Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In Silico Studies of Piperidine Derivatives as Protein Kinase B Inhibitors through 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation

Author(s): Sisi Liu, Yaxin Li*, Jin Wang, Xue Rui, Haobo Tian, Chenshuo Li and Chunyan Guo

Volume 19, Issue 7, 2022

Published on: 27 January, 2022

Page: [591 - 605] Pages: 15

DOI: 10.2174/1570180818666211207105516

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Protein kinase B (Akt) is a serine/threonine-protein kinase that drives the diverse physiological process. Akt is a promising therapeutic target, which involves cancer cell growth, survival, proliferation and metabolism.

Objective: The study aims to design highly active Akt inhibitors, and to elucidate the structural requirements for their biological activity, we analyzed the key binding features and summarized the structural determinants for their bioactivities.

Methods: A series of piperidine derivatives have been investigated employing three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulation.

Results: The statistics of the comparative molecular field analysis (CoMFA) model (Q2=0.631, R2=0.951) and the comparative molecular similarity index analysis (CoMSIA) model (Q2=0.663, R2=0.966) indicated that our 3D-QSAR model was accurate and reliable. Besides, the stability of receptor-ligand interactions under physiological conditions was then evaluated by molecular dynamics simulation, in agreement with the molecular docking results.

Conclusion: Our study provided valuable insights for the discovery of potent Akt inhibitors.

Keywords: Protein kinase B, CoMFA, CoMSIA, 3D-QSAR, molecular docking, molecular dynamics simulation.

Graphical Abstract
[1]
Uko, N.E.; Güner, O.F.; Barnett, L.M.A.; Matesic, D.F.; Bowen, J.P. Discovery and biological activity of computer-assisted drug designed Akt pathway inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(19), 3247-3250.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.006] [PMID: 30143420]
[2]
Cecconi, S.; Mauro, A.; Cellini, V.; Patacchiola, F. The role of Akt signalling in the mammalian ovary. Int. J. Dev. Biol., 2012, 56(10-12), 809-817.
[http://dx.doi.org/10.1387/ijdb.120146sc] [PMID: 23417403]
[3]
Rychahou, P.G.; Kang, J.; Gulhati, P.; Doan, H.Q.; Chen, L.A.; Xiao, S.Y.; Chung, D.H.; Evers, B.M. Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(51), 20315-20320.
[http://dx.doi.org/10.1073/pnas.0810715105] [PMID: 19075230]
[4]
Batra, A.; Winquist, E. Emerging cell cycle inhibitors for treating metastatic castration-resistant prostate cancer. Expert Opin. Emerg. Drugs, 2018, 23(4), 271-282.
[http://dx.doi.org/10.1080/14728214.2018.1547707] [PMID: 30422005]
[5]
Balasuriya, N.; Davey, N.E.; Johnson, J.L.; Liu, H.; Biggar, K.K.; Cantley, L.C.; Li, S.S.; O’Donoghue, P. Phosphorylation-dependent sub-strate selectivity of protein kinase B (AKT1). J. Biol. Chem., 2020, 295(24), 8120-8134.
[http://dx.doi.org/10.1074/jbc.RA119.012425] [PMID: 32350110]
[6]
Huck, B.R.; Mochalkin, I. Recent progress towards clinically relevant ATP-competitive Akt inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(13), 2838-2848.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.090] [PMID: 28506751]
[7]
Lapierre, J.M.; Eathiraj, S.; Vensel, D.; Liu, Y.; Bull, C.O.; Cornell-Kennon, S.; Iimura, S.; Kelleher, E.W.; Kizer, D.E.; Koerner, S.; Ma-khija, S.; Matsuda, A.; Moussa, M.; Namdev, N.; Savage, R.E.; Szwaya, J.; Volckova, E.; Westlund, N.; Wu, H.; Schwartz, B. Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ 092): An Orally bioavailable, se-lective, and potent allosteric AKT inhibitor. J. Med. Chem., 2016, 59(13), 6455-6469.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00619] [PMID: 27305487]
[8]
Zhan, W.; Che, J.; Xu, L.; Wu, Y.; Hu, X.; Zhou, Y.; Cheng, G.; Hu, Y.; Dong, X.; Li, J. Discovery of pyrazole-thiophene derivatives as highly Potent, orally active Akt inhibitors. Eur. J. Med. Chem., 2019, 180, 72-85.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.017] [PMID: 31301565]
[9]
Blake, J.F.; Xu, R.; Bencsik, J.R.; Xiao, D.; Kallan, N.C.; Schlachter, S.; Mitchell, I.S.; Spencer, K.L.; Banka, A.L.; Wallace, E.M.; Gloor, S.L.; Martinson, M.; Woessner, R.D.; Vigers, G.P.A.; Brandhuber, B.J.; Liang, J.; Safina, B.S.; Li, J.; Zhang, B.; Chabot, C.; Do, S.; Lee, L.; Oeh, J.; Sampath, D.; Lee, B.B.; Lin, K.; Liederer, B.M.; Skelton, N.J. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors. J. Med. Chem., 2012, 55(18), 8110-8127.
[http://dx.doi.org/10.1021/jm301024w] [PMID: 22934575]
[10]
Spencer, A.; Sutherland, H.J.; O’Dwyer, M.E.; Huang, S.Y.; Stewart, K.; Chari, A.; Rosenzwieg, M.; Nooka, A.K.; Rosenbaum, C.A. Novel AKT Inhibitor Afuresertib in combination with bortezomib and dexamethasone demonstrates favorable safety profile and significant clini-cal activity in patients with relapsed/refractory multiple myeloma. Blood, 2013, 122(21), 283.
[http://dx.doi.org/10.1182/blood.V122.21.283.283]
[11]
Pal, S.K.; Reckamp, K.; Yu, H.; Figlin, R.A. Akt inhibitors in clinical development for the treatment of cancer. Expert Opin. Investig. Drugs, 2010, 19(11), 1355-1366.
[http://dx.doi.org/10.1517/13543784.2010.520701] [PMID: 20846000]
[12]
Aghajanian, C.; Bell-McGuinn, K.M.; Burris, H.A., III; Siu, L.L.; Stayner, L-A.; Wheler, J.J.; Hong, D.S.; Kurkjian, C.; Pant, S.; Santiago-Walker, A.; Gauvin, J.L.; Antal, J.M.; Opalinska, J.B.; Morris, S.R.; Infante, J.R. A phase I, open-label, two-stage study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral AKT inhibitor GSK2141795 in patients with solid tumors. Invest. New Drugs, 2018, 36(6), 1016-1025.
[http://dx.doi.org/10.1007/s10637-018-0591-z] [PMID: 29611022]
[13]
Yan, L.; Guo, N.; Cao, Y.; Zeng, S.; Wang, J.; Lv, F.; Wang, Y.; Cao, X. miRNA 145 inhibits myocardial infarction induced apoptosis through autophagy via Akt3/mTOR signaling pathway in vitro and in vivo. Int. J. Mol. Med., 2018, 42(3), 1537-1547.
[http://dx.doi.org/10.3892/ijmm.2018.3748] [PMID: 29956747]
[14]
Murphy, A.G.; Zahurak, M.; Shah, M.; Weekes, C.D.; Hansen, A.; Siu, L.L.; Spreafico, A.; LoConte, N.; Anders, N.M.; Miles, T.; Rudek, M.A.; Doyle, L.A.; Nelkin, B.; Maitra, A.; Azad, N.S. A phase I study of dinaciclib in combination with MK-2206 in patients with ad-vanced pancreatic cancer. Clin. Transl. Sci., 2020, 13(6), 1178-1188.
[http://dx.doi.org/10.1111/cts.12802] [PMID: 32738099]
[15]
Dong, X.; Zhan, W.; Zhao, M.; Che, J.; Dai, X.; Wu, Y.; Xu, L.; Zhou, Y.; Zhao, Y.; Tian, T.; Cheng, G.; Jin, Z.; Li, J.; Shao, Y.; He, Q.; Yang, B.; Weng, Q.; Hu, Y. Discovery of 3,4,6-Trisubstituted piperidine derivatives as orally active, low hERG blocking Akt inhibitors via conformational restriction and structure-based design. J. Med. Chem., 2019, 62(15), 7264-7288.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00891] [PMID: 31298542]
[16]
Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design--a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[17]
Bhongade, B.A.; Amnerkar, N.D.; Gadad, A.K. 3D-QSAR Studies on 4,5-Dihydro-1H-pyrazolo[4,3-h]quinazolines as Plk-1, CDK2/A and Aur-A Serine/Threonine Kinase inhibitors. Lett. Drug Des. Discov., 2019, 16(4), 388-395.
[http://dx.doi.org/10.2174/1570180816666190611161332]
[18]
Sivakumar, K.C.; Haixiao, J.; Naman, C.B.; Sajeevan, T.P. Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein-ligand recognition process. Drug Dev. Res., 2020, 81(6), 685-699.
[http://dx.doi.org/10.1002/ddr.21673] [PMID: 32329098]
[19]
Vishwakarma, K.; Bhatt, H. Molecular modelling of quinoline derivatives as telomerase inhibitors through 3D-QSAR, molecular dynamics simulation, and molecular docking techniques. J. Mol. Model., 2021, 27(2), 30.
[http://dx.doi.org/10.1007/s00894-020-04648-2] [PMID: 33415518]
[20]
Zhao, J.; Zang, J.; Yang, J.; Gao, Q-B.; Yan, Y.; Ma, C.; Chen, Y.; Ding, L.; Liu, H-M. Investigating the binding mechanism of piperidinyl ureas inhibitors based on the UBC12-DCN1 interaction by 3D-QSAR, molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2020, pp. 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1841678] [PMID: 33183176]
[21]
Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov., 2018, 13(1), 23-37.
[http://dx.doi.org/10.1080/17460441.2018.1403419] [PMID: 29139324]
[22]
Śledź, P.; Caflisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin. Struct. Biol., 2018, 48, 93-102.
[http://dx.doi.org/10.1016/j.sbi.2017.10.010] [PMID: 29149726]
[23]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[24]
Clark, M.; Cramer, R.D., III; Van Opdenbosch, N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem., 1989, 10(8), 982-1012.
[http://dx.doi.org/10.1002/jcc.540100804]
[25]
Keretsu, S.; Bhujbal, S.P.; Cho, S.J. Docking and 3D-QSAR studies of Hydrazone and Triazole derivatives for selective inhibition of GRK2 over ROCK2. Lett. Drug Des. Discov., 2019, 16, 618-632.
[http://dx.doi.org/10.2174/1570180816666190618105320]
[26]
Lobo, M.J.; Ray, R.; Shenoy, G.G. Gaining deeper insights into the surface binding of bedaquiline analogues with the ATP synthase subu-nit C of Mycobacterium tuberculosis using molecular docking, molecular dynamics simulation and 3D-QSAR techniques. New J. Chem., 2020, 44(43), 18831-18852.
[http://dx.doi.org/10.1039/D0NJ02062A]
[27]
Sun, C.C.; Feng, L.J.; Sun, X.H.; Yu, R.L.; Chu, Y.Y.; Kang, C.M. Study on the interactions of pyrimidine derivatives with FAK by 3D-QSAR, molecular docking and molecular dynamics simulation. New J. Chem., 2020, 44, 1176-1186.
[http://dx.doi.org/10.1039/D0NJ02136A]
[28]
Shirvani, P.; Fassihi, A. Molecular modelling study on pyrrolo[2,3-b]pyridine derivatives as c-Met kinase inhibitors: A combined ap-proach using molecular docking, 3D-QSAR modelling and molecular dynamics simulation. Mol. Simul., 2020, 46(16), 1265-1280.
[http://dx.doi.org/10.1080/08927022.2020.1810853]
[29]
Kayikci, M.; Venkatakrishnan, A.J.; Scott-Brown, J.; Ravarani, C.N.J.; Flock, T.; Babu, M.M. Visualization and analysis of non-covalent contacts using the Protein Contacts Atlas. Nat. Struct. Mol. Biol., 2018, 25(2), 185-194.
[http://dx.doi.org/10.1038/s41594-017-0019-z] [PMID: 29335563]
[30]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[31]
Addie, M.; Ballard, P.; Buttar, D.; Crafter, C.; Currie, G.; Davies, B.R.; Debreczeni, J.; Dry, H.; Dudley, P.; Greenwood, R.; Johnson, P.D.; Kettle, J.G.; Lane, C.; Lamont, G.; Leach, A.; Luke, R.W.A.; Morris, J.; Ogilvie, D.; Page, K.; Pass, M.; Pearson, S.; Ruston, L. Discovery of 4-Amino-N- (1S)-1-(4-chlorophenyl)-3-hydroxypropyl 1-(7H-pyrrolo 2,3-d p yrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J. Med. Chem., 2013, 56(5), 2059-2073.
[http://dx.doi.org/10.1021/jm301762v] [PMID: 23394218]
[32]
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E. In In Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters SC’06 Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 11-17 Nov., 2006, pp. 43-43.
[http://dx.doi.org/10.1109/SC.2006.54]
[33]
Yan, X.E.; Ayaz, P.; Zhu, S.J.; Zhao, P.; Liang, L.; Zhang, C.H.; Wu, Y.C.; Li, J.L.; Choi, H.G.; Huang, X.; Shan, Y.; Shaw, D.E.; Yun, C.H. Structural basis of AZD9291 selectivity for EGFR T790M. J. Med. Chem., 2020, 63(15), 8502-8511.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00891] [PMID: 32672461]
[34]
Shariati, M.; Meric-Bernstam, F. Targeting AKT for cancer therapy. Expert Opin. Investig. Drugs, 2019, 28(11), 977-988.
[http://dx.doi.org/10.1080/13543784.2019.1676726] [PMID: 31594388]
[35]
Kornev, A.P.; Taylor, S.S. Dynamics-driven allostery in protein kinases. Trends Biochem. Sci., 2015, 40(11), 628-647.
[http://dx.doi.org/10.1016/j.tibs.2015.09.002] [PMID: 26481499]
[36]
Lu, Y.; Sun, H. Progress in the development of small molecular inhibitors of focal Adhesion Kinase (FAK). J. Med. Chem., 2020, 63(23), 14382-14403.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01248] [PMID: 33058670]
[37]
Murugesan, S.; Murugesan, J.; Palaniappan, S.; Palaniappan, S.; Murugan, T.; Siddiqui, S.S.; Loganathan, S. Tyrosine Kinase Inhibitors (TKIs) in lung cancer treatment: A comprehensive analysis. Curr. Cancer Drug Targets, 2021, 21(1), 55-69.
[http://dx.doi.org/10.2174/1568009620666201009130008] [PMID: 33038912]
[38]
Gungor, E.M.; Sever, B.; Altintop, M.D.; Ciftci, G.A. Design, synthesis, in vitro and in silico evaluation of new hydrazone-based antitumor agents as potent Akt inhibitors. Lett. Drug Des. Discov., 2020, 17(11), 1380-1392.
[http://dx.doi.org/10.2174/1570180817999200618163507]
[39]
Gu, X.; Wang, Y.; Wang, M.; Wang, J.; Li, N. Computational investigation of imidazopyridine analogs as protein kinase B (Akt1) allosteric inhibitors by using 3D-QSAR, molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2021, 39(1), 63-78.
[http://dx.doi.org/10.1080/07391102.2019.1705185] [PMID: 31838955]
[40]
Chu, H.; He, Q-x.; Wang, J.; Hu, Y.; Wang, Y-q.; Lin, Z-h. In silico design of novel benzohydroxamate-based compounds as inhibitors of histone deacetylase 6 based on 3D-QSAR, molecular docking, and molecular dynamics simulations. New J. Chem., 2020, 44(48), 21201-21210.
[http://dx.doi.org/10.1039/D0NJ04704J]
[41]
Vyas, V.K.; Ghate, M.; Gupta, N. 3D QSAR and HQSAR analysis of protein kinase B (PKB/Akt) inhibitors using various alignment meth-ods. Arab. J. Chem., 2017, 10, S2182-S2195.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy