Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Transdermal Drug Delivery: A Step towards Treatment of Cancer

Author(s): Priyanka Kriplani* and Kumar Guarve

Volume 17, Issue 3, 2022

Published on: 25 February, 2022

Page: [253 - 267] Pages: 15

DOI: 10.2174/1574892816666211202154000

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Transdermal drug delivery is an emerging and appealing alternative to oral and hypodermic drug delivery systems. With the new developments in skin penetration techniques, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered via a transdermal route to treat cancer.

Objective: In the present review, various approaches to enhance the transdermal delivery of drugs are discussed, including micro and nanotechnology-based transdermal formulations like chemotherapy, gene therapy, immunotherapy, phototherapy, vaccines, and medical devices. Limitations and advantages of various transdermal technologies are also elaborated.

Methods: In this review, patent applications and recent literature of transdermal drug delivery systems employed to cure mainly cancer are covered.

Results: Transdermal drug delivery systems have proved their potential to cure cancer. They increase the bioavailability of the drug by site-specific drug delivery and can reduce the side effects/- toxicity associated with anticancer drugs.

Conclusion: The potential of transdermal drug delivery systems to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.

Keywords: Cancer, drug delivery system, patents, skin cancer, transdermal, nanotechnology.

[1]
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008; 26(11): 1261-8.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[2]
Di Meglio P, Perera GK, Nestle FO. The multitasking organ: recent insights into skin immune function. Immunity 2011; 35(6): 857-69.
[http://dx.doi.org/10.1016/j.immuni.2011.12.003] [PMID: 22195743]
[3]
Menon GK, Cleary GW, Lane ME. The structure and function of the stratum corneum. Int J Pharm 2012; 435(1): 3-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.005] [PMID: 22705878]
[4]
Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev 2012; 64: 128-37.
[http://dx.doi.org/10.1016/j.addr.2012.09.032] [PMID: 15019749]
[5]
Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv 2016; 23(2): 564-78.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[6]
Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad Sci USA 2005; 102(13): 4688-93.
[http://dx.doi.org/10.1073/pnas.0501176102] [PMID: 15774584]
[7]
Ruan R, Chen M, Zou L, et al. Recent advances in peptides for enhancing transdermal macromolecular drug delivery. Ther Deliv 2016; 7(2): 89-100.
[http://dx.doi.org/10.4155/tde.15.94] [PMID: 26769200]
[8]
Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release 2017; 247: 86-105.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.022] [PMID: 28024914]
[9]
Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 2011; 77(1): 1-2.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.003] [PMID: 21111043]
[10]
Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater 2016; 2: 16075.
[http://dx.doi.org/10.1038/natrevmats.2016.75]
[11]
Lee JS, Hwang Y, Oh H, et al. A novel chitosan nanocapsule for enhanced skin penetration of cyclosporin A and effective hair growth in vivo. Nano Res 2019; 12: 3024-30.
[http://dx.doi.org/10.1007/s12274-019-2546-x]
[12]
Seong JS, Yun ME, Park SN. Surfactant-stable and pH-sensitive liposomes coated with N-succinyl-chitosan and chitooligosaccharide for delivery of quercetin. Carbohydr Polym 2018; 181: 659-67.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.098] [PMID: 29254020]
[13]
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2018; 270: 203-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[14]
Yang Y, Pearson RM, Lee O, et al. Dendron-based micelles for topical delivery of endoxifen: A potential chemo-preventive medicine for breast cancer. Adv Funct Mater 2014; 24: 2442-9.
[http://dx.doi.org/10.1002/adfm.201303253]
[15]
Lee H, Lee JH, Kim J, et al. Hyaluronate-gold nanorod/DR5 antibody complex for noninvasive theranosis of skin cancer. ACS Appl Mater Interfaces 2016; 8(47): 32202-10.
[http://dx.doi.org/10.1021/acsami.6b11319] [PMID: 27933820]
[16]
Siu KS, Chen D, Zheng X, et al. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials 2014; 35(10): 3435-42.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.079] [PMID: 24424208]
[17]
Prausnitz MR. A practical assessment of transdermal drug delivery by skin electroporation. Adv Drug Deliv Rev 1999; 35(1): 61-76.
[http://dx.doi.org/10.1016/S0169-409X(98)00063-5] [PMID: 10837689]
[18]
Lee H, Choi TK, Lee YB, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 2016; 11(6): 566-72.
[http://dx.doi.org/10.1038/nnano.2016.38] [PMID: 26999482]
[19]
Murthy SN, Sammeta SM, Bowers C. Magnetophoresis for enhancing transdermal drug delivery: Mechanistic studies and patch design. J Control Release 2010; 148(2): 197-203.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.015] [PMID: 20728484]
[20]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[21]
Finger PT, Milner MS, McCormick SA. Topical chemotherapy for conjunctival melanoma. Br J Ophthalmol 1993; 77(11): 751-3.
[http://dx.doi.org/10.1136/bjo.77.11.751] [PMID: 8280698]
[22]
Kris MG, Hellmann MD, Chaft JE. Chemotherapy for lung cancers: here to stay. Am Soc Clin Oncol Educ Book 2014; 34: e375-80.
[http://dx.doi.org/10.14694/EdBook_AM.2014.34.e375] [PMID: 24857127]
[23]
Ethun CG, Bilen MA, Jani AB, Maithel SK, Ogan K, Master VA. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J Clin 2017; 67(5): 362-77.
[http://dx.doi.org/10.3322/caac.21406] [PMID: 28731537]
[24]
Citrin DE. Recent developments in radiotherapy. N Engl J Med 2017; 377(11): 1065-75.
[http://dx.doi.org/10.1056/NEJMra1608986] [PMID: 28902591]
[25]
Buscail L, Bournet B, Vernejoul F, et al. First-in-man phase 1 clinical trial of gene therapy for advanced pancreatic cancer: safety, biodistribution, and preliminary clinical findings. Mol Ther 2015; 23(4): 779-89.
[http://dx.doi.org/10.1038/mt.2015.1] [PMID: 25586689]
[26]
Portnow J, Synold TW, Badie B, et al. Neural stem cell–based anticancer gene therapy: A first-in-human study in recurrent high- grade glioma patients. Clin Cancer Res 2017; 23(12): 2951-60.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1518] [PMID: 27979915]
[27]
Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin 2012; 62(5): 309-35.
[http://dx.doi.org/10.3322/caac.20132] [PMID: 22576456]
[28]
Knuth A, Jäger D, Jäger E. Cancer immunotherapy in clinical oncology. Cancer Chemother Pharmacol 2000; 46(Suppl.): S46-51.
[http://dx.doi.org/10.1007/PL00014050] [PMID: 10950148]
[29]
Wang C, Ye Y, Hu Q, Bellotti A, Gu Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv Mater 2017; 29(29): 1606036.
[http://dx.doi.org/10.1002/adma.201606036] [PMID: 28556553]
[30]
Xu X, Li T, Shen S, et al. Advances in engineering cells for cancer immunotherapy. Theranostics 2019; 9(25): 7889-905.
[http://dx.doi.org/10.7150/thno.38583] [PMID: 31695806]
[31]
Ye Y, Wang C, Zhang X, et al. A melanin-mediated cancer immunotherapy patch. Sci Immunol 2017; 2(17): eaan5692.
[http://dx.doi.org/10.1126/sciimmunol.aan5692] [PMID: 29127106]
[32]
Beack S, Kong WH, Jung HS, et al. Photodynamic therapy of melanoma skin cancer using carbon dot - chlorin e6 - hyaluronate conjugate. Acta Biomater 2015; 26: 295-305.
[http://dx.doi.org/10.1016/j.actbio.2015.08.027] [PMID: 26297888]
[33]
Gu Z, Chen X. Towards enhancing skin drug delivery. Adv Drug Deliv Rev 2018; 127: 1-2.
[http://dx.doi.org/10.1016/j.addr.2018.05.004] [PMID: 29903554]
[34]
van der Maaden K, Heuts J, Camps M, et al. Hollow microneedle- mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J Control Release 2018; 269: 347-54.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.035] [PMID: 29174441]
[35]
Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunol Res 2006; 36(1-3): 127-36.
[http://dx.doi.org/10.1385/IR:36:1:127] [PMID: 17337773]
[36]
Zhao Z, Ukidve A, Dasgupta A, Mitragotri S. Transdermal immunomodulation: Principles, advances and perspectives. Adv Drug Deliv Rev 2018; 127: 3-19.
[http://dx.doi.org/10.1016/j.addr.2018.03.010] [PMID: 29604373]
[37]
Walter K, Kurz H. Binding of drugs to human skin: influencing factors and the role of tissue lipids. J Pharm Pharmacol 1988; 40(10): 689-93.
[http://dx.doi.org/10.1111/j.2042-7158.1988.tb06996.x] [PMID: 2907534]
[38]
Prausnitz MR, Elias PM, Franz TJ, et al. Skin barrier and transdermal drug delivery. Dermatology 2012; 3: 2065-73.
[39]
McGrath JA, Eady RAJ, Pope FM. Anatomy and organization of human skin. Rook’s Textbook of Dermatology. 7th ed. Hoboken: Blackwell 2004.
[http://dx.doi.org/10.1002/9780470750520.ch3]
[40]
Christophers E. Cellular architecture of the stratum corneum. J Invest Dermatol 1971; 56(3): 165-9.
[http://dx.doi.org/10.1111/1523-1747.ep12260765] [PMID: 4104137]
[41]
Behl CR, Flynn GL, Kurihara T, et al. Hydration and percutaneous absorption: I. Influence of hydration on alkanol permeation through hairless mouse skin. J Invest Dermatol 1980; 75(4): 346-52.
[http://dx.doi.org/10.1111/1523-1747.ep12531118] [PMID: 7430699]
[42]
Jhawat VC, Saini V, Kamboj S, Maggon N. Transdermal drug delivery systems: Approaches and advancements in drug absorption through skin. Int J Pharm Sci Rev Res 2013; 20: 47-56.
[43]
Allen L Jr, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. Baltimore MD. Lippincott Williams & Wilkins 12 ed 2013.
[44]
Mangalathillam S, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale 2012; 4(1): 239-50.
[http://dx.doi.org/10.1039/C1NR11271F] [PMID: 22080352]
[45]
Lin YL, Chen CH, Wu HY, et al. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J Nanobiotechnology 2016; 14: 11.
[http://dx.doi.org/10.1186/s12951-016-0163-3] [PMID: 26892504]
[46]
Moses MA, Brem H, Langer R. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 2003; 4(5): 337-41.
[http://dx.doi.org/10.1016/S1535-6108(03)00276-9] [PMID: 14667500]
[47]
Perricone NV. Methods and systems for treating or preventing cancer. U.S. patent 9849160B2, 2017.
[48]
Raviraj V, Pham BTT, Kim BJ, et al. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nano 2021; 12: 6.
[http://dx.doi.org/10.1186/s12645-021-00079-7]
[49]
Gu TW, Wang MZ, Niu J, Chu Y, Guo KR, Peng LH. Outer membrane vesicles derived from E. coli as novel vehicles for transdermal and tumor targeting delivery. Nanoscale 2020; 12(36): 18965-77.
[http://dx.doi.org/10.1039/D0NR03698F] [PMID: 32914815]
[50]
Ashley CE, Blinker J, Kerns EC, et al. Lipid bilayer (protocell) supported on porous nanoparticles for targeted delivery including transdermal delivery of cargo and method thereof. J.P. patent 2014532071A, 2015.
[51]
Butterworth S, Finlay MRV, Ward RA, et al. 2- (2,4,5-substituted anilin) -pyrimidine derivatives as EGFR modulators used for cancer treatment. D.K. patent 3009431T3, 2018.
[52]
Langley RE, Gilbert DC, Duong T, et al. Transdermal oestradiol for androgen suppression in prostate cancer: long-term cardiovascular outcomes from the randomised Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme. Lancet 2021; 397(10274): 581-91.
[http://dx.doi.org/10.1016/S0140-6736(21)00100-8] [PMID: 33581820]
[53]
Mitchell MJ, Wayne E, Rana K, Schaffer CB, King MR. TRAIL- coated leukocytes that kill cancer cells in the circulation. Proc Natl Acad Sci USA 2014; 111(3): 930-5.
[http://dx.doi.org/10.1073/pnas.1316312111] [PMID: 24395803]
[54]
Jiao Z, Li Y, Pang H, Zheng Y, Zhao Y. Pep-1 peptide-functionalized liposome to enhance the anticancer efficacy of cilengitide in glioma treatment. Colloids Surf B Biointerfaces 2017; 158: 68-75.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.058] [PMID: 28672205]
[55]
Abdelbary A, Salem HF, Khallaf RA. Niosomal 5-Flourouracil gel for effective treatment of skin cancer; in vitro and in vivo evaluation. Int J Drug Deliv 2015; 7: 223-32.
[56]
ElMeshad AN, Tadros MI. Transdermal delivery of an anti-cancer drug via w/o emulsions based on alkyl polyglycosides and lecithin: design, characterization, and in vivo evaluation of the possible irritation potential in rats. AAPS PharmSciTech 2011; 12(1): 1-9.
[http://dx.doi.org/10.1208/s12249-010-9557-y] [PMID: 21152999]
[57]
Jiang T, Wang T, Li T, et al. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano 2018; 12(10): 9693-701.
[http://dx.doi.org/10.1021/acsnano.8b03800] [PMID: 30183253]
[58]
Jiang TY, Mo R, Bellotti A, Zhou JP, Gu Z. Gel-liposome- mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv Funct Mater 2014; 24: 2295-304.
[http://dx.doi.org/10.1002/adfm.201303222]
[59]
Jiang T, Zhang Z, Zhang Y, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials 2012; 33(36): 9246-58.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.027] [PMID: 23031530]
[60]
Rao YF, Chen W, Liang XG, et al. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier. Small 2015; 11(2): 239-47.
[http://dx.doi.org/10.1002/smll.201400775] [PMID: 24925046]
[61]
Kong M, Hou L, Wang J, et al. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem Commun (Camb) 2015; 51(8): 1453-6.
[http://dx.doi.org/10.1039/C4CC08746A] [PMID: 25493296]
[62]
Yang H, Wu X, Zhou Z, Chen X, Kong M. Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. Int J Biol Macromol 2019; 125: 9-16.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.230] [PMID: 30500513]
[63]
Luo Z, Sun W, Fang J, et al. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv Healthc Mater 2019; 8(3): e1801054.
[http://dx.doi.org/10.1002/adhm.201801054] [PMID: 30565887]
[64]
Ahmed KS, Shan X, Mao J, Qiu L, Chen J. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater Sci Eng C 2019; 99: 1448-58.
[http://dx.doi.org/10.1016/j.msec.2019.02.095] [PMID: 30889679]
[65]
Ma L, Wang X, Wu J, et al. Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for the treatment of melanoma through transdermal delivery. Nanomedicine (Lond) 2019; 14(18): 2395-408.
[http://dx.doi.org/10.2217/nnm-2018-0398] [PMID: 31456475]
[66]
Anirudhan TS, Nair AS, Bino SJ. Nanoparticle assisted solvent selective transdermal combination therapy of curcumin and 5-flurouracil for efficient cancer treatment. Carbohydr Polym 2017; 173: 131-42.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.045] [PMID: 28732851]
[67]
Lopez-Girona A, Mae HC, Chopra R. Combination therapy comprising a TOR kinase inhibitor and an IMiD compound for treating cancer. J.P. patent 6389241B2, 2018.
[68]
Hsia SL, Narain NR, Li J, Russell KJ, Woan KV, Persaud I. Topical formulations of coenzyme Q10 and methods of use. E.S. patent 2410587T3, 2013.
[69]
Shapiro SS, Seiberg M, Paine C, Conney AH, Huang MT. Topical anti-cancer compositions and methods of use thereof. C.A. patent 2423524C, 2003.
[70]
Paris TS. Krill and / or marine organism extracts for prevention and / or treatment of cardiovascular disease, arthritis, skin cancer, diabetes, premenstrual syndrome and transdermal delivery. J.P. patent 5135568B2, 2013.
[71]
Birbara PJ. Methods of making and using compositions comprising flavonoids. U.S. patent 20180008553A1, 2021.
[72]
Yu C. Positively charged water-soluble prodrugs of retinoids and retinoid similar compounds with very high skin penetration. D.K. patent 2125697T3, 2016.
[73]
Lepley DM, Li B, Birt DF, Pelling JC. The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis 1996; 17(11): 2367-75.
[http://dx.doi.org/10.1093/carcin/17.11.2367] [PMID: 8968050]
[74]
Birbara PJ. Methods of increasing solubility of poorly soluble compounds and methods of making and using formulations of such compounds. A.U. Patent 2018200079B2, 2018.
[75]
Birt DF, Walker B, Tibbels MG, Bresnick E. Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis 1986; 7(6): 959-63.
[http://dx.doi.org/10.1093/carcin/7.6.959] [PMID: 3708757]
[76]
Yang JA, Kim ES, Kwon JH, et al. Transdermal delivery of hyaluronic acid-human growth hormone conjugate. Biomaterials 2012; 33(25): 5947-54.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.003] [PMID: 22632765]
[77]
Liu JB, Wang ZG, Zhao S, Ding BQ. Multifunctional nucleic acid nanostructures for gene therapies. Nano Res 2018; 11: 5017-27.
[http://dx.doi.org/10.1007/s12274-018-2093-x]
[78]
Zakrewsky M, Kumar S, Mitragotri S. Nucleic acid delivery into skin for the treatment of skin disease: Proofs-of-concept, potential impact, and remaining challenges. J Control Release 2015; 219: 445-56.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.017] [PMID: 26385169]
[79]
Chen X. Current and future technological advances in transdermal gene delivery. Adv Drug Deliv Rev 2018; 127: 85-105.
[http://dx.doi.org/10.1016/j.addr.2017.12.014] [PMID: 29273516]
[80]
Niu J, Chu Y, Huang YF, et al. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progre- ssion and metastasis of cutaneous melanoma. ACS Appl Mater Interfaces 2017; 9(11): 9388-401.
[http://dx.doi.org/10.1021/acsami.6b16378] [PMID: 28252938]
[81]
Pan J, Ruan W, Qin M, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep 2018; 8(1): 1117.
[http://dx.doi.org/10.1038/s41598-018-19463-2] [PMID: 29348670]
[82]
Ruan R, Chen M, Sun S, et al. Topical and targeted delivery of siRNAs to melanoma cells using a fusion peptide carrier. Sci Rep 2016; 6: 29159.
[http://dx.doi.org/10.1038/srep29159] [PMID: 27374619]
[83]
Li X, Xu Q, Zhang P, Zhao X, Wang Y. Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal tumor. J Control Release 2019; 314: 72-80.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.016] [PMID: 31629710]
[84]
Chen M, Zakrewsky M, Gupta V, et al. Topical delivery of siRNA into skin using SPACE-peptide carriers. J Control Release 2014; 179: 33-41.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.006] [PMID: 24434423]
[85]
Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13(5): 273-90.
[http://dx.doi.org/10.1038/nrclinonc.2016.25] [PMID: 26977780]
[86]
Bluestone JA, Bour-Jordan H. Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb Perspect Biol 2012; 4(11): a007542.
[http://dx.doi.org/10.1101/cshperspect.a007542] [PMID: 23125012]
[87]
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3(11): 991-8.
[http://dx.doi.org/10.1038/ni1102-991] [PMID: 12407406]
[88]
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47-62.
[http://dx.doi.org/10.1038/nrclinonc.2017.148] [PMID: 28925994]
[89]
Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 2018; 62: 29-39.
[http://dx.doi.org/10.1016/j.intimp.2018.06.001] [PMID: 29990692]
[90]
Jäger E, Jäger D, Knuth A. Clinical cancer vaccine trials. Curr Opin Immunol 2002; 14(2): 178-82.
[http://dx.doi.org/10.1016/S0952-7915(02)00318-7] [PMID: 11869889]
[91]
Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17(11): 3520-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3126] [PMID: 21471425]
[92]
Haniffa M, Gunawan M, Jardine L. Human skin dendritic cells in health and disease. J Dermatol Sci 2015; 77(2): 85-92.
[http://dx.doi.org/10.1016/j.jdermsci.2014.08.012] [PMID: 25301671]
[93]
Christina N, Carrigan CN, LADD S, Payne G, Whiteman KR. Methods for increasing efficacy of FOLR1 cancer therapy. A.U. patent 2019202611B2, 2021.
[94]
Buhmann R, Dreyling M, Hiddemann W, Lindhofer H. Subcutaneously administered bispecific antibodies for use in the treatment of cancer. E.P. patent 3177645B1, 2021.
[95]
Narain NR, McCook JP. Methods for treatment of oncological disorders using an epimetabolic shifter (Coenzyme Q10). U.S. patent 10351915B2, 2019.
[96]
Zeng L, Mitra R, Rossi EA, Hansen HJ, Goldenberg DM. Stable compositions of high-concentration allotype-selected antibodies for small-volume administration. U.S. patent 9963516B2, 2018.
[97]
Chang CH, Goldenberg DM. Humanized anti-CD22 antibody. U.S. patent 9701748B2, 2017.
[98]
Park W, Seong KY, Han HH, Yang SY, Hahn SK. Dissolving microneedles delivering cancer cell membrane coated nanoparticles for cancer immunotherapy. RSC Advances 2021; 11: 10393-9.
[http://dx.doi.org/10.1039/D1RA00747E]
[99]
Lio DCS, Liu C, Oo MMS, et al. Transdermal delivery of small interfering RNAs with topically applied mesoporous silica nanoparticles for facile skin cancer treatment. Nanoscale 2019; 11(36): 17041-51.
[http://dx.doi.org/10.1039/C9NR06303J] [PMID: 31506653]
[100]
Okubo K, Maeda Y, Okazaki A, et al. WT1 peptide cancer vaccine composition for transdermal administration. U.S. patent 10071051B2, 2019.
[101]
Mehren Termeren J.H., Terquenka HJ, Buoy C, Quenca P, Buoy C, Paya . Cancer immunotherapy with a combination of local and systemic immune stimulation. J.P. patent 6581101B2, 2019.
[102]
Levis WR, Kaplan LL, Callahan JG. Effective sensitizing dose of a gelled immunomodulating topical composition. U.S. patent 10300027B2, 2019.
[103]
Chen Q, Wang C, Zhang X, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol 2019; 14(1): 89-97.
[http://dx.doi.org/10.1038/s41565-018-0319-4] [PMID: 30531990]
[104]
Aburatani H, Ishikawa S, Ito H, Nakano K, Kawai S. Diagnosis and treatment of cancer using anti-desmoglein-3 antibodies. U.S. patent 10696743B2, 2020.
[105]
Revwall D, Martelli N, Yvonne SJ. ALK inhibitor combination therapy. J.P. patent 2017532372A, 2020.
[106]
Yu J, Zhang Y, Kahkoska AR, Gu Z. Bioresponsive transcutaneous patches. Curr Opin Biotechnol 2017; 48: 28-32.
[http://dx.doi.org/10.1016/j.copbio.2017.03.001] [PMID: 28292673]
[107]
Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett 2016; 16(4): 2334-40.
[http://dx.doi.org/10.1021/acs.nanolett.5b05030] [PMID: 26999507]
[108]
Ye Y, Wang J, Hu Q, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016; 10(9): 8956-63.
[http://dx.doi.org/10.1021/acsnano.6b04989] [PMID: 27599066]
[109]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[110]
Zhao Y, Guo YG, Tang L. Engineering cancer vaccines using stimuli-responsive biomaterials. Nano Res 2018; 11: 5355-71.
[http://dx.doi.org/10.1007/s12274-018-2162-1]
[111]
Lee K, Kim M, Seo Y, Lee H. Development of mRNA vaccines and their prophylactic and therapeutic applications. Nano Res 2018; 11: 5173-92.
[http://dx.doi.org/10.1007/s12274-018-2095-8]
[112]
Palena C, Abrams SI, Schlom J, Hodge JW. Cancer vaccines: preclinical studies and novel strategies. Adv Cancer Res 2006; 95: 115-45.
[http://dx.doi.org/10.1016/S0065-230X(06)95004-0] [PMID: 16860657]
[113]
Asari D, Okubo K, Shishido T, et al. Vaccine Composition. EP2762155B1, 2020.
[114]
Wakabayashi R, Kono H, Kozaka S, Tahara Y, Kamiya N, Goto M. Transcutaneous codelivery of tumor antigen and resiquimod in solid-in-oil nanodispersions promotes antitumor immunity. ACS Biomater Sci Eng 2019; 5(5): 2297-306.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00260] [PMID: 33405780]
[115]
Kim NW, Kim SY, Lee JE, et al. Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano 2018; 12(10): 9702-13.
[http://dx.doi.org/10.1021/acsnano.8b04146] [PMID: 30141896]
[116]
Duong HTT, Yin Y, Thambi T, et al. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials 2018; 185: 13-24.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.008] [PMID: 30216806]
[117]
Xu J, Xu B, Tao J, Yang Y, Hu Y, Huang Y. Microneedle-assisted, DC-targeted codelivery of pTRP-2 and adjuvant of paclitaxel for transcutaneous immunotherapy. Small 2017; 13(28): 1700666.
[http://dx.doi.org/10.1002/smll.201700666] [PMID: 28561892]
[118]
Tawde SA, Chablani L, Akalkotkar A, D’Souza MJ. Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery. J Control Release 2016; 235: 147-54.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.058] [PMID: 27238440]
[119]
Jarvi MT, Niedre MJ, Patterson MS, Wilson BC. The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response. Photochem Photobiol 2011; 87(1): 223-34.
[http://dx.doi.org/10.1111/j.1751-1097.2010.00851.x] [PMID: 21143603]
[120]
Stinchcomb AL, Banks SL, Golinski MJ, Howard JL, Hammell DC. Use of cannabidiol prodrugs in topical and transdermal administration with microneedles. U.S. Patent 9533942B2, 2017.
[121]
Brown MB, Jones SA. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. J Eur Acad Dermatol Venereol 2005; 19(3): 308-18.
[http://dx.doi.org/10.1111/j.1468-3083.2004.01180.x] [PMID: 15857456]
[122]
Banerji S, Wright AJ, Noble M, et al. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 2007; 14(3): 234-9.
[http://dx.doi.org/10.1038/nsmb1201] [PMID: 17293874]
[123]
DJung HS, Kong WH, Sung DK, et al. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 2014; 8(1): 260-8.
[http://dx.doi.org/10.1021/nn405383a] [PMID: 24383990]
[124]
Jain AK, Lee CH, Gill HS. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J Control Release 2016; 239: 72-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.015] [PMID: 27543445]
[125]
Zhao X, Li X, Zhang P, Du J, Wang Y. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J Control Release 2018; 286: 201-9.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.038] [PMID: 30056119]
[126]
Chen MC, Lin ZW, Ling MH. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 2016; 10(1): 93-101.
[http://dx.doi.org/10.1021/acsnano.5b05043] [PMID: 26592739]
[127]
Shahbazi MA, Shrestha N, Mäkilä E, et al. A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Res 2015; 8: 1505-21.
[http://dx.doi.org/10.1007/s12274-014-0635-4]
[128]
Huang X, Chen L, Zhang Y, et al. GE11 peptide conjugated liposomes for EGFR-targeted and chemophotothermal combined anticancer therapy. Bioinorg Chem Appl 2021; 2021: 5534870.
[http://dx.doi.org/10.1155/2021/5534870] [PMID: 33868396]
[129]
Song YL, Wang YD, Wang SY, et al. Immune-adjuvant loaded Bi2Se3 nanocage for photothermal-improved PD-L1 checkpoint blockade immune- tumor metastasis therapy. Nano Res 2019; 12: 1770-80.
[http://dx.doi.org/10.1007/s12274-019-2341-8]
[130]
Shen S, Liu M, Li T, Lin S, Mo R. Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomater Sci 2017; 5(8): 1367-81.
[http://dx.doi.org/10.1039/C7BM00297A] [PMID: 28664207]
[131]
Ali OA, Emerich D, Dranoff G, Mooney DJ. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci Transl Med 2009; 1(8): 8ra19.
[http://dx.doi.org/10.1126/scitranslmed.3000359] [PMID: 20368186]
[132]
Kim J, Li WA, Choi Y, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol 2015; 33(1): 64-72.
[http://dx.doi.org/10.1038/nbt.3071] [PMID: 25485616]
[133]
Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 2015; 33(1): 97-101.
[http://dx.doi.org/10.1038/nbt.3104] [PMID: 25503382]
[134]
Theuer C. Potentiation of anti-cancer activity through combination therapy with ber pathway inhibitors. U.S. Patent 20170312233A1, 2017.
[135]
Dong L, Li Y, Li Z, et al. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl Mater Interfaces 2018; 10(11): 9247-56.
[http://dx.doi.org/10.1021/acsami.7b18293] [PMID: 29493217]
[136]
Luo K, Wu H, Chen Y, et al. Preparation of Bi-based hydrogel for multi-modal tumor therapy. Colloids and Surfaces B: Biointerfaces 2021; 200: 111591.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111591]
[137]
Elamir A, Ajith S, Sawaftah NA, et al. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep 2021; 11(1): 7545.
[http://dx.doi.org/10.1038/s41598-021-86860-5] [PMID: 33824356]
[138]
Fusheng L, An L, Xiaomei Y. Therapeutic device for cancer diseases. C.N. Patent 101120904B, 2011.
[139]
Henley JL. Iontosonic-microneedle applicator apparatus and methods. U.S. Patent 20070276318A1, 2007.
[140]
Mayvor D, Nitzan DM, Tamarkin ZN, et al. Method and device for carrying out controlled delivery of active substances into skin. R.U. Patent 2323017C2, 2008.
[141]
DiPierro G, Giannos SA. Biosynchronous transdermal drug delivery for longevity, anti-aging, fatigue management, obesity, weight loss, weight management, delivery of nutraceuticals, and the treatment of hyperglycemia, alzheimer's disease, sleep disorders, parkinson's disease, AIDs, epilepsy, attention deficit disorder, nicotine addiction, cancer, headache and pain control, asthma, angina, hypertension, depression, cold, flu and the like. U.S. Patent 10258738B2, 2019.
[142]
Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res 2021; 2021: 1-34.
[http://dx.doi.org/10.1007/s13346-021-00909-6] [PMID: 33474709]
[143]
Moses MA, Brem H, Langer R. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 2003; 4(5): 337-41.
[http://dx.doi.org/10.1016/S1535-6108(03)00276-9] [PMID: 14667500]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy