Review Article

帕金森病生物标记物生物传感的新认识:简要综述

卷 29, 期 22, 2022

发表于: 18 February, 2022

页: [3945 - 3972] 页: 28

弟呕挨: 10.2174/0929867328666211213111812

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

背景:帕金森病(Parkinson’s disease,PD)是一种长期的、退化的神经系统疾病,患者会失去对某些身体功能的控制。帕金森病作为一种神经退行性疾病,其新的有效治疗方法的制定需要在早期进行准确有效的诊断。 目的:通过分析由生物反应转换的可测量信号收集的数据,可以进行定性和定量评估。在迄今为止报道的各种方法中,生物传感器是用于检测PD生物标志物的强大分析工具。 方法:生物传感器的生物识别成分包括抗体、受体、微生物、核酸、酶、细胞和组织以及仿生结构。本文基于纳米技术和材料科学的最新进展,介绍了PD生物标记物的电化学、光学和光化学检测方法,这些方法促进了该领域高性能生物传感器的发展。 结果:本文综述了α-突触核蛋白、多巴胺(DA)、尿酸盐、抗坏血酸、miRNAs等PD生物标志物及其生物学作用。此外,本文还评估了常用标准方法的优缺点。我们比较了电化学、光学和光化学生物传感器的特性以及提高灵敏度和选择性的新策略。 结论:开发新型生物传感器是PD早期诊断的必要条件,因为它是一种灵敏、快速、可靠和经济有效的系统。

关键词: 神经退行性疾病,电化学生物传感器,光学生物传感器,光化学生物传感器,帕金森病,生物标志物

[1]
Lee, A.; Gilbert, R.M. Epidemiology of Parkinson disease. Neurol. Clin., 2016, 34(4), 955-965.
[http://dx.doi.org/10.1016/j.ncl.2016.06.012] [PMID: 27720003]
[2]
Cova, I.; Priori, A. Diagnostic biomarkers for Parkinson’s disease at a glance: Where are we? J. Neural Transm. (Vienna), 2018, 125(10), 1417-1432.
[http://dx.doi.org/10.1007/s00702-018-1910-4] [PMID: 30145631]
[3]
Delenclos, M.; Jones, D.R.; McLean, P.J.; Uitti, R.J. Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat. Disord., 2016, 22(Suppl. 1), S106-S110.
[http://dx.doi.org/10.1016/j.parkreldis.2015.09.048] [PMID: 26439946]
[4]
Emamzadeh, F.N.; Surguchov, A. Parkinson’s disease: biomarkers, treatment, and risk factors. Front. Neurosci., 2018, 12, 612.
[http://dx.doi.org/10.3389/fnins.2018.00612] [PMID: 30214392]
[5]
El-Agnaf, O.M.; Salem, S.A.; Paleologou, K.E.; Curran, M.D.; Gibson, M.J.; Court, J.A.; Schlossmacher, M.G.; Allsop, D. Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J., 2006, 20(3), 419-425.
[http://dx.doi.org/10.1096/fj.03-1449com] [PMID: 16507759]
[6]
Movahedpour, A.; Ahmadi, N.; Ghasemi, Y.; Savardashtaki, A.; Shabaninejad, Z. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in prostate cancer: current status and future perspectives. J. Cell. Biochem., 2019, 120(10), 16316-16329.
[http://dx.doi.org/10.1002/jcb.29053] [PMID: 31257636]
[7]
Shabaninejad, Z.; Vafadar, A.; Movahedpour, A.; Ghasemi, Y.; Namdar, A.; Fathizadeh, H.; Pourhanifeh, M.H.; Savardashtaki, A.; Mirzaei, H. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J. Ovarian Res., 2019, 12(1), 84.
[http://dx.doi.org/10.1186/s13048-019-0558-5] [PMID: 31481095]
[8]
Vafadar, A.; Shabaninejad, Z.; Movahedpour, A.; Mohammadi, S.; Fathullahzadeh, S.; Mirzaei, H.R.; Namdar, A.; Savardashtaki, A.; Mirzaei, H. Long non-coding RNAs as epigenetic regulators in cancer. Curr. Pharm. Des., 2019, 25(33), 3563-3577.
[http://dx.doi.org/10.2174/1381612825666190830161528] [PMID: 31470781]
[9]
Kandil, E.; Burack, J.; Sawas, A.; Bibawy, H.; Schwartzman, A.; Zenilman, M.E.; Bluth, M.H. B-type natriuretic peptide: a biomarker for the diagnosis and risk stratification of patients with septic shock. Arch. Surg., 2008, 143(3), 242-246.
[http://dx.doi.org/10.1001/archsurg.2007.69] [PMID: 18347270]
[10]
Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol., 2006, 24(8), 971-983.
[http://dx.doi.org/10.1038/nbt1235] [PMID: 16900146]
[11]
Masters, J.M.; Noyce, A.J.; Warner, T.T.; Giovannoni, G.; Proctor, G.B. Elevated salivary protein in Parkinson’s disease and salivary DJ-1 as a potential marker of disease severity. Parkinsonism Relat. Disord., 2015, 21(10), 1251-1255.
[http://dx.doi.org/10.1016/j.parkreldis.2015.07.021] [PMID: 26231472]
[12]
Vivacqua, G.; Latorre, A.; Suppa, A.; Nardi, M.; Pietracupa, S.; Mancinelli, R.; Fabbrini, G.; Colosimo, C.; Gaudio, E.; Berardelli, A. Abnormal salivary total and oligomeric alpha-synuclein in Parkinson’s disease. PLoS One, 2016, 11(3), e0151156.
[http://dx.doi.org/10.1371/journal.pone.0151156] [PMID: 27011009]
[13]
Wang, J.; Hoekstra, J.G.; Zuo, C.; Cook, T.J.; Zhang, J. Biomarkers of Parkinson’s disease: current status and future perspectives. Drug Discov. Today, 2013, 18(3-4), 155-162.
[http://dx.doi.org/10.1016/j.drudis.2012.09.001] [PMID: 22982303]
[14]
Li, C.; Lutz, E.A.; Slade, K.M.; Ruf, R.A.; Wang, G-F.; Pielak, G.J. 19F NMR studies of α-synuclein conformation and fibrillation. Biochemistry, 2009, 48(36), 8578-8584.
[http://dx.doi.org/10.1021/bi900872p] [PMID: 19655784]
[15]
Slamnoiu, S.; Vlad, C.; Stumbaum, M.; Moise, A.; Lindner, K.; Engel, N.; Vilanova, M.; Diaz, M.; Karreman, C.; Leist, M.; Ciossek, T.; Hengerer, B.; Vilaseca, M.; Przybylski, M. Identification and affinity-quantification of ß-amyloid and α-synuclein polypeptides using on-line SAW-biosensor-mass spectrometry. J. Am. Soc. Mass Spectrom., 2014, 25(8), 1472-1481.
[http://dx.doi.org/10.1007/s13361-014-0904-1] [PMID: 24845351]
[16]
Lee, S.; Silajdžić, E.; Yang, H.; Björkqvist, M.; Kim, S.; Jeong, O.C.; Hansson, O.; Laurell, T. A porous silicon immunoassay platform for fluorometric determination of α-synuclein in human cerebrospinal fluid. Mikrochim. Acta, 2014, 181(9-10), 1143-1149.
[http://dx.doi.org/10.1007/s00604-014-1180-2]
[17]
Killinger, B.A.; Moszczynska, A. Characterization of α-synuclein multimer stoichiometry in complex biological samples by electrophoresis. Anal. Chem., 2016, 88(7), 4071-4084.
[http://dx.doi.org/10.1021/acs.analchem.6b00419] [PMID: 26937787]
[18]
Iwabuchi, M.F.; Hetu, M.M.; Tong, W.G. Sensitive analysis of α-synuclein by nonlinear laser wave mixing coupled with capillary electrophoresis. Anal. Biochem., 2016, 500, 51-59.
[http://dx.doi.org/10.1016/j.ab.2016.01.010] [PMID: 26874019]
[19]
Rekas, A.; Adda, C.G.; Andrew Aquilina, J.; Barnham, K.J.; Sunde, M.; Galatis, D.; Williamson, N.A.; Masters, C.L.; Anders, R.F.; Robinson, C.V.; Cappai, R.; Carver, J.A. Interaction of the molecular chaperone alphaB-crystallin with α-synuclein: effects on amyloid fibril formation and chaperone activity. J. Mol. Biol., 2004, 340(5), 1167-1183.
[http://dx.doi.org/10.1016/j.jmb.2004.05.054] [PMID: 15236975]
[20]
Fairfoul, G.; McGuire, L.I.; Pal, S.; Ironside, J.W.; Neumann, J.; Christie, S.; Joachim, C.; Esiri, M.; Evetts, S.G.; Rolinski, M.; Baig, F.; Ruffmann, C.; Wade-Martins, R.; Hu, M.T.; Parkkinen, L.; Green, A.J. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol., 2016, 3(10), 812-818.
[http://dx.doi.org/10.1002/acn3.338] [PMID: 27752516]
[21]
Groveman, B.R.; Orrù, C.D.; Hughson, A.G.; Raymond, L.D.; Zanusso, G.; Ghetti, B.; Campbell, K.J.; Safar, J.; Galasko, D.; Caughey, B. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol. Commun., 2018, 6(1), 7.
[http://dx.doi.org/10.1186/s40478-018-0508-2] [PMID: 29422107]
[22]
Mani, V.; Chikkaveeraiah, B.V.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano, 2009, 3(3), 585-594.
[http://dx.doi.org/10.1021/nn800863w] [PMID: 19216571]
[23]
Roberts, R.F.; Wade-Martins, R.; Alegre-Abarrategui, J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain, 2015, 138(Pt 6), 1642-1657.
[http://dx.doi.org/10.1093/brain/awv040] [PMID: 25732184]
[24]
Mukaetova-Ladinska, E.B. Parkinson’s disease: diagnostic relevance of elevated levels of soluble α-synuclein oligomers in cerebrospinal fluid. Future Neurol., 2011, 6(2), 159-163.
[http://dx.doi.org/10.2217/fnl.11.7]
[25]
Hansson, O.; Hall, S.; Öhrfelt, A.; Zetterberg, H.; Blennow, K.; Minthon, L.; Nägga, K.; Londos, E.; Varghese, S.; Majbour, N.K.; Al-Hayani, A.; El-Agnaf, O.M. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(3), 25.
[http://dx.doi.org/10.1186/alzrt255] [PMID: 24987465]
[26]
Park, M.J.; Cheon, S-M.; Bae, H-R.; Kim, S-H.; Kim, J.W. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J. Clin. Neurol., 2011, 7(4), 215-222.
[http://dx.doi.org/10.3988/jcn.2011.7.4.215] [PMID: 22259618]
[27]
Wang, X.; Yu, S.; Li, F.; Feng, T. Detection of α-synuclein oligomers in red blood cells as a potential biomarker of Parkinson’s disease. Neurosci. Lett., 2015, 599, 115-119.
[http://dx.doi.org/10.1016/j.neulet.2015.05.030] [PMID: 25998655]
[28]
Paleologou, K.E.; Kragh, C.L.; Mann, D.M.; Salem, S.A.; Al-Shami, R.; Allsop, D.; Hassan, A.H.; Jensen, P.H.; El-Agnaf, O.M. Detection of elevated levels of soluble α-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain, 2009, 132(Pt 4), 1093-1101.
[PMID: 19155272]
[29]
Li, Q-X.; Mok, S.S.; Laughton, K.M.; McLean, C.A.; Cappai, R.; Masters, C.L.; Culvenor, J.G.; Horne, M.K. Plasma α-synuclein is decreased in subjects with Parkinson’s disease. Exp. Neurol., 2007, 204(2), 583-588.
[http://dx.doi.org/10.1016/j.expneurol.2006.12.006] [PMID: 17258710]
[30]
Mata, I.F.; Shi, M.; Agarwal, P.; Chung, K.A.; Edwards, K.L.; Factor, S.A.; Galasko, D.R.; Ginghina, C.; Griffith, A.; Higgins, D.S.; Kay, D.M.; Kim, H.; Leverenz, J.B.; Quinn, J.F.; Roberts, J.W.; Samii, A.; Snapinn, K.W.; Tsuang, D.W.; Yearout, D.; Zhang, J.; Payami, H.; Zabetian, C.P. SNCA variant associated with Parkinson disease and plasma α-synuclein level. Arch. Neurol., 2010, 67(11), 1350-1356.
[http://dx.doi.org/10.1001/archneurol.2010.279] [PMID: 21060011]
[31]
Shi, M.; Zabetian, C.P.; Hancock, A.M.; Ginghina, C.; Hong, Z.; Yearout, D.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D.; Jankovic, J.; Leverenz, J.B.; Zhang, J. Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci. Lett., 2010, 480(1), 78-82.
[http://dx.doi.org/10.1016/j.neulet.2010.06.009] [PMID: 20540987]
[32]
Peterson, Z.D.; Bowerbank, C.R.; Collins, D.C.; Graves, S.W.; Lee, M.L. Advantages and limitations of coupling isotachophoresis and comprehensive isotachophoresis-capillary electrophoresis to time-of-flight mass spectrometry. J. Chromatogr. A, 2003, 992(1-2), 169-179.
[http://dx.doi.org/10.1016/S0021-9673(03)00235-8] [PMID: 12735473]
[33]
Park, Y.H.; Zhang, X.; Rubakhin, S.S.; Sweedler, J.V. Independent optimization of capillary electrophoresis separation and native fluorescence detection conditions for indolamine and catecholamine measurements. Anal. Chem., 1999, 71(21), 4997-5002.
[http://dx.doi.org/10.1021/ac990659r] [PMID: 10565288]
[34]
Carrera, V.; Sabater, E.; Vilanova, E.; Sogorb, M.A. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 847(2), 88-94.
[http://dx.doi.org/10.1016/j.jchromb.2006.09.032] [PMID: 17052963]
[35]
Anirudhan, T.S.; Alexander, S.; Lilly, A. Surface modified multiwalled carbon nanotube based molecularly imprinted polymer for the sensing of dopamine in real samples using potentiometric method. Polymer (Guildf.), 2014, 55(19), 4820-4831.
[http://dx.doi.org/10.1016/j.polymer.2014.07.057]
[36]
Bali Prasad, B.; Jauhari, D.; Tiwari, M.P. A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens. Bioelectron., 2013, 50, 19-27.
[http://dx.doi.org/10.1016/j.bios.2013.05.062] [PMID: 23831643]
[37]
Ali, S.R.; Ma, Y.; Parajuli, R.R.; Balogun, Y.; Lai, W.Y-C.; He, H. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem., 2007, 79(6), 2583-2587.
[http://dx.doi.org/10.1021/ac062068o] [PMID: 17286387]
[38]
Canevari, T.C.; Raymundo-Pereira, P.A.; Landers, R.; Benvenutti, E.V.; Machado, S.A. Sol-gel thin-film based mesoporous silica and carbon nanotubes for the determination of dopamine, uric acid and paracetamol in urine. Talanta, 2013, 116, 726-735.
[http://dx.doi.org/10.1016/j.talanta.2013.07.044] [PMID: 24148467]
[39]
Chen, D.; Wang, Q.; Jin, J.; Wu, P.; Wang, H.; Yu, S.; Zhang, H.; Cai, C. Low-potential detection of endogenous and physiological uric acid at uricase-thionine-single-walled carbon nanotube modified electrodes. Anal. Chem., 2010, 82(6), 2448-2455.
[http://dx.doi.org/10.1021/ac9028246] [PMID: 20163156]
[40]
Dickson, D.W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med., 2012, 2(8), a009258.
[http://dx.doi.org/10.1101/cshperspect.a009258] [PMID: 22908195]
[41]
Emamzadeh, F.N. Alpha-synuclein structure, functions, and interactions. J. Res. Med. Sci., 2016, 21, 29.
[42]
Surguchov, A. In International review of cell and molecular biology; Elsevier, 2015, Vol. 320, pp. 103-169.
[43]
Iwai, A.; Masliah, E.; Yoshimoto, M.; Ge, N.; Flanagan, L.; de Silva, H.A.; Kittel, A.; Saitoh, T. The precursor protein of non-A β component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron, 1995, 14(2), 467-475.
[http://dx.doi.org/10.1016/0896-6273(95)90302-X] [PMID: 7857654]
[44]
Nakajo, S.; Shioda, S.; Nakai, Y.; Nakaya, K. Localization of phosphoneuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization. Brain Res. Mol. Brain Res., 1994, 27(1), 81-86.
[http://dx.doi.org/10.1016/0169-328X(94)90187-2] [PMID: 7877458]
[45]
Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[46]
Heise, H.; Hoyer, W.; Becker, S.; Andronesi, O.C.; Riedel, D.; Baldus, M. Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR. Proc. Natl. Acad. Sci. USA, 2005, 102(44), 15871-15876.
[http://dx.doi.org/10.1073/pnas.0506109102] [PMID: 16247008]
[47]
Ghosh, D.; Singh, P.K.; Sahay, S.; Jha, N.N.; Jacob, R.S.; Sen, S.; Kumar, A.; Riek, R.; Maji, S.K. Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation. Sci. Rep., 2015, 5, 9228.
[http://dx.doi.org/10.1038/srep09228] [PMID: 25784353]
[48]
Bertoncini, C.W.; Jung, Y-S.; Fernandez, C.O.; Hoyer, W.; Griesinger, C.; Jovin, T.M.; Zweckstetter, M. Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein. Proc. Natl. Acad. Sci. USA, 2005, 102(5), 1430-1435.
[http://dx.doi.org/10.1073/pnas.0407146102] [PMID: 15671169]
[49]
Iwai, A.; Yoshimoto, M.; Masliah, E.; Saitoh, T. Non-A beta component of Alzheimer’s disease amyloid (NAC) is amyloidogenic. Biochemistry, 1995, 34(32), 10139-10145.
[http://dx.doi.org/10.1021/bi00032a006] [PMID: 7640267]
[50]
Snead, D.; Eliezer, D. Alpha-synuclein function and dysfunction on cellular membranes. Exp. Neurobiol., 2014, 23(4), 292-313.
[http://dx.doi.org/10.5607/en.2014.23.4.292] [PMID: 25548530]
[51]
Li, W.; West, N.; Colla, E.; Pletnikova, O.; Troncoso, J.C.; Marsh, L.; Dawson, T.M.; Jäkälä, P.; Hartmann, T.; Price, D.L.; Lee, M.K. Aggregation promoting C-terminal truncation of α-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 2162-2167.
[http://dx.doi.org/10.1073/pnas.0406976102] [PMID: 15684072]
[52]
Giasson, B.I.; Murray, I.V.; Trojanowski, J.Q.; Lee, V.M-Y. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J. Biol. Chem., 2001, 276(4), 2380-2386.
[http://dx.doi.org/10.1074/jbc.M008919200] [PMID: 11060312]
[53]
Eliezer, D.; Kutluay, E.; Bussell, R., Jr; Browne, G. Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol., 2001, 307(4), 1061-1073.
[http://dx.doi.org/10.1006/jmbi.2001.4538] [PMID: 11286556]
[54]
Lázaro, D.F.; Dias, M.C.; Carija, A.; Navarro, S.; Madaleno, C.S.; Tenreiro, S.; Ventura, S.; Outeiro, T.F. The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathol. Commun., 2016, 4(1), 128.
[http://dx.doi.org/10.1186/s40478-016-0402-8] [PMID: 27938414]
[55]
Masuda-Suzukake, M.; Nonaka, T.; Hosokawa, M.; Oikawa, T.; Arai, T.; Akiyama, H.; Mann, D.M.; Hasegawa, M. Prion-like spreading of pathological α-synuclein in brain. Brain, 2013, 136(Pt 4), 1128-1138.
[http://dx.doi.org/10.1093/brain/awt037] [PMID: 23466394]
[56]
Borghi, R.; Marchese, R.; Negro, A.; Marinelli, L.; Forloni, G.; Zaccheo, D.; Abbruzzese, G.; Tabaton, M. Full length α-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci. Lett., 2000, 287(1), 65-67.
[http://dx.doi.org/10.1016/S0304-3940(00)01153-8] [PMID: 10841992]
[57]
Lee, P.H.; Lee, G.; Park, H.J.; Bang, O.Y.; Joo, I.S.; Huh, K. The plasma alpha-synuclein levels in patients with Parkinson’s disease and multiple system atrophy. J. Neural Transm. (Vienna), 2006, 113(10), 1435-1439.
[http://dx.doi.org/10.1007/s00702-005-0427-9] [PMID: 16465458]
[58]
Mollenhauer, B.; Locascio, J.J.; Schulz-Schaeffer, W.; Sixel-Döring, F.; Trenkwalder, C.; Schlossmacher, M.G. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol., 2011, 10(3), 230-240.
[http://dx.doi.org/10.1016/S1474-4422(11)70014-X] [PMID: 21317042]
[59]
Tokuda, T.; Salem, S.A.; Allsop, D.; Mizuno, T.; Nakagawa, M.; Qureshi, M.M.; Locascio, J.J.; Schlossmacher, M.G.; El-Agnaf, O.M. Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem. Biophys. Res. Commun., 2006, 349(1), 162-166.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.024] [PMID: 16930553]
[60]
Hong, Z.; Shi, M.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D.; Jankovic, J.; Zabetian, C.P.; Leverenz, J.B.; Baird, G.; Montine, T.J.; Hancock, A.M.; Hwang, H.; Pan, C.; Bradner, J.; Kang, U.J.; Jensen, P.H.; Zhang, J. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain, 2010, 133(Pt 3), 713-726.
[http://dx.doi.org/10.1093/brain/awq008] [PMID: 20157014]
[61]
Lorenzen, N.; Nielsen, S.B.; Buell, A.K.; Kaspersen, J.D.; Arosio, P.; Vad, B.S.; Paslawski, W.; Christiansen, G.; Valnickova-Hansen, Z.; Andreasen, M.; Enghild, J.J.; Pedersen, J.S.; Dobson, C.M.; Knowles, T.P.; Otzen, D.E. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation. J. Am. Chem. Soc., 2014, 136(10), 3859-3868.
[http://dx.doi.org/10.1021/ja411577t] [PMID: 24527756]
[62]
Salveson, P.J.; Spencer, R.K.; Nowick, J.S. X-ray crystallographic structure of oligomers formed by a toxic β-hairpin derived from α-synuclein: trimers and higher-order oligomers. J. Am. Chem. Soc., 2016, 138(13), 4458-4467.
[http://dx.doi.org/10.1021/jacs.5b13261] [PMID: 26926877]
[63]
Conway, K.A.; Lee, S-J.; Rochet, J-C.; Ding, T.T.; Williamson, R.E.; Lansbury, P.T., Jr Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA, 2000, 97(2), 571-576.
[http://dx.doi.org/10.1073/pnas.97.2.571] [PMID: 10639120]
[64]
Mohammadi, S.; Nikkhah, M.; Hosseinkhani, S. Loss in toxic function of aggregates of α-Synuclein mutants by a β-Synuclein derived peptide. Protein Pept. Lett., 2017, 24(8), 757-764.
[http://dx.doi.org/10.2174/0929866524666170818154033] [PMID: 28820063]
[65]
Winner, B.; Jappelli, R.; Maji, S.K.; Desplats, P.A.; Boyer, L.; Aigner, S.; Hetzer, C.; Loher, T.; Vilar, M.; Campioni, S.; Tzitzilonis, C.; Soragni, A.; Jessberger, S.; Mira, H.; Consiglio, A.; Pham, E.; Masliah, E.; Gage, F.H.; Riek, R. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA, 2011, 108(10), 4194-4199.
[http://dx.doi.org/10.1073/pnas.1100976108] [PMID: 21325059]
[66]
Giehm, L.; Svergun, D.I.; Otzen, D.E.; Vestergaard, B. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc. Natl. Acad. Sci. USA, 2011, 108(8), 3246-3251.
[http://dx.doi.org/10.1073/pnas.1013225108] [PMID: 21300904]
[67]
Celej, M.S.; Sarroukh, R.; Goormaghtigh, E.; Fidelio, G.D.; Ruysschaert, J-M.; Raussens, V. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure. Biochem. J., 2012, 443(3), 719-726.
[http://dx.doi.org/10.1042/BJ20111924] [PMID: 22316405]
[68]
Cremades, N.; Cohen, S.I.; Deas, E.; Abramov, A.Y.; Chen, A.Y.; Orte, A.; Sandal, M.; Clarke, R.W.; Dunne, P.; Aprile, F.A.; Bertoncini, C.W.; Wood, N.W.; Knowles, T.P.; Dobson, C.M.; Klenerman, D. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell, 2012, 149(5), 1048-1059.
[http://dx.doi.org/10.1016/j.cell.2012.03.037] [PMID: 22632969]
[69]
Ingelsson, M. Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front. Neurosci., 2016, 10, 408.
[http://dx.doi.org/10.3389/fnins.2016.00408] [PMID: 27656123]
[70]
Ganesh, H.V.; Chow, A.M.; Kerman, K. Recent advances in biosensors for neurodegenerative disease detection. Trends Analyt. Chem., 2016, 79, 363-370.
[http://dx.doi.org/10.1016/j.trac.2016.02.012]
[71]
Sierks, M.R.; Chatterjee, G.; McGraw, C.; Kasturirangan, S.; Schulz, P.; Prasad, S. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr. Biol., 2011, 3(12), 1188-1196.
[http://dx.doi.org/10.1039/c1ib00018g] [PMID: 22076255]
[72]
Williams, S.M.; Schulz, P.; Sierks, M.R. Oligomeric α-synuclein and β-amyloid variants as potential biomarkers for Parkinson’s and Alzheimer’s diseases. Eur. J. Neurosci., 2016, 43(1), 3-16.
[http://dx.doi.org/10.1111/ejn.13056] [PMID: 26332448]
[73]
Majbour, N.K.; Vaikath, N.N.; van Dijk, K.D.; Ardah, M.T.; Varghese, S.; Vesterager, L.B.; Montezinho, L.P.; Poole, S.; Safieh-Garabedian, B.; Tokuda, T.; Teunissen, C.E.; Berendse, H.W.; van de Berg, W.D.; El-Agnaf, O.M. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol. Neurodegener., 2016, 11(1), 7.
[http://dx.doi.org/10.1186/s13024-016-0072-9] [PMID: 26782965]
[74]
Xu, Q.; Cheng, H.; Lehr, J.; Patil, A.V.; Davis, J.J. Graphene oxide interfaces in serum based autoantibody quantification. Anal. Chem., 2015, 87(1), 346-350.
[http://dx.doi.org/10.1021/ac503890e] [PMID: 25514013]
[75]
Usiello, A.; Baik, J-H.; Rougé-Pont, F.; Picetti, R.; Dierich, A.; LeMeur, M.; Piazza, P.V.; Borrelli, E. Distinct functions of the two isoforms of dopamine D2 receptors. Nature, 2000, 408(6809), 199-203.
[http://dx.doi.org/10.1038/35041572] [PMID: 11089973]
[76]
Darvas, M.; Palmiter, R.D. Restricting dopaminergic signaling to either dorsolateral or medial striatum facilitates cognition. J. Neurosci., 2010, 30(3), 1158-1165.
[http://dx.doi.org/10.1523/JNEUROSCI.4576-09.2010] [PMID: 20089924]
[77]
Birtwistle, J.; Baldwin, D. Role of dopamine in schizophrenia and Parkinson’s disease. Br. J. Nurs., 1998, 7(14), 832-834, 836, 838-841.
[http://dx.doi.org/10.12968/bjon.1998.7.14.5636] [PMID: 9849144]
[78]
O’Neill, R.D. Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. Analyst (Lond.), 1994, 119(5), 767-779.
[http://dx.doi.org/10.1039/an9941900767] [PMID: 8067534]
[79]
Capella, P.; Ghasemzadeh, B.; Mitchell, K.; Adams, R.N. Nafion‐coated carbon fiber electrodes for neurochemical studies in brain tissue. Electroanalysis, 1990, 2(3), 175-182.
[http://dx.doi.org/10.1002/elan.1140020303]
[80]
Cipriani, S.; Desjardins, C.A.; Burdett, T.C.; Xu, Y.; Xu, K.; Schwarzschild, M.A. Protection of dopaminergic cells by urate requires its accumulation in astrocytes. J. Neurochem., 2012, 123(1), 172-181.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07820.x] [PMID: 22671773]
[81]
Cipriani, S.; Desjardins, C.A.; Burdett, T.C.; Xu, Y.; Xu, K.; Schwarzschild, M.A. Urate and its transgenic depletion modulate neuronal vulnerability in a cellular model of Parkinson’s disease. PLoS One, 2012, 7(5), e37331.
[http://dx.doi.org/10.1371/journal.pone.0037331] [PMID: 22606360]
[82]
Kang, D-H.; Ha, S-K. Uric acid puzzle: dual role as anti-oxidantand pro-oxidant. Electrolyte Blood Press., 2014, 12(1), 1-6.
[http://dx.doi.org/10.5049/EBP.2014.12.1.1] [PMID: 25061467]
[83]
Stirpe, F.; Della Corte, E. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J. Biol. Chem., 1969, 244(14), 3855-3863.
[http://dx.doi.org/10.1016/S0021-9258(17)36428-1] [PMID: 4308738]
[84]
Weisskopf, M.G.; O’Reilly, E.; Chen, H.; Schwarzschild, M.A.; Ascherio, A. Plasma urate and risk of Parkinson’s disease. Am. J. Epidemiol., 2007, 166(5), 561-567.
[http://dx.doi.org/10.1093/aje/kwm127] [PMID: 17584757]
[85]
De Vera, M.; Rahman, M.M.; Rankin, J.; Kopec, J.; Gao, X.; Choi, H. Gout and the risk of Parkinson’s disease: a cohort study. Arthritis Rheum., 2008, 59(11), 1549-1554.
[http://dx.doi.org/10.1002/art.24193] [PMID: 18975349]
[86]
Andreadou, E.; Nikolaou, C.; Gournaras, F.; Rentzos, M.; Boufidou, F.; Tsoutsou, A.; Zournas, C.; Zissimopoulos, V.; Vassilopoulos, D. Serum uric acid levels in patients with Parkinson’s disease: their relationship to treatment and disease duration. Clin. Neurol. Neurosurg., 2009, 111(9), 724-728.
[http://dx.doi.org/10.1016/j.clineuro.2009.06.012] [PMID: 19632030]
[87]
Thérond, P.; Bonnefont-Rousselot, D.; Davit-Spraul, A.; Conti, M.; Legrand, A. Biomarkers of oxidative stress: an analytical approach. Curr. Opin. Clin. Nutr. Metab. Care, 2000, 3(5), 373-384.
[http://dx.doi.org/10.1097/00075197-200009000-00009] [PMID: 11151083]
[88]
Trottenberg, T.; Meissner, W.; Kabus, C.; Arnold, G.; Funk, T.; Einhaupl, K.M.; Kupsch, A. Neurostimulation of the ventral intermediate thalamic nucleus in inherited myoclonus-dystonia syndrome. Mov. Disord., 2001, 16(4), 769-771.
[http://dx.doi.org/10.1002/mds.1119] [PMID: 11481711]
[89]
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 2002, 7(9), 405-410.
[http://dx.doi.org/10.1016/S1360-1385(02)02312-9] [PMID: 12234732]
[90]
Wang, E.S.; Sun, Y.; Guo, J.G.; Gao, X.; Hu, J.W.; Zhou, L.; Hu, J.; Jiang, C.C. Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson’s disease. Acta Neurol. Scand., 2010, 122(5), 350-359.
[http://dx.doi.org/10.1111/j.1600-0404.2009.01318.x] [PMID: 20085559]
[91]
Swanson, C.R.; Berlyand, Y.; Xie, S.X.; Alcalay, R.N.; Chahine, L.M.; Chen-Plotkin, A.S. Plasma apolipoprotein A1 associates with age at onset and motor severity in early Parkinson’s disease patients. Mov. Disord., 2015, 30(12), 1648-1656.
[http://dx.doi.org/10.1002/mds.26290] [PMID: 26207725]
[92]
Fronczek, R.; Overeem, S.; Lee, S.Y.; Hegeman, I.M.; van Pelt, J.; van Duinen, S.G.; Lammers, G.J.; Swaab, D.F. Hypocretin (orexin) loss in Parkinson’s disease. Brain, 2007, 130(Pt 6), 1577-1585.
[http://dx.doi.org/10.1093/brain/awm090] [PMID: 17470494]
[93]
Clairembault, T.; Kamphuis, W.; Leclair-Visonneau, L.; Rolli-Derkinderen, M.; Coron, E.; Neunlist, M.; Hol, E.M.; Derkinderen, P. Enteric GFAP expression and phosphorylation in Parkinson’s disease. J. Neurochem., 2014, 130(6), 805-815.
[http://dx.doi.org/10.1111/jnc.12742] [PMID: 24749759]
[94]
Kikuchi, A.; Takeda, A.; Onodera, H.; Kimpara, T.; Hisanaga, K.; Sato, N.; Nunomura, A.; Castellani, R.J.; Perry, G.; Smith, M.A.; Itoyama, Y. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol. Dis., 2002, 9(2), 244-248.
[http://dx.doi.org/10.1006/nbdi.2002.0466] [PMID: 11895375]
[95]
Blandini, F.; Sinforiani, E.; Pacchetti, C.; Samuele, A.; Bazzini, E.; Zangaglia, R.; Nappi, G.; Martignoni, E. Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology, 2006, 66(4), 529-534.
[http://dx.doi.org/10.1212/01.wnl.0000198511.09968.b3] [PMID: 16505307]
[96]
Goldstein, D.S.; Holmes, C.; Lopez, G.J.; Wu, T.; Sharabi, Y. Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Parkinsonism Relat. Disord., 2018, 50, 108-112.
[http://dx.doi.org/10.1016/j.parkreldis.2018.02.023] [PMID: 29475591]
[97]
Caronti, B.; Antonini, G.; Calderaro, C.; Ruggieri, S.; Palladini, G.; Pontieri, F.E.; Colosimo, C. Dopamine transporter immunoreactivity in peripheral blood lymphocytes in Parkinson’s disease. J. Neural Transm. (Vienna), 2001, 108(7), 803-807.
[http://dx.doi.org/10.1007/s007020170030] [PMID: 11515746]
[98]
van der Zee, S.; Vermeiren, Y.; Fransen, E.; Van Dam, D.; Aerts, T.; Gerritsen, M.J.; Spikman, J.M.; van Laar, T.; De Deyn, P.P. Monoaminergic markers across the cognitive spectrum of Lewy body disease. J. Parkinsons Dis., 2018, 8(1), 71-84.
[http://dx.doi.org/10.3233/JPD-171228] [PMID: 29480224]
[99]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[100]
Shabaninejad, Z.; Yousefi, F.; Movahedpour, A.; Ghasemi, Y.; Dokanehiifard, S.; Rezaei, S.; Aryan, R.; Savardashtaki, A.; Mirzaei, H. Electrochemical-based biosensors for microRNA detection: nanotechnology comes into view. Anal. Biochem., 2019, 581, 113349.
[http://dx.doi.org/10.1016/j.ab.2019.113349] [PMID: 31254490]
[101]
Bennett, M.C. The role of α-synuclein in neurodegenerative diseases. Pharmacol. Ther., 2005, 105(3), 311-331.
[http://dx.doi.org/10.1016/j.pharmthera.2004.10.010] [PMID: 15737408]
[102]
Wright, J.A.; Wang, X.; Brown, D.R. Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB J., 2009, 23(8), 2384-2393.
[http://dx.doi.org/10.1096/fj.09-130039] [PMID: 19325037]
[103]
Uversky, V.N. A protein-chameleon: conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders. J. Biomol. Struct. Dyn., 2003, 21(2), 211-234.
[http://dx.doi.org/10.1080/07391102.2003.10506918] [PMID: 12956606]
[104]
Kruse, N.; Schulz-Schaeffer, W.J.; Schlossmacher, M.G.; Mollenhauer, B. Development of electrochemiluminescence-based singleplex and multiplex assays for the quantification of α-synuclein and other proteins in cerebrospinal fluid. Methods, 2012, 56(4), 514-518.
[http://dx.doi.org/10.1016/j.ymeth.2012.03.016] [PMID: 22465793]
[105]
Parnetti, L.; Chiasserini, D.; Bellomo, G.; Giannandrea, D.; De Carlo, C.; Qureshi, M.M.; Ardah, M.T.; Varghese, S.; Bonanni, L.; Borroni, B.; Tambasco, N.; Eusebi, P.; Rossi, A.; Onofrj, M.; Padovani, A.; Calabresi, P.; El-Agnaf, O. Cerebrospinal fluid Tau/α-synuclein ratio in Parkinson’s disease and degenerative dementias. Mov. Disord., 2011, 26(8), 1428-1435.
[http://dx.doi.org/10.1002/mds.23670] [PMID: 21469206]
[106]
Atik, A.; Stewart, T.; Zhang, J. Alpha‐synuclein as a biomarker for Parkinson’s disease. Brain Pathol., 2016, 26(3), 410-418.
[http://dx.doi.org/10.1111/bpa.12370] [PMID: 26940058]
[107]
Horrocks, M.H.; Tosatto, L.; Dear, A.J.; Garcia, G.A.; Iljina, M.; Cremades, N.; Dalla Serra, M.; Knowles, T.P.; Dobson, C.M.; Klenerman, D. Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers. Anal. Chem., 2015, 87(17), 8818-8826.
[http://dx.doi.org/10.1021/acs.analchem.5b01811] [PMID: 26258431]
[108]
Sun, K.; Xia, N.; Zhao, L.; Liu, K.; Hou, W.; Liu, L. Aptasensors for the selective detection of alpha-synuclein oligomer by colorimetry, surface plasmon resonance and electrochemical impedance spectroscopy. Sens. Actuators B Chem., 2017, 245, 87-94.
[http://dx.doi.org/10.1016/j.snb.2017.01.171]
[109]
Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Alibolandi, M.; Hassanzadeh-Khayat, M.; Emrani, A.S.; Abnous, K. A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer. Biosens. Bioelectron., 2019, 123, 14-18.
[http://dx.doi.org/10.1016/j.bios.2018.09.081] [PMID: 30278340]
[110]
Lopes, P.; Dyrnesli, H.; Lorenzen, N.; Otzen, D.; Ferapontova, E.E. Electrochemical analysis of the fibrillation of Parkinson’s disease α-synuclein. Analyst (Lond.), 2014, 139(4), 749-756.
[http://dx.doi.org/10.1039/C3AN01616A] [PMID: 24343298]
[111]
An, Y.; Tang, L.; Jiang, X.; Chen, H.; Yang, M.; Jin, L.; Zhang, S.; Wang, C.; Zhang, W. A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. Chemistry, 2010, 16(48), 14439-14446.
[http://dx.doi.org/10.1002/chem.201001654] [PMID: 21038326]
[112]
An, Y.; Jiang, X.; Bi, W.; Chen, H.; Jin, L.; Zhang, S.; Wang, C.; Zhang, W. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosens. Bioelectron., 2012, 32(1), 224-230.
[http://dx.doi.org/10.1016/j.bios.2011.12.017] [PMID: 22221797]
[113]
Sonuç Karaboğa, M.N.; Sezgintürk, M.K. Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neuro-biosensor system. Analyst (Lond.), 2019, 144(2), 611-621.
[http://dx.doi.org/10.1039/C8AN01279B] [PMID: 30457584]
[114]
Bryan, T.; Luo, X.; Forsgren, L.; Morozova-Roche, L.A.; Davis, J.J. The robust electrochemical detection of a Parkinson’s disease marker in whole blood sera. Chem. Sci. (Camb.), 2012, 3(12), 3468-3473.
[http://dx.doi.org/10.1039/c2sc21221h]
[115]
Jensen, J.; Farina, M.; Zuccheri, G.; Grange, W.; Hegner, M. Quantitative, label-free detection of the aggregation of α-synuclein using microcantilever arrays operated in a liquid environment. J. Sensors, 2012., 874086.
[http://dx.doi.org/10.1155/2012/874086]
[116]
Zhou, J.; Wang, W.; Yu, P.; Xiong, E.; Zhang, X.; Chen, J. A simple label-free electrochemical aptasensor for dopamine detection. RSC Adv., 2014, 4(94), 52250-52255.
[http://dx.doi.org/10.1039/C4RA08090D]
[117]
Álvarez-Martos, I.; Ferapontova, E.E. Electrochemical label-free aptasensor for specific analysis of dopamine in serum in the presence of structurally related neurotransmitters. Anal. Chem., 2016, 88(7), 3608-3616.
[http://dx.doi.org/10.1021/acs.analchem.5b04207] [PMID: 26916821]
[118]
Taheri, R.A.; Eskandari, K.; Negahdary, M. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem. J., 2018, 143, 243-251.
[http://dx.doi.org/10.1016/j.microc.2018.08.008]
[119]
Florescu, M.; David, M. Tyrosinase-based biosensors for selective dopamine detection. Sensors (Basel), 2017, 17(6), 1314.
[http://dx.doi.org/10.3390/s17061314] [PMID: 28590453]
[120]
Cui, X.; Fang, X.; Zhao, H.; Li, Z.; Ren, H. An electrochemical sensor for dopamine based on polydopamine modified reduced graphene oxide anchored with tin dioxide and gold nanoparticles. Anal. Methods, 2017, 9(36), 5322-5332.
[http://dx.doi.org/10.1039/C7AY00991G]
[121]
Kim, D-S.; Kang, E-S.; Baek, S.; Choo, S-S.; Chung, Y-H.; Lee, D.; Min, J.; Kim, T-H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci. Rep., 2018, 8(1), 14049.
[http://dx.doi.org/10.1038/s41598-018-32477-0] [PMID: 30232374]
[122]
Shin, J-W.; Yoon, J.; Shin, M.; Choi, J-W. Electrochemical dopamine biosensor composed of silver encapsulated MoS2 hybrid nanoparticle. Biotechnol. Bioprocess Eng., 2019, 24, 135-144.
[123]
Mathew, G.; Dey, P.; Das, R.; Chowdhury, S.D.; Paul Das, M.; Veluswamy, P.; Neppolian, B.; Das, J. Direct electrochemical reduction of hematite decorated graphene oxide (α-Fe2O3@erGO) nanocomposite for selective detection of Parkinson’s disease biomarker. Biosens. Bioelectron., 2018, 115, 53-60.
[http://dx.doi.org/10.1016/j.bios.2018.05.024] [PMID: 29800831]
[124]
Vázquez-Guardado, A.; Barkam, S.; Peppler, M.; Biswas, A.; Dennis, W.; Das, S.; Seal, S.; Chanda, D. Enzyme-free plasmonic biosensor for direct detection of neurotransmitter dopamine from whole blood. Nano Lett., 2019, 19(1), 449-454.
[http://dx.doi.org/10.1021/acs.nanolett.8b04253] [PMID: 30525676]
[125]
Zablocka, I.; Wysocka-Zolopa, M.; Winkler, K. Electrochemical detection of dopamine at a gold electrode modified with a polypyrrole–mesoporous silica molecular sieves (MCM-48). Film. Int. J. Mol. Sci., 2019, 20(1), 111.
[http://dx.doi.org/10.3390/ijms20010111]
[126]
Huang, Y.; Zhang, Y.; Liu, D.; Li, M.; Yu, Y.; Yang, W.; Li, H. Facile synthesis of highly ordered mesoporous Fe3O4 with ultrasensitive detection of dopamine. Talanta, 2019, 201, 511-518.
[http://dx.doi.org/10.1016/j.talanta.2019.01.099] [PMID: 31122458]
[127]
Orzari, L.O.; Cristina de Freitas, R.; Aparecida de Araujo Andreotti, I.; Gatti, A.; Janegitz, B.C. A novel disposable self-adhesive inked paper device for electrochemical sensing of dopamine and serotonin neurotransmitters and biosensing of glucose. Biosens. Bioelectron., 2019, 138, 111310.
[http://dx.doi.org/10.1016/j.bios.2019.05.015] [PMID: 31103014]
[128]
Iranmanesh, T.; Foroughi, M.M.; Jahani, S.; Shahidi Zandi, M.; Hassani Nadiki, H. Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta, 2020, 207, 120318.
[http://dx.doi.org/10.1016/j.talanta.2019.120318] [PMID: 31594597]
[129]
Xiao, L.; Jia, L.; Zhao, S.; Tang, X.; Zhu, C.; Huang, H.; Jiang, J.; Li, M. Solvent-free synthesis of sheet-like carbon coated MnO with three-dimensional porous structure for simultaneous detection of dopamine and uric acid. J. Electroanal. Chem. (Lausanne), 2020, 858, 113823.
[http://dx.doi.org/10.1016/j.jelechem.2020.113823]
[130]
Yue, H.Y.; Huang, S.; Chang, J.; Heo, C.; Yao, F.; Adhikari, S.; Gunes, F.; Liu, L.C.; Lee, T.H.; Oh, E.S.; Li, B.; Zhang, J.J.; Huy, T.Q.; Luan, N.V.; Lee, Y.H. ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson’s disease. ACS Nano, 2014, 8(2), 1639-1646.
[http://dx.doi.org/10.1021/nn405961p] [PMID: 24405012]
[131]
Sun, C-L.; Su, C-H.; Wu, J-J. Synthesis of short graphene oxide nanoribbons for improved biomarker detection of Parkinson’s disease. Biosens. Bioelectron., 2015, 67, 327-333.
[http://dx.doi.org/10.1016/j.bios.2014.08.046] [PMID: 25201013]
[132]
Yang, Y.; Li, M.; Zhu, Z. A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid. Talanta, 2019, 201, 295-300.
[http://dx.doi.org/10.1016/j.talanta.2019.03.096] [PMID: 31122426]
[133]
Nagles, E.; Calderón, J.A.; García‐Beltrán, O. Development of an electrochemical sensor to detect dopamine and ascorbic acid based on neodymium (III) oxide and chitosan. Electroanalysis, 2017, 29(4), 1081-1087.
[http://dx.doi.org/10.1002/elan.201600729]
[134]
Park, D-J.; Choi, J-H.; Lee, W-J.; Um, S.H.; Oh, B-K. Selective electrochemical detection of dopamine using reduced graphene oxide sheets-gold nanoparticles modified electrode. J. Nanosci. Nanotechnol., 2017, 17(11), 8012-8018.
[http://dx.doi.org/10.1166/jnn.2017.15073]
[135]
Schwienbacher, C.; Foco, L.; Picard, A.; Corradi, E.; Serafin, A.; Panzer, J.; Zanigni, S.; Blankenburg, H.; Facheris, M.F.; Giannini, G.; Falla, M.; Cortelli, P.; Pramstaller, P.P.; Hicks, A.A. Plasma and white blood cells show different miRNA expression profiles in Parkinson’s disease. J. Mol. Neurosci., 2017, 62(2), 244-254.
[http://dx.doi.org/10.1007/s12031-017-0926-9] [PMID: 28540642]
[136]
Shah, P.; Cho, S.K.; Thulstrup, P.W.; Bjerrum, M.J.; Lee, P.H.; Kang, J-H.; Bhang, Y-J.; Yang, S.W. MicroRNA biomarkers in neurodegenerative diseases and emerging nanosensors technology. J. Mov. Disord., 2017, 10(1), 18-28.
[http://dx.doi.org/10.14802/jmd.16037] [PMID: 28122423]
[137]
Petillo, D.; Orey, S.; Tan, A.C.; Forsgren, L.; Khoo, S.K. Parkinson’s disease-related circulating microRNA biomarkers-a validation study. AIMS Med. Sci., 2015, 2(1), 7-14.
[138]
Vallelunga, A.; Ragusa, M.; Di Mauro, S.; Iannitti, T.; Pilleri, M.; Biundo, R.; Weis, L.; Di Pietro, C.; De Iuliis, A.; Nicoletti, A.; Zappia, M.; Purrello, M.; Antonini, A. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front. Cell. Neurosci., 2014, 8, 156.
[http://dx.doi.org/10.3389/fncel.2014.00156] [PMID: 24959119]
[139]
Aghili, Z.; Nasirizadeh, N.; Divsalar, A.; Shoeibi, S.; Yaghmaei, P. A highly sensitive miR-195 nanobiosensor for early detection of Parkinson’s disease. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 32-40.
[http://dx.doi.org/10.1080/21691401.2017.1411930]
[140]
Khalilzadeh, B.; Rashidi, M.; Soleimanian, A.; Tajalli, H.; Kanberoglu, G.S.; Baradaran, B.; Rashidi, M-R. Development of a reliable microRNA based electrochemical genosensor for monitoring of miR-146a, as key regulatory agent of neurodegenerative disease. Int. J. Biol. Macromol., 2019, 134, 695-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.061] [PMID: 31082423]
[141]
Jubete, E.; Ochoteco, E.; Loinaz, I.; Pomposo, J.A.; Grande, H.; Linazasoro, G. Electrochemical biosensor development for detection of L-Dopa levels in plasma during Parkinson illness. Lecce, Italy, 26-29 Oct. 2008;; Sensors, IEEE, 2008.
[http://dx.doi.org/10.1109/ICSENS.2008.4716425]
[142]
Mobed, A.; Razavi, S.; Ahmadalipour, A.; Shakouri, S.K.; Koohkan, G. Biosensors in Parkinson’s disease. Clin. Chim. Acta, 2021, 518, 51-58.
[http://dx.doi.org/10.1016/j.cca.2021.03.009] [PMID: 33753044]
[143]
Yousefi, M.; Dehghani, S.; Nosrati, R.; Zare, H.; Evazalipour, M.; Mosafer, J.; Tehrani, B.S.; Pasdar, A.; Mokhtarzadeh, A.; Ramezani, M. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens. Bioelectron., 2019, 130, 1-19.
[http://dx.doi.org/10.1016/j.bios.2019.01.015] [PMID: 30716589]
[144]
Nejadmansouri, M.; Majdinasab, M.; Nunes, G.S.; Marty, J.L. An overview of optical and electrochemical sensors and biosensors for analysis of antioxidants in food during the last 5 years. Sensors (Basel), 2021, 21(4), 1176.
[http://dx.doi.org/10.3390/s21041176] [PMID: 33562374]
[145]
Leatherbarrow, R.J.; Edwards, P.R. Analysis of molecular recognition using optical biosensors. Curr. Opin. Chem. Biol., 1999, 3(5), 544-547.
[http://dx.doi.org/10.1016/S1367-5931(99)00006-X] [PMID: 10508667]
[146]
Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA, 2018, 115(13), 3225-3230.
[http://dx.doi.org/10.1073/pnas.1721690115] [PMID: 29531058]
[147]
Khatri, A.; Punjabi, N.; Ghosh, D.; Maji, S.K.; Mukherji, S. Detection and differentiation of α-Synuclein monomer and fibril by chitosan film coated nanogold array on optical sensor platform. Sens. Actuators B Chem., 2018, 255, 692-700.
[http://dx.doi.org/10.1016/j.snb.2017.08.051]
[148]
Gao, H.; Zhao, Z.; He, Z.; Wang, H.; Liu, M.; Hu, Z.; Cheng, O.; Yang, Y.; Zhu, L. Detection of Parkinson’s disease through the peptoid recognizing alpha-synuclein in the serum. ACS Chem. Neurosci., 2019, 10(3), 1204-1208.
[http://dx.doi.org/10.1021/acschemneuro.8b00540] [PMID: 30682886]
[149]
Etezadi, D.; Warner Iv, J.B.; Ruggeri, F.S.; Dietler, G.; Lashuel, H.A.; Altug, H. Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light Sci. Appl., 2017, 6(8), e17029.
[http://dx.doi.org/10.1038/lsa.2017.29] [PMID: 30167280]
[150]
Etezadi, D.; Warner, J.B., IV; Lashuel, H.A.; Altug, H. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas. ACS Sens., 2018, 3(6), 1109-1117.
[http://dx.doi.org/10.1021/acssensors.8b00115] [PMID: 29845861]
[151]
Yang, X.; Li, H.; Zhao, X.; Liao, W.; Zhang, C.X.; Yang, Z. A novel, label-free liquid crystal biosensor for Parkinson’s disease related alpha-synuclein. Chem. Commun. (Camb.), 2020, 56(40), 5441-5444.
[http://dx.doi.org/10.1039/D0CC01025A] [PMID: 32292959]
[152]
Yang, X.; Zhao, X.; Liu, F.; Li, H.; Zhang, C.X.; Yang, Z. Simple, rapid and sensitive detection of Parkinson’s disease related alpha-synuclein using a DNA aptamer assisted liquid crystal biosensor. Soft Matter, 2021, 17(18), 4842-4847.
[http://dx.doi.org/10.1039/D1SM00298H] [PMID: 33889925]
[153]
Huang, H.; Shi, S.; Gao, X.; Gao, R.; Zhu, Y.; Wu, X.; Zang, R.; Yao, T. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17β-estradiol detection. Biosens. Bioelectron., 2016, 79, 198-204.
[http://dx.doi.org/10.1016/j.bios.2015.12.024] [PMID: 26708240]
[154]
Yildirim, A.; Bayindir, M. Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Anal. Chem., 2014, 86(11), 5508-5512.
[http://dx.doi.org/10.1021/ac500771q] [PMID: 24803112]
[155]
Ankireddy, S.R.; Kim, J. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots. Int. J. Nanomedicine, 2015, 10(Spec Iss), 113-119.
[PMID: 26347250]
[156]
Sun, Y.; Lin, Y.; Ding, C.; Sun, W.; Dai, Y.; Zhu, X.; Liu, H.; Luo, C. An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica@ graphite oxide polymers. Sens. Actuators B Chem., 2018, 257, 312-323.
[http://dx.doi.org/10.1016/j.snb.2017.10.171]
[157]
Dalirirad, S.; Steckl, A.J. Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal. Biochem., 2020, 596, 113637.
[http://dx.doi.org/10.1016/j.ab.2020.113637] [PMID: 32087129]
[158]
Wang, Y.; Kang, K.; Wang, S.; Kang, W.; Cheng, C.; Niu, L.M.; Guo, Z. A novel label-free fluorescence aptasensor for dopamine detection based on an Exonuclease III-and SYBR Green I-aided amplification strategy. Sens. Actuators B Chem., 2020, 305, 127348.
[http://dx.doi.org/10.1016/j.snb.2019.127348]
[159]
Shulman, J.M.; De Jager, P.L.; Feany, M.B. Parkinson’s disease: genetics and pathogenesis. Annu. Rev. Pathol., 2011, 6, 193-222.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130242] [PMID: 21034221]
[160]
Ma, W.; Qin, L-X.; Liu, F-T.; Gu, Z.; Wang, J.; Pan, Z.G.; James, T.D.; Long, Y-T. Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing. Sci. Rep., 2013, 3, 1537.
[http://dx.doi.org/10.1038/srep01537] [PMID: 23524384]
[161]
Iwata, A.; Maruyama, M.; Akagi, T.; Hashikawa, T.; Kanazawa, I.; Tsuji, S.; Nukina, N. Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum. Mol. Genet., 2003, 12(20), 2625-2635.
[http://dx.doi.org/10.1093/hmg/ddg283] [PMID: 12928483]
[162]
Arnold, S.; Pampalakis, G.; Kantiotou, K.; Silva, D.; Cortez, C.; Missailidis, S.; Sotiropoulou, G. One round of SELEX for the generation of DNA aptamers directed against KLK6. Biol. Chem., 2012, 393(5), 343-353.
[http://dx.doi.org/10.1515/hsz-2011-0253]
[163]
Tokuda, T.; Qureshi, M.M.; Ardah, M.T.; Varghese, S.; Shehab, S.A.; Kasai, T.; Ishigami, N.; Tamaoka, A.; Nakagawa, M.; El-Agnaf, O.M. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology, 2010, 75(20), 1766-1772.
[http://dx.doi.org/10.1212/WNL.0b013e3181fd613b] [PMID: 20962290]
[164]
Outeiro, T.F.; Putcha, P.; Tetzlaff, J.E.; Spoelgen, R.; Koker, M.; Carvalho, F.; Hyman, B.T.; McLean, P.J. Formation of toxic oligomeric α-synuclein species in living cells. PLoS One, 2008, 3(4), e1867.
[http://dx.doi.org/10.1371/journal.pone.0001867] [PMID: 18382657]
[165]
Mohammadi, S.; Nikkhah, M.; Hosseinkhani, S. Investigation of the effects of carbon-based nanomaterials on A53T alpha-synuclein aggregation using a whole-cell recombinant biosensor. Int. J. Nanomedicine, 2017, 12, 8831-8840.
[http://dx.doi.org/10.2147/IJN.S144764] [PMID: 29276384]
[166]
Danzer, K.M.; Ruf, W.P.; Putcha, P.; Joyner, D.; Hashimoto, T.; Glabe, C.; Hyman, B.T.; McLean, P.J. Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J., 2011, 25(1), 326-336.
[http://dx.doi.org/10.1096/fj.10-164624] [PMID: 20876215]
[167]
Braun, A.R.; Liao, E.E.; Horvath, M.; Kalra, P.; Acosta, K.; Young, M.C.; Kochen, N.N.; Lo, C.H.; Brown, R.; Evans, M.D. Potent inhibitors of toxic alpha-synuclein identified via cellular time-resolved FRET biosensors. NPJ Parkinsons Dis., 2021, 7(1), 1-17.
[168]
Dimant, H.; Kalia, S.K.; Kalia, L.V.; Zhu, L.N.; Kibuuka, L.; Ebrahimi-Fakhari, D.; McFarland, N.R.; Fan, Z.; Hyman, B.T.; McLean, P.J. Direct detection of alpha synuclein oligomers in vivo. Acta Neuropathol. Commun., 2013, 1(1), 6.
[http://dx.doi.org/10.1186/2051-5960-1-6] [PMID: 24252244]
[169]
Aelvoet, S-A.; Ibrahimi, A.; Macchi, F.; Gijsbers, R.; Van den Haute, C.; Debyser, Z.; Baekelandt, V. Noninvasive bioluminescence imaging of α-synuclein oligomerization in mouse brain using split firefly luciferase reporters. J. Neurosci., 2014, 34(49), 16518-16532.
[http://dx.doi.org/10.1523/JNEUROSCI.4933-13.2014] [PMID: 25471588]
[170]
Roda, A.; Guardigli, M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal. Bioanal. Chem., 2012, 402(1), 69-76.
[http://dx.doi.org/10.1007/s00216-011-5455-8] [PMID: 22002591]
[171]
Branchini, B.R.; Southworth, T.L.; Khattak, N.F.; Michelini, E.; Roda, A. Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal. Biochem., 2005, 345(1), 140-148.
[http://dx.doi.org/10.1016/j.ab.2005.07.015] [PMID: 16125663]
[172]
Safarpour, H.; Dehghani, S.; Nosrati, R.; Zebardast, N.; Alibolandi, M.; Mokhtarzadeh, A.; Ramezani, M. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens. Bioelectron., 2020, 148, 111833.
[http://dx.doi.org/10.1016/j.bios.2019.111833] [PMID: 31733465]
[173]
Robati, R.Y.; Arab, A.; Ramezani, M.; Langroodi, F.A.; Abnous, K.; Taghdisi, S.M. Aptasensors for quantitative detection of kanamycin. Biosens. Bioelectron., 2016, 82, 162-172.
[http://dx.doi.org/10.1016/j.bios.2016.04.011] [PMID: 27085947]
[174]
Hwang, E.; Song, J.; Zhang, J. Integration of nanomaterials and bioluminescence resonance energy transfer techniques for sensing biomolecules. Biosensors (Basel), 2019, 9(1), 42.
[http://dx.doi.org/10.3390/bios9010042] [PMID: 30884844]
[175]
Tsukakoshi, K.; Abe, K.; Sode, K.; Ikebukuro, K. Selection of DNA aptamers that recognize α-synuclein oligomers using a competitive screening method. Anal. Chem., 2012, 84(13), 5542-5547.
[http://dx.doi.org/10.1021/ac300330g] [PMID: 22697251]
[176]
Foulds, P.G.; Mitchell, J.D.; Parker, A.; Turner, R.; Green, G.; Diggle, P.; Hasegawa, M.; Taylor, M.; Mann, D.; Allsop, D. Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J., 2011, 25(12), 4127-4137.
[http://dx.doi.org/10.1096/fj.10-179192] [PMID: 21865317]
[177]
Davis, J.W.; Grandinetti, A.; Waslien, C.I.; Ross, G.W.; White, L.R.; Morens, D.M. Observations on serum uric acid levels and the risk of idiopathic Parkinson’s disease. Am. J. Epidemiol., 1996, 144(5), 480-484.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a008954] [PMID: 8781463]
[178]
Ogawa, I.; Saito, Y.; Saigoh, K.; Hosoi, Y.; Mitsui, Y.; Noguchi, N.; Kusunoki, S. The significance of oxidized DJ-1 protein (oxDJ-1) as a biomarker for Parkinson’s disease. Brain Nerve, 2014, 66(4), 471-477.
[179]
Rappold, P.M.; Tieu, K. Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics, 2010, 7(4), 413-423.
[http://dx.doi.org/10.1016/j.nurt.2010.07.001] [PMID: 20880505]
[180]
Nagai, Y.; Ueno, S.; Saeki, Y.; Soga, F.; Hirano, M.; Yanagihara, T. Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology, 1996, 46(3), 791-795.
[http://dx.doi.org/10.1212/WNL.46.3.791] [PMID: 8618685]
[181]
Bisaglia, M.; Mammi, S.; Bubacco, L. Structural insights on physiological functions and pathological effects of α-synuclein. FASEB J., 2009, 23(2), 329-340.
[http://dx.doi.org/10.1096/fj.08-119784] [PMID: 18948383]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy