choi, M.E. Autophagy in diabetic nephropathy. J. Endocrinol., 2015, 224(1), R15-R30.
[http://dx.doi.org/10.1530/JOE-14-0437] [PMID: 25349246]
[140]
Gohda, T.; Mima, A.; Moon, J.Y.; Kanasaki, K. Combat diabetic nephropathy: from pathogenesis to treatment. J. Diabetes Res., 2014, 2014, 207140.
[http://dx.doi.org/10.1155/2014/207140] [PMID: 24741570]
[141]
Nakatogawa, H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem., 2013, 55, 39-50.
[http://dx.doi.org/10.1042/bse0550039] [PMID: 24070470]
[142]
Inoki, K. mTOR signaling in autophagy regulation in the kidney. Seminars Nephrol., 2014, 34(1), 2-8.
[143]
Liu, B.; Zhang, B.; Guo, R.; Li, S.; Xu, Y. Enhancement in efferocytosis of oxidized low-density lipoprotein-induced apoptotic RAW264.7 cells through Sirt1-mediated autophagy. Int. J. Mol. Med., 2014, 33(3), 523-533.
[http://dx.doi.org/10.3892/ijmm.2013.1609] [PMID: 24378473]
[144]
Kume, S.; Uzu, T.; Horiike, K.; Chin-Kanasaki, M.; Isshiki, K.; Araki, S.; Sugimoto, T.; Haneda, M.; Kashiwagi, A.; Koya, D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest., 2010, 120(4), 1043-1055.
[http://dx.doi.org/10.1172/JCI41376] [PMID: 20335657]
[145]
Mizushima, N.; Yamamoto, A.; Matsui, M.; Yoshimori, T.; Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell, 2004, 15(3), 1101-1111.
[http://dx.doi.org/10.1091/mbc.e03-09-0704] [PMID: 14699058]
[146]
Matsusaka, T.; Sandgren, E.; Shintani, A.; Kon, V.; Pastan, I.; Fogo, A.B.; Ichikawa, I. Podocyte injury damages other podocytes. J. Am. Soc. Nephrol., 2011, 22(7), 1275-1285.
[http://dx.doi.org/10.1681/ASN.2010090963] [PMID: 21719786]
[147]
Ma, T.; Zhu, J.; Chen, X.; Zha, D.; Singhal, P.C.; Ding, G. High glucose induces autophagy in podocytes. Exp. Cell Res., 2013, 319(6), 779-789.
[http://dx.doi.org/10.1016/j.yexcr.2013.01.018] [PMID: 23384600]
[148]
Cunard, R. Endoplasmic reticulum stress in the diabetic kidney, the good, the bad and the ugly. J. Clin. Med., 2015, 4(4), 715-740.
[http://dx.doi.org/10.3390/jcm4040715] [PMID: 26239352]
[149]
Xu, Y.; Liu, L.; Xin, W.; Zhao, X.; Chen, L.; Zhen, J.; Wan, Q. The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy. J. Diabetes Complications, 2015, 29(8), 976-983.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.07.021] [PMID: 26297217]
[150]
Walczak, M.; Martens, S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy, 2013, 9(3), 424-425.
[http://dx.doi.org/10.4161/auto.22931] [PMID: 23321721]
[151]
Sun, J.; Li, Z.P.; Zhang, R.Q.; Zhang, H.M. Repression of miR-217 protects against high glucose-induced podocyte injury and insulin resistance by restoring PTEN-mediated autophagy pathway. Biochem. Biophys. Res. Commun., 2017, 483(1), 318-324.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.145] [PMID: 28017719]
[152]
Liu, J.; Li, Q.X.; Wang, X.J.; Zhang, C.; Duan, Y.Q.; Wang, Z.Y.; Zhang, Y.; Yu, X.; Li, N.J.; Sun, J.P.; Yi, F. β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis., 2016, 7(4), e2183-e2183.
[http://dx.doi.org/10.1038/cddis.2016.89] [PMID: 27054338]
[153]
Tagawa, A.; Yasuda, M.; Kume, S.; Yamahara, K.; Nakazawa, J.; Chin-Kanasaki, M.; Araki, H.; Araki, S.; Koya, D.; Asanuma, K.; Kim, E.H.; Haneda, M.; Kajiwara, N.; Hayashi, K.; Ohashi, H.; Ugi, S.; Maegawa, H.; Uzu, T. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes, 2016, 65(3), 755-767.
[http://dx.doi.org/10.2337/db15-0473] [PMID: 26384385]
[154]
Lenoir, O.; Jasiek, M.; Hénique, C.; Guyonnet, L.; Hartleben, B.; Bork, T.; Chipont, A.; Flosseau, K.; Bensaada, I.; Schmitt, A.; Massé, J.M.; Souyri, M.; Huber, T.B.; Tharaux, P.L. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy, 2015, 11(7), 1130-1145.
[http://dx.doi.org/10.1080/15548627.2015.1049799] [PMID: 26039325]
[155]
Fourcade, S.; Ferrer, I.; Pujol, A. Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: A paradigm for axonal degeneration. Free Radic. Biol. Med., 2015, 88(Pt A), 18-29.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.041] [PMID: 26073123]
[156]
Zhang, T.; Chi, Y.; Kang, Y.; Lu, H.; Niu, H.; Liu, W.; Li, Y. Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1α mediated attenuation of mitochondrial oxidative stress. J. Cell. Physiol., 2019, 234(4), 5033-5043.
[http://dx.doi.org/10.1002/jcp.27306] [PMID: 30187480]
[157]
Wang, X.; Meng, L.; Zhao, L.; Wang, Z.; Liu, H.; Liu, G.; Guan, G. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res. Clin. Pract., 2017, 126, 172-181.
[http://dx.doi.org/10.1016/j.diabres.2016.12.005] [PMID: 28258028]
[158]
Zhong, Y.; Lee, K.; He, J.C. SIRT1 is a potential drug target for treatment of diabetic kidney disease. Front. Endocrinol. (Lausanne), 2018, 9, 624.
[http://dx.doi.org/10.3389/fendo.2018.00624] [PMID: 30386303]
[159]
Li, L.; Zviti, R.; Ha, C.; Wang, Z.V.; Hill, J.A.; Lin, F. Forkhead box O3 (FoxO3) regulates kidney tubular autophagy following urinary tract obstruction. J. Biol. Chem., 2017, 292(33), 13774-13783.
[http://dx.doi.org/10.1074/jbc.M117.791483] [PMID: 28705935]
[160]
Ma, L.; Fu, R.; Duan, Z.; Lu, J.; Gao, J.; Tian, L.; Lv, Z.; Chen, Z.; Han, J.; Jia, L.; Wang, L. Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol. Res. Pract., 2016, 212(4), 310-318.
[http://dx.doi.org/10.1016/j.prp.2016.02.001] [PMID: 26872534]
[161]
Xu, X.H.; Ding, D.F.; Yong, H.J.; Dong, C.L.; You, N.; Ye, X.L.; Pan, M.L.; Ma, J.H.; You, Q.; Lu, Y.B. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(21), 4952-4965.
[PMID: 29164562]
[162]
Ding, D-F.; You, N.; Wu, X-M.; Xu, J-R.; Hu, A-P.; Ye, X-L.; Zhu, Q.; Jiang, X-Q.; Miao, H.; Liu, C.; Lu, Y.B. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am. J. Nephrol., 2010, 31(4), 363-374.
[http://dx.doi.org/10.1159/000300388] [PMID: 20332614]
[163]
Park, D.; Jeong, H.; Lee, M.N.; Koh, A.; Kwon, O.; Yang, Y.R.; Noh, J.; Suh, P.G.; Park, H.; Ryu, S.H. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci. Rep., 2016, 6, 21772.
[http://dx.doi.org/10.1038/srep21772] [PMID: 26902888]
[164]
Wang, X.H.; Zhu, L.; Hong, X.; Wang, Y.T.; Wang, F.; Bao, J.P.; Xie, X.H.; Liu, L.; Wu, X.T. Resveratrol attenuated TNF-α-induced MMP-3 expression in human nucleus pulposus cells by activating autophagy via AMPK/SIRT1 signaling pathway. Exp. Biol. Med. (Maywood), 2016, 241(8), 848-853.
[http://dx.doi.org/10.1177/1535370216637940] [PMID: 26946533]
[165]
Jiang, W.; Zhang, X.; Hao, J.; Shen, J.; Fang, J.; Dong, W.; Wang, D.; Zhang, X.; Shui, W.; Luo, Y.; Lin, L.; Qiu, Q.; Liu, B.; Hu, Z. SIRT1 protects against apoptosis by promoting autophagy in degenerative human disc nucleus pulposus cells. Sci. Rep., 2014, 4, 7456.
[http://dx.doi.org/10.1038/srep07456] [PMID: 25503852]
[166]
García-Zepeda, S.P.; García-Villa, E.; Díaz-Chávez, J.; Hernández-Pando, R.; Gariglio, P. Resveratrol induces cell death in cervical cancer cells through apoptosis and autophagy. Eur. J. Cancer Prev., 2013, 22(6), 577-584.
[http://dx.doi.org/10.1097/CEJ.0b013e328360345f] [PMID: 23603746]
[167]
Alston, C.L.; Rocha, M.C.; Lax, N.Z.; Turnbull, D.M.; Taylor, R.W. The genetics and pathology of mitochondrial disease. J. Pathol., 2017, 241(2), 236-250.
[http://dx.doi.org/10.1002/path.4809] [PMID: 27659608]
[168]
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. diabetes, 2005, 54(6), 1615-1625.
[169]
Rosca, M.G.; Mustata, T.G.; Kinter, M.T.; Ozdemir, A.M.; Kern, T.S.; Szweda, L.I.; Brownlee, M.; Monnier, V.M.; Weiss, M.F. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am. J. Physiol. Renal Physiol., 2005, 289(2), F420-F430.
[http://dx.doi.org/10.1152/ajprenal.00415.2004] [PMID: 15814529]
[170]
Higgins, G.C.; Coughlan, M.T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol., 2014, 171(8), 1917-1942.
[http://dx.doi.org/10.1111/bph.12503] [PMID: 24720258]
[171]
Forbes, J.M.; Thorburn, D.R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol., 2018, 14(5), 291-312.
[http://dx.doi.org/10.1038/nrneph.2018.9] [PMID: 29456246]
[172]
Sharma, K.; Karl, B.; Mathew, A.V.; Gangoiti, J.A.; Wassel, C.L.; Saito, R.; Pu, M.; Sharma, S.; You, Y-H.; Wang, L.; Diamond-Stanic, M.; Lindenmeyer, M.T.; Forsblom, C.; Wu, W.; Ix, J.H.; Ideker, T.; Kopp, J.B.; Nigam, S.K.; Cohen, C.D.; Groop, P.H.; Barshop, B.A.; Natarajan, L.; Nyhan, W.L.; Naviaux, R.K. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol., 2013, 24(11), 1901-1912.
[http://dx.doi.org/10.1681/ASN.2013020126] [PMID: 23949796]
[173]
Hui, Y.; Lu, M.; Han, Y.; Zhou, H.; Liu, W.; Li, L.; Jin, R. Resveratrol improves mitochondrial function in the remnant kidney from 5/6 nephrectomized rats. Acta Histochem., 2017, 119(4), 392-399.
[http://dx.doi.org/10.1016/j.acthis.2017.04.002] [PMID: 28434671]
[174]
Das, R.; Xu, S.; Quan, X.; Nguyen, T.T.; Kong, I.D.; Chung, C.H.; Lee, E.Y.; Cha, S-K.; Park, K-S. Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am. J. Physiol. Renal Physiol., 2014, 306(2), F155-F167.
[http://dx.doi.org/10.1152/ajprenal.00438.2013] [PMID: 24259511]
[175]
Kozieł, R.; Pircher, H.; Kratochwil, M.; Lener, B.; Hermann, M.; Dencher, N.A.; Jansen-Dürr, P. Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem. J., 2013, 452(2), 231-239.
[http://dx.doi.org/10.1042/BJ20121778] [PMID: 23514110]
[176]
Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; Resnikoff, S.; Taylor, H.R. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob. Health, 2013, 1(6), e339-e349.
[http://dx.doi.org/10.1016/S2214-109X(13)70113-X] [PMID: 25104599]
[177]
Stitt, A.W.; Lois, N.; Medina, R.J.; Adamson, P.; Curtis, T.M. Advances in our understanding of diabetic retinopathy. Clin. Sci., 2013, 125(1), 1-17.
[178]
Lechner, J.; O’Leary, O.E.; Stitt, A.W. The pathology associated with diabetic retinopathy. Vision Res., 2017, 139, 7-14.
[http://dx.doi.org/10.1016/j.visres.2017.04.003] [PMID: 28412095]
[179]
Al-Kharashi, A.S. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J. Ophthalmol., 2018, 32(4), 318-323.
[180]
Ahmad, I.; Hoda, M. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci., 2020, 245, 117350.
[http://dx.doi.org/10.1016/j.lfs.2020.117350] [PMID: 31982401]
[181]
Lançon, A.; Frazzi, R.; Latruffe, N. Anti-oxidant, anti-inflammatory and anti-angiogenic properties of resveratrol in ocular diseases. Molecules, 2016, 21(3), 304.
[http://dx.doi.org/10.3390/molecules21030304] [PMID: 26950104]
[182]
Soufi, F.G.; Mohammad-Nejad, D.; Ahmadieh, H. Resveratrol improves diabetic retinopathy possibly through oxidative stress - nuclear factor κB - apoptosis pathway. Pharmacol Rep, 2012, 64(6), 1505-1514.
[183]
Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp. Eye Res., 2019, 181, 356-366.
[http://dx.doi.org/10.1016/j.exer.2018.11.023] [PMID: 30503749]
[184]
Hua, J.; Guerin, K.I.; Chen, J.; Michán, S.; Stahl, A.; Krah, N.M.; Seaward, M.R.; Dennison, R.J.; Juan, A.M.; Hatton, C.J.; Sapieha, P.; Sinclair, D.A.; Smith, L.E. Resveratrol inhibits pathologic retinal neovascularization in Vldlr(-/-) mice. Invest. Ophthalmol. Vis. Sci., 2011, 52(5), 2809-2816.
[http://dx.doi.org/10.1167/iovs.10-6496] [PMID: 21282584]
[185]
Kumar, A.; Negi, G.; Sharma, S.S. Neuroprotection by resveratrol in diabetic neuropathy: concepts & mechanisms. Curr. Med. Chem., 2013, 20(36), 4640-4645.
[http://dx.doi.org/10.2174/09298673113209990151] [PMID: 24206125]
[186]
Zhang, W.; Yu, H.; Lin, Q.; Liu, X.; Cheng, Y.; Deng, B. Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway. Aging (Albany NY), 2021, 13(7), 10659-10671.
[http://dx.doi.org/10.18632/aging.202830] [PMID: 33770763]
[187]
Sattarinezhad, A.; Roozbeh, J.; Shirazi Yeganeh, B.; Omrani, G.R.; Shams, M. Resveratrol reduces albuminuria in diabetic nephropathy: A randomized double-blind placebo-controlled clinical trial. Diabetes Metab., 2019, 45(1), 53-59.
[http://dx.doi.org/10.1016/j.diabet.2018.05.010] [PMID: 29983230]
[188]
Brasnyó, P.; Molnár, G.A.; Mohás, M.; Markó, L.; Laczy, B.; Cseh, J.; Mikolás, E.; Szijártó, I.A.; Mérei, A.; Halmai, R.; Mészáros, L.G.; Sümegi, B.; Wittmann, I. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr., 2011, 106(3), 383-389.
[http://dx.doi.org/10.1017/S0007114511000316] [PMID: 21385509]
[189]
Imamura, H.; Yamaguchi, T.; Nagayama, D.; Saiki, A.; Shirai, K.; Tatsuno, I. Resveratrol ameliorates arterial stiffness assessed by cardio-ankle vascular index in patients with type 2 diabetes mellitus. Int. Heart J., 2017, 58(4), 577-583.
[http://dx.doi.org/10.1536/ihj.16-373] [PMID: 28701674]
[190]
Seyyedebrahimi, S.; Khodabandehloo, H.; Nasli Esfahani, E.; Meshkani, R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. Acta Diabetol., 2018, 55(4), 341-353.
[http://dx.doi.org/10.1007/s00592-017-1098-3] [PMID: 29357033]
[191]
Bo, S.; Togliatto, G.; Gambino, R.; Ponzo, V.; Lombardo, G.; Rosato, R.; Cassader, M.; Brizzi, M.F. Impact of sirtuin-1 expression on H3K56 acetylation and oxidative stress: a double-blind randomized controlled trial with resveratrol supplementation. Acta Diabetol., 2018, 55(4), 331-340.
[http://dx.doi.org/10.1007/s00592-017-1097-4] [PMID: 29330620]
[192]
Wu, J.; Li, Y.; Yu, J.; Gan, Z.; Wei, W.; Wang, C.; Zhang, L.; Wang, T.; Zhong, X. Resveratrol attenuates high-fat diet induced hepatic lipid homeostasis disorder and decreases m6a rna methylation. Front. Pharmacol., 2020, 11, 568006.
[http://dx.doi.org/10.3389/fphar.2020.568006] [PMID: 33519432]
[193]
Li, P.; Bukhari, S.N.A.; Khan, T.; Chitti, R.; Bevoor, D.B.; Hiremath, A.R.; SreeHarsha, N.; Singh, Y.; Gubbiyappa, K.S. Apigenin-loaded solid lipid nanoparticle attenuates diabetic nephropathy induced by streptozotocin nicotinamide through nrf2/ho-1/nf-kb signalling pathway. Int. J. Nanomedicine, 2020, 15, 9115-9124.
[http://dx.doi.org/10.2147/IJN.S256494] [PMID: 33244230]
[194]
Wang, Y.; Wang, B.; Qi, X.; Zhang, X.; Ren, K. Resveratrol protects against post-contrast acute kidney injury in rabbits with diabetic nephropathy. Front. Pharmacol., 2019, 10, 833.
[http://dx.doi.org/10.3389/fphar.2019.00833] [PMID: 31402864]
[195]
Zhang, H.; Sun, S.C. NF-κB in inflammation and renal diseases. Cell Biosci., 2015, 5, 63.
[http://dx.doi.org/10.1186/s13578-015-0056-4] [PMID: 26579219]
[196]
Bhatt, J.K.; Thomas, S.; Nanjan, M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res., 2012, 32(7), 537-541.
[http://dx.doi.org/10.1016/j.nutres.2012.06.003] [PMID: 22901562]
[197]
Saldanha, J.F.; Leal, V.O.; Rizzetto, F.; Grimmer, G.H.; Ribeiro-Alves, M.; Daleprane, J.B.; Carraro-Eduardo, J.C.; Mafra, D. Effects of resveratrol supplementation in Nrf2 and NF-κB expressions in nondialyzed chronic kidney disease patients: a randomized, double-blind, placebo-controlled, crossover clinical trial. J. Ren. Nutr., 2016, 26(6), 401-406.
[http://dx.doi.org/10.1053/j.jrn.2016.06.005] [PMID: 27523436]
[198]
Lin, C.T.; Sun, X.Y.; Lin, A.X. Supplementation with high-dose trans-resveratrol improves ultrafiltration in peritoneal dialysis patients: a prospective, randomized, double-blind study. Ren. Fail., 2016, 38(2), 214-221.
[http://dx.doi.org/10.3109/0886022X.2015.1128236] [PMID: 26727506]
[199]
Khodabandehloo, H.; Seyyedebrahimi, S.; Esfahani, E.N.; Razi, F.; Meshkani, R. Resveratrol supplementation decreases blood glucose without changing the circulating CD14+CD16+ monocytes and inflammatory cytokines in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Nutr. Res., 2018, 54, 40-51.
[http://dx.doi.org/10.1016/j.nutres.2018.03.015] [PMID: 29914666]
[200]
Brenjian, S.; Moini, A.; Yamini, N.; Kashani, L.; Faridmojtahedi, M.; Bahramrezaie, M.; Khodarahmian, M.; Amidi, F. Resveratrol treatment in patients with polycystic ovary syndrome decreased pro-inflammatory and endoplasmic reticulum stress markers. Am. Reprod. J. Immunol., 2020, 83(1), e13186.
[201]
Bo, S.; Ponzo, V.; Ciccone, G.; Evangelista, A.; Saba, F.; Goitre, I.; Procopio, M.; Pagano, G.F.; Cassader, M.; Gambino, R. Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial. Pharmacol. Res., 2016, 111, 896-905.
[http://dx.doi.org/10.1016/j.phrs.2016.08.010] [PMID: 27520400]
[202]
Faghihzadeh, F.; Adibi, P.; Hekmatdoost, A. The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled study. Br. J. Nutr., 2015, 114(5), 796-803.
[http://dx.doi.org/10.1017/S0007114515002433] [PMID: 26234526]
[203]
Faghihzadeh, F.; Adibi, P.; Rafiei, R.; Hekmatdoost, A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr. Res., 2014, 34(10), 837-843.
[http://dx.doi.org/10.1016/j.nutres.2014.09.005] [PMID: 25311610]
[204]
Chen, S.; Zhao, X.; Ran, L.; Wan, J.; Wang, X.; Qin, Y.; Shu, F.; Gao, Y.; Yuan, L.; Zhang, Q.; Mi, M. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Digest. Liver Dis., 2015, 47(3), 226-232.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy