Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Immunomodulatory Effects of Allium sativum L. and its Constituents against Viral Infections and Metabolic Diseases

Author(s): María del Rayo Camacho-Corona*, Alberto Camacho-Morales*, Fernando Góngora-Rivera, Erandi Escamilla-García, Juan Luis Morales-Landa, Mariana Andrade-Medina, Aldo Fernando Herrera-Rodulfo, Martín García-Juárez, Patricio García-Espinosa, Tommaso Stefani, Patricia González-Barranco and Mauricio Carrillo-Tripp*

Volume 22, Issue 2, 2022

Published on: 06 December, 2021

Page: [109 - 131] Pages: 23

DOI: 10.2174/1568026621666211122163156

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Allium sativum L., or garlic, is one of the most studied plants worldwide within the field of traditional medicine. Current interests lie in the potential use of garlic as a preventive measure and adjuvant treatment for viral infections, e.g., SARS-CoV-2. Even though it cannot be presented as a single treatment, its beneficial effects are beyond doubt. The World Health Organization has deemed it an essential part of any balanced diet with immunomodulatory properties.

Objective: The aim of the study was to review the literature on the effects of garlic compounds and preparations on immunomodulation and viral infection management, with emphasis on SARS-CoV- -2.

Methods: Exhaustive literature search has been carried out on electronic databases.

Conclusion: Garlic is a fundamental part of a well-balanced diet which helps maintain general good health. The reported information regarding garlic’s ability to beneficially modulate inflammation and the immune system is encouraging. Nonetheless, more efforts must be made to understand the actual medicinal properties and mechanisms of action of the compounds found in this plant to inhibit or diminish viral infections, particularly SARS-CoV-2. Based on our findings, we propose a series of innovative strategies to achieve such a challenge in the near future.

Keywords: Garlic, Antiviral agents, Immunomodulation agents, Chronic diseases, Coronavirus infection, Metabolic diseases.

Graphical Abstract
[1]
Concepción, N.M. Therapeutic possibilities of garlic bulb (Allium Sativum). Rev. Fitoter, 2007, 7(2), 131-151.
[2]
Moyers, S. Garlic in health, history, and world cuisine, 1st ed; Moyers, S., Ed.; Suncoast Press, 1996. Vol. 2.
[3]
Bergner, P. The Healing Power of Garlic; Puima Lifestyle: Canada, 1996.
[4]
Lawson, L.D.; Bauer, R. Phytomedicines of Europe. ACS Symposium Series, 1998.
[http://dx.doi.org/10.1021/bk-1998-0691]
[5]
Rivlin, R.S. Historical perspective on the use of garlic. J. Nutr., 2001, 131(3s), 951S-954S.
[http://dx.doi.org/10.1093/jn/131.3.951S] [PMID: 11238795]
[6]
Gao, C.; Jiang, X.; Wang, H.; Zhao, Z.; Wang, W. Drug metabolism and pharmacokinetics of organosulfur compounds from garlic. J. Drug Metab. Toxicol., 2013, 4(5), 1-10.
[http://dx.doi.org/10.4172/2157-7609.1000159]
[7]
T.-H; Wu, C.-M Stability of allicin in garlic juice. J. Food Sci., 1989, 54(4), 977-981.
[http://dx.doi.org/10.1111/j.1365-2621.1989.tb07926.x]
[8]
Cavallito, C.J.; Bailey, J.H. Allicin, the antibacterial principle of Allium sativum. I. isolation, physical properties and antibacterial action. J. Am. Chem. Soc., 1944, 66(11), 1950-1951.
[http://dx.doi.org/10.1021/ja01239a048]
[9]
Cavallito, C.J.; Bailey, J.H.; Haskell, T.H.; McCormick, J.R.; Warner, W.F. The inactivation of antibacterial agents and their mechanism of action. J. Bacteriol., 1945, 50(1), 61-69.
[http://dx.doi.org/10.1128/jb.50.1.61-69.1945] [PMID: 16560977]
[10]
Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect., 1999, 1(2), 125-129.
[http://dx.doi.org/10.1016/S1286-4579(99)80003-3] [PMID: 10594976]
[11]
Petrovska, B.B.; Cekovska, S. Extracts from the history and medical properties of garlic. Pharmacogn. Rev., 2010, 4(7), 106-110.
[http://dx.doi.org/10.4103/0973-7847.65321] [PMID: 22228949]
[12]
Elbaz, E.M.; Amin, H.A.A.; Kamel, A.S.; Ibrahim, S.M.; Helmy, H.S. Immunomodulatory effect of diallyl sulfide on experimentally-induced benign prostate hyperplasia via the suppression of CD4+T/IL-17 and TGF-β1/ERK pathways. Inflammopharmacology, 2020, 28(5), 1407-1420.
[http://dx.doi.org/10.1007/s10787-020-00743-1] [PMID: 32785828]
[13]
Leurcharusmee, P.; Sawaddiruk, P.; Chattipakorn, N.; Chattipakorn, S.C. Possible roles of garlic and its bioactive components on mitochondrial function in physiological and pathological conditions. Mitochondrial physiology and vegetal molecules; Academic Press, 2021, pp. 489-539.
[http://dx.doi.org/10.1016/B978-0-12-821562-3.00005-8]
[14]
Alali, F.Q.; El-Elimat, T.; Khalid, L.; Hudaib, R.; Al-Shehabi, T.S.; Eid, A.H. Garlic for cardiovascular disease: Prevention or treatment? Curr. Pharm. Des., 2017, 23(7), 1028-1041.
[http://dx.doi.org/10.2174/1381612822666161010124530] [PMID: 27748188]
[15]
Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res., 2019, 29(5), 347-364.
[http://dx.doi.org/10.1038/s41422-019-0164-5] [PMID: 30948788]
[16]
Khalil, A.M.; Yasuda, M.; Farid, A.S.; Desouky, M.I.; Mohi-Eldin, M.M.; Haridy, M.; Horii, Y. Immunomodulatory and antiparasitic effects of garlic extract on Eimeria vermiformis-infected mice. Parasitol. Res., 2015, 114(7), 2735-2742.
[http://dx.doi.org/10.1007/s00436-015-4480-5] [PMID: 25895065]
[17]
Botas, J.; Fernandes, Â.; Barros, L.; Alves, M.J.; Carvalho, A.M.; Ferreira, I.C.F.R. A comparative study of black and white Allium sativum L.: Nutritional composition and bioactive properties. Molecules, 2019, 24(11), 2194.
[http://dx.doi.org/10.3390/molecules24112194] [PMID: 31212722]
[18]
Ganjhu, R.K.; Mudgal, P.P.; Maity, H.; Dowarha, D.; Devadiga, S.; Nag, S.; Arunkumar, G. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease, 2015, 26(4), 225-236.
[http://dx.doi.org/10.1007/s13337-015-0276-6] [PMID: 26645032]
[19]
Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol., 2003, 3(2), 133-146.
[http://dx.doi.org/10.1038/nri1001] [PMID: 12563297]
[20]
Raziq, F.; Khan, S.; Chand, N.; Sultan, A.; Mushtaq, M.; Rafiullah, ; Suhail, S.M.; Zeb, A. Effect of water based infusion of Aloe barbedensis, Pimpinella anisum, Berberis lycium, Trigonella foenum-graecum and Allium sativum on the performance of broiler chicks. Pak. Vet. J., 2012, 32(4), 593-596.
[21]
Shi, J.; Mazza, G.; Le Maguer, M. Functional foods: Biochemical and processing aspects; CRC Press, 2016. Vol. 2.
[http://dx.doi.org/10.1201/9781420012873]
[22]
Mehrbod, P.; Amini, E.; Tavassoti-Kheiri, M. Antiviral activity of garlic extract on influenza virus. Iran. J. Virol., 2009, 3(1), 19-23.
[http://dx.doi.org/10.21859/isv.3.1.19]
[23]
Brundage, S.C.; Fitzpatrick, A.N.; Hepatitis, A. Hepatitis A. Am. Fam. Physician, 2006, 73(12), 2162-2168.
[PMID: 16848078]
[24]
Rossmann, M.G.; Arnold, E.; Erickson, J.W.; Frankenberger, E.A.; Griffith, J.P.; Hecht, H.J.; Johnson, J.E.; Kamer, G.; Luo, M.; Mosser, A.G.; Rueckert, R.R.; Sherry, B.; Vriend, G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, 1985, 317(6033), 145-153.
[http://dx.doi.org/10.1038/317145a0] [PMID: 2993920]
[25]
Alejandria, M.M. Dengue haemorrhagic fever or dengue shock syndrome in children. BMJ Clin. Evid, 2015, 0917.
[26]
Oliveira, A.F.C. da S.; Teixeira, R.R.; Oliveira, A.S.; Souza, A.P.; Silva, M.L.; Paula, S.O. Potential antivirals: Natural products targeting replication enzymes of dengue and chikungunya viruses. Molecules, 2017, 22(3), 505.
[http://dx.doi.org/10.3390/molecules22030505] [PMID: 28327521]
[27]
Zheng, J. SARS-CoV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[28]
Vanjkevic, S.K.; Beograd, S.K. Lecenje belim lukomAruna; Beograd, 2002. Vol. 1.
[29]
Mirabeau, T.Y.; Samson, E.S. Effect of Allium cepa and Allium sativum on some immunological cells in rats. Afr. J. Tradit. Complement. Altern. Med., 2012, 9(3), 374-379.
[http://dx.doi.org/10.4314/ajtcam.v9i3.11] [PMID: 23983369]
[30]
Chan, J.Y.Y.; Yuen, A.C.Y.; Chan, R.Y.K.; Chan, S.W. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res., 2013, 27(5), 637-646.
[http://dx.doi.org/10.1002/ptr.4796] [PMID: 22888009]
[31]
Gonen, A.; Harats, D.; Rabinkov, A.; Miron, T.; Mirelman, D.; Wilchek, M.; Weiner, L.; Ulman, E.; Levkovitz, H.; Ben-Shushan, D.; Shaish, A. The antiatherogenic effect of allicin: possible mode of action. Pathobiology, 2005, 72(6), 325-334.
[http://dx.doi.org/10.1159/000091330] [PMID: 16582584]
[32]
Omar, S.H.; Al-Wabel, N.A. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm. J., 2010, 18(1), 51-58.
[http://dx.doi.org/10.1016/j.jsps.2009.12.007] [PMID: 23960721]
[33]
Butt, M.S.; Sultan, M.T.; Butt, M.S.; Iqbal, J. Garlic: nature’s protection against physiological threats. Crit. Rev. Food Sci. Nutr., 2009, 49(6), 538-551.
[http://dx.doi.org/10.1080/10408390802145344] [PMID: 19484634]
[34]
Lissiman, E.; Bhasale, A.L.; Cohen, M. Garlic for the common cold. Cochrane Database Syst. Rev., 2014, 2020(11), CD006206.
[http://dx.doi.org/10.1002/14651858.CD006206.pub4] [PMID: 25386977]
[35]
Kaushik, G.; Satya, S.; Khandelwal, R.K.; Naik, S.N. Commonly consumed indian plant food materials in the management of diabetes mellitus. Diabetes Metab. Syndr., 2010, 4(1), 21-40.
[http://dx.doi.org/10.1016/j.dsx.2008.02.006]
[36]
Liu, Y.; Qi, H.; Wang, Y.; Wu, M.; Cao, Y.; Huang, W.; Li, L.; Ji, Z.; Sun, H. Allicin protects against myocardial apoptosis and fibrosis in streptozotocin-induced diabetic rats. Phytomedicine, 2012, 19(8-9), 693-698.
[http://dx.doi.org/10.1016/j.phymed.2012.04.007] [PMID: 22633288]
[37]
Ali, M.; Al-Qattan, K.K.; Al-Enezi, F.; Khanafer, R.M.A.; Mustafa, T. Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukot. Essent. Fatty Acids, 2000, 62(4), 253-259.
[http://dx.doi.org/10.1054/plef.2000.0152] [PMID: 10882191]
[38]
Bat-Chen, W.; Golan, T.; Peri, I.; Ludmer, Z.; Schwartz, B. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr. Cancer, 2010, 62(7), 947-957.
[http://dx.doi.org/10.1080/01635581.2010.509837] [PMID: 20924970]
[39]
Zhang, W.; Ha, M.; Gong, Y.; Xu, Y.; Dong, N.; Yuan, Y. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways. Oncol. Rep., 2010, 24(6), 1585-1592.
[http://dx.doi.org/10.3892/or_00001021] [PMID: 21042755]
[40]
El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.; Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients, 2020, 12(3), 1-21.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[41]
Leng, B-F.; Qiu, J-Z.; Dai, X-H.; Dong, J.; Wang, J-F.; Luo, M-J.; Li, H-E.; Niu, X-D.; Zhang, Y.; Ai, Y-X.; Deng, X-M. Allicin reduces the production of α-toxin by Staphylococcus aureus. Molecules, 2011, 16(9), 7958-7968.
[http://dx.doi.org/10.3390/molecules16097958] [PMID: 21921868]
[42]
Arzanlou, M.; Bohlooli, S.; Jannati, E.; Mirzanejad-Asl, H. Allicin from garlic neutralizes the hemolytic activity of intra- and extra-cellular pneumolysin O in vitro. Toxicon, 2011, 57(4), 540-545.
[http://dx.doi.org/10.1016/j.toxicon.2010.12.009] [PMID: 21184771]
[43]
Yousuf, S.; Ahmad, A.; Khan, A.; Manzoor, N.; Khan, L.A. Effect of garlic-derived allyl sulphides on morphogenesis and hydrolytic enzyme secretion in Candida albicans. Med. Mycol., 2011, 49(4), 444-448.
[http://dx.doi.org/10.3109/13693786.2010.539629] [PMID: 21128712]
[44]
Bhagyalakshmi, N.; Thimmaraju, R.; Venkatachalam, L.; Murthy, K.N.C.; Sreedhar, R.V. Nutraceutical applications of garlic and the intervention of biotechnology. Crit. Rev. Food Sci. Nutr., 2005, 45(7-8), 607-621.
[http://dx.doi.org/10.1080/10408390500455508] [PMID: 16371330]
[45]
Shang, A.; Cao, S-Y.; Xu, X-Y.; Gan, R-Y.; Tang, G-Y.; Corke, H.; Mavumengwana, V.; Li, H-B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 2019, 8(7), 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[46]
Qiu, Z.; Zheng, Z.; Zhang, B.; Sun-Waterhouse, D.; Qiao, X. Formation, nutritional value, and enhancement of characteristic components in black garlic: A review for maximizing the goodness to humans. Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 801-834.
[http://dx.doi.org/10.1111/1541-4337.12529] [PMID: 33325167]
[47]
Wang, H.; Li, X.; Shen, D.; Oiu, Y.; Song, J. Diversity evaluation of morphological traits and allicin content in garlic (Allium sativum L.) from China. Euphytica, 2014, 198(2), 243-254.
[http://dx.doi.org/10.1007/s10681-014-1097-1]
[48]
Atif, M.J.; Amin, B.; Ghani, M.I.; Ali, M.; Cheng, Z. Variation in morphological and quality parameters in garlic (Allium sativum L.) bulb influenced by different photoperiod, temperature, sowing and harvesting time. Plants, 2020, 9(2), 155.
[http://dx.doi.org/10.3390/plants9020155] [PMID: 31991938]
[49]
U.S. department of agriculture. agricultural research service. Available from: https://www.ars.usda.gov/ [Accessed: Aug 7, 2021].
[50]
Shen, C.; Xiao, H.; Parkin, K.L. In vitro stability and chemical reactivity of thiosulfinates. J. Agric. Food Chem., 2002, 50(9), 2644-2651.
[http://dx.doi.org/10.1021/jf011013e] [PMID: 11958636]
[51]
Asdaq, S.M.; Inamdar, M.N. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine, 2010, 17(13), 1016-1026.
[http://dx.doi.org/10.1016/j.phymed.2010.07.012] [PMID: 20739164]
[52]
Mansingh, D.; Dalpati, N.; Sali, V.; Rachel Vasanthi, A. Alliin the precursor of allicin in garlic extract mitigates proliferation of gastric adenocarcinoma cells by modulating apoptosis. Pharmacogn. Mag., 2018, 14(55), 84-91.
[http://dx.doi.org/10.4103/pm.pm_342_17]
[53]
Ha, A.W.; Ying, T.; Kim, W.K. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Nutr. Res. Pract., 2015, 9(1), 30-36.
[http://dx.doi.org/10.4162/nrp.2015.9.1.30] [PMID: 25671065]
[54]
Takashima, M.; Kanamori, Y.; Kodera, Y.; Morihara, N.; Tamura, K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine, 2017, 24, 56-61.
[http://dx.doi.org/10.1016/j.phymed.2016.11.016] [PMID: 28160862]
[55]
Supakul, L.; Pintana, H.; Apaijai, N.; Chattipakorn, S.; Shinlapawittayatorn, K.; Chattipakorn, N. Protective effects of garlic extract on cardiac function, heart rate variability, and cardiac mitochondria in obese insulin-resistant rats. Eur. J. Nutr., 2014, 53(3), 919-928.
[http://dx.doi.org/10.1007/s00394-013-0595-6] [PMID: 24142245]
[56]
Kaschula, C.H.; Hunter, R.; Stellenboom, N.; Caira, M.R.; Winks, S.; Ogunleye, T.; Richards, P.; Cotton, J.; Zilbeyaz, K.; Wang, Y.; Siyo, V.; Ngarande, E.; Parker, M.I. Structure-activity studies on the anti-proliferation activity of ajoene analogues in WHCO1 oesophageal cancer cells. Eur. J. Med. Chem., 2012, 50, 236-254.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.058] [PMID: 22381354]
[57]
Jung, Y.; Park, H.; Zhao, H.Y.; Jeon, R.; Ryu, J.H.; Kim, W.Y. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent. Mol. Cells, 2014, 37(7), 547-553.
[http://dx.doi.org/10.14348/molcells.2014.0158] [PMID: 25078449]
[58]
Alhashim, M.; Lombardo, J. Mechanism of action of topical garlic on wound healing. Dermatol. Surg., 2018, 44(5), 630-634.
[http://dx.doi.org/10.1097/DSS.0000000000001382] [PMID: 29077629]
[59]
Metwally, D.M.; Al-Olayan, E.M.; Alanazi, M.; Alzahrany, S.B.; Semlali, A. Antischistosomal and anti-inflammatory activity of garlic and allicin compared with that of praziquantel in vivo. BMC Complement. Altern. Med., 2018, 18(1), 135.
[http://dx.doi.org/10.1186/s12906-018-2191-z] [PMID: 29703259]
[60]
Bauer, D.; Mazzio, E.; Soliman, K.F.; Taka, E.; Oriaku, E.; Womble, T. Darling-Reed, S. Diallyl disulfide inhibits TNFα-induced CCL2 release by MDA-MB-231 cells. Cytom. Part A. J. Int. Soc. Anal. Cytol., 2002, 48(4), 209-215.
[http://dx.doi.org/10.1016/j.cyto.2014.12.007] [PMID: 26100848]
[61]
Dehghani, S.; Alipoor, E.; Salimzadeh, A.; Yaseri, M.; Hosseini, M.; Feinle-Bisset, C.; Hosseinzadeh-Attar, M.J. The effect of a garlic supplement on the pro-inflammatory adipocytokines, resistin and tumor necrosis factor-alpha, and on pain severity, in overweight or obese women with knee osteoarthritis. Phytomedicine, 2018, 48, 70-75.
[http://dx.doi.org/10.1016/j.phymed.2018.04.060] [PMID: 30195882]
[62]
Girish, V.M.; Liang, H.; Aguilan, J.T.; Nosanchuk, J.D.; Friedman, J.M.; Nacharaju, P. Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine, 2019, 20, 102009.
[http://dx.doi.org/10.1016/j.nano.2019.04.012] [PMID: 31085344]
[63]
Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, D.J. Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS One, 2014, 9(12), e112726.
[http://dx.doi.org/10.1371/journal.pone.0112726] [PMID: 25438250]
[64]
Fratianni, F.; Riccardi, R.; Spigno, P.; Ombra, M.N.; Cozzolino, A.; Tremonte, P.; Coppola, R.; Nazzaro, F. Biochemical characterization and antimicrobial and antifungal activity of two endemic varieties of garlic (Allium sativum L.) of the campania region, Southern Italy. J. Med. Food, 2016, 19(7), 686-691.
[http://dx.doi.org/10.1089/jmf.2016.0027] [PMID: 27259073]
[65]
Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med., 1992, 58(5), 417-423.
[http://dx.doi.org/10.1055/s-2006-961504] [PMID: 1470664]
[66]
Zhen, H.; Fang, F.; Ye, D.Y.; Shu, S.N.; Zhou, Y.F.; Dong, Y.S.; Nie, X.C.; Li, G. Experimental study on the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on immediate-early genes. Antiviral Res., 2006, 72(1), 68-74.
[http://dx.doi.org/10.1016/j.antiviral.2006.03.017] [PMID: 16844239]
[67]
Shekh, S.; Reddy, K.K.A.; Gowd, K.H. In silico allicin induced s -thioallylation of SARS-CoV-2 main protease. J. Sulfur Chem., 2021, 42(1), 109-120.
[http://dx.doi.org/10.1080/17415993.2020.1817457]
[68]
Dorhoi, A.; Dobrean, V.; Zăhan, M.; Virag, P. Modulatory effects of several herbal extracts on avian peripheral blood cell immune responses. Phytother. Res., 2006, 20(5), 352-358.
[http://dx.doi.org/10.1002/ptr.1859] [PMID: 16619362]
[69]
Sela, U.; Ganor, S.; Hecht, I.; Brill, A.; Miron, T.; Rabinkov, A.; Wilchek, M.; Mirelman, D.; Lider, O.; Hershkoviz, R. Allicin inhibits SDF-1α-induced T cell interactions with fibronectin and endothelial cells by down-regulating cytoskeleton rearrangement, Pyk-2 phosphorylation and VLA-4 expression. Immunology, 2004, 111(4), 391-399.
[http://dx.doi.org/10.1111/j.0019-2805.2004.01841.x] [PMID: 15056375]
[70]
Hall, A.; Troupin, A.; Londono-Renteria, B.; Colpitts, T.M. Garlic organosulfur compounds reduce inflammation and oxidative stress during dengue virus infection. Viruses, 2017, 9(7), 159.
[http://dx.doi.org/10.3390/v9070159] [PMID: 28644404]
[71]
Liu, S-G.; Ren, P-Y.; Wang, G-Y.; Yao, S-X.; He, X-J. Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway. Food Funct., 2015, 6(1), 321-330.
[http://dx.doi.org/10.1039/C4FO00761A] [PMID: 25473931]
[72]
Gruhlke, M.C.H.; Nwachukwu, I.; Arbach, M.; Anwar, A.; Noll, U.; Slusarenko, A.J. Allicin from garlic, effective in controlling several plant diseases, is a reactive sulfur species (RSS) that pushes cells into apoptosis. Int. Reinhardsbrunn Symp., 2010, pp. 325-330.
[73]
Cheng, B.; Li, T. Discovery of alliin as a putative inhibitor of the main protease of SARS-CoV-2 by molecular docking. Biotechniques, 2020, 69(2), 108-112.
[http://dx.doi.org/10.2144/btn-2020-0038] [PMID: 32459144]
[74]
Chen, C.H.; Chou, T.W.; Cheng, L.H.; Ho, C.W. In vitro anti-adenoviral activity of five allium plants. J. Taiwan Inst. Chem. Eng., 2011, 42(2), 228-232.
[http://dx.doi.org/10.1016/j.jtice.2010.07.011]
[75]
Arreola, R.; Quintero-Fabián, S.; López-Roa, R.I.; Flores-Gutiérrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res., 2015, 2015, 401630.
[http://dx.doi.org/10.1155/2015/401630] [PMID: 25961060]
[76]
Fasolino, I.; Izzo, A.A.; Clavel, T.; Romano, B.; Haller, D.; Borrelli, F. Orally administered allyl sulfides from garlic ameliorate murine colitis. Mol. Nutr. Food Res., 2015, 59(3), 434-442.
[http://dx.doi.org/10.1002/mnfr.201400347] [PMID: 25488545]
[77]
Suman, S.; Shukla, Y. Diallyl sulfide and its role in chronic diseases prevention. Adv. Exp. Med. Biol., 2016, 929, 127-144.
[http://dx.doi.org/10.1007/978-3-319-41342-6_6] [PMID: 27771923]
[78]
Saud, S.M.; Li, W.; Gray, Z.; Matter, M.S.; Colburn, N.H.; Young, M.R.; Kim, Y.S. Diallyl disulfide (dads), a constituent of garlic, inactivates nf-κb and prevents colitis-induced colorectal cancer by inhibiting GSK-3β. Cancer Prev. Res. (Phila.), 2016, 9(7), 607-615.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0044] [PMID: 27138790]
[79]
Shan, Y.; Wei, Z.; Tao, L.; Wang, S.; Zhang, F.; Shen, C.; Wu, H.; Liu, Z.; Zhu, P.; Wang, A.; Chen, W.; Lu, Y. Prophylaxis of diallyl disulfide on skin carcinogenic model via p21-dependent Nrf2 stabilization. Sci. Rep., 2016, 6(1), 35676.
[http://dx.doi.org/10.1038/srep35676] [PMID: 27759091]
[80]
Jiang, X.; Zhu, X.; Huang, W.; Xu, H.; Zhao, Z.; Li, S.; Li, S.; Cai, J.; Cao, J. Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice. Int. Immunopharmacol., 2017, 48, 135-145.
[http://dx.doi.org/10.1016/j.intimp.2017.05.004] [PMID: 28501767]
[81]
Taylor, P.; Noriega, R.; Farah, C.; Abad, M.J.; Arsenak, M.; Apitz, R. Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice. Cancer Lett., 2006, 239(2), 298-304.
[http://dx.doi.org/10.1016/j.canlet.2005.08.022] [PMID: 16221526]
[82]
Kaschula, C.H.; Hunter, R.; Parker, M.I. Garlic-derived anticancer agents: structure and biological activity of ajoene. Biofactors, 2010, 36(1), 78-85.
[http://dx.doi.org/10.1002/biof.76] [PMID: 20108330]
[83]
Yoo, D.Y.; Kim, W.; Nam, S.M.; Yoo, M.; Lee, S.; Yoon, Y.S.; Won, M.H.; Hwang, I.K.; Choi, J.H. Neuroprotective effects of Z-ajoene, an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain ischemia. Food Chem. Toxicol., 2014, 72, 1-7.
[http://dx.doi.org/10.1016/j.fct.2014.06.023] [PMID: 24997311]
[84]
Apitz-Castro, R.; Badimon, J.J.; Badimon, L. Effect of ajoene, the major antiplatelet compound from garlic, on platelet thrombus formation. Thromb. Res., 1992, 68(2), 145-155.
[http://dx.doi.org/10.1016/0049-3848(92)90030-E] [PMID: 1475777]
[85]
Apitz-Castro, R.; Ledezma, E.; Escalante, J.; Jain, M.K. The molecular basis of the antiplatelet action of ajoene: direct interaction with the fibrinogen receptor. Biochem. Biophys. Res. Commun., 1986, 141(1), 145-150.
[http://dx.doi.org/10.1016/S0006-291X(86)80346-1] [PMID: 3800991]
[86]
Walder, R.; Kalvatchev, Z.; Garzaro, D.; Barrios, M.; Apitz-Castro, R. In vitro suppression of HIV-1 replication by ajoene [(e)-(z)-4,5,9-trithiadodeca-1,6,11-triene-9 oxide]. Biomed. Pharmacother., 1997, 51(9), 397-403.
[http://dx.doi.org/10.1016/S0753-3322(97)89433-4] [PMID: 9452790]
[87]
Terrasson, J.; Xu, B.; Li, M.; Allart, S.; Davignon, J.L.; Zhang, L.H.; Wang, K.; Davrinche, C. Activities of Z-ajoene against tumour and viral spreading in vitro. Fundam. Clin. Pharmacol., 2007, 21(3), 281-289.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00470.x] [PMID: 17521297]
[88]
Zarezadeh, M.; Baluchnejadmojarad, T.; Kiasalari, Z.; Afshin-Majd, S.; Roghani, M. Garlic active constituent s-allyl cysteine protects against lipopolysaccharide-induced cognitive deficits in the rat: Possible involved mechanisms. Eur. J. Pharmacol., 2017, 795(795), 13-21.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.051] [PMID: 27915041]
[89]
Khajevand-Khazaei, M-R.; Azimi, S.; Sedighnejad, L.; Salari, S.; Ghorbanpour, A.; Baluchnejadmojarad, T.; Mohseni-Moghaddam, P.; Khamse, S.; Roghani, M. S-allyl cysteine protects against lipopolysaccharide-induced acute kidney injury in the C57BL/6 mouse strain: Involvement of oxidative stress and inflammation. Int. Immunopharmacol., 2019, 69(1), 19-26.
[http://dx.doi.org/10.1016/j.intimp.2019.01.026] [PMID: 30665040]
[90]
Xu, Y.S.; Feng, J.G.; Zhang, D.; Zhang, B.; Luo, M.; Su, D.; Lin, N.M. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. Acta Pharmacol. Sin., 2014, 35(2), 267-274.
[http://dx.doi.org/10.1038/aps.2013.176] [PMID: 24362328]
[91]
Agbana, Y.L.; Ni, Y.; Zhou, M.; Zhang, Q.; Kassegne, K.; Karou, S.D.; Kuang, Y.; Zhu, Y. Garlic-derived bioactive compound S-allylcysteine inhibits cancer progression through diverse molecular mechanisms. Nutr. Res., 2020, 73, 1-14.
[http://dx.doi.org/10.1016/j.nutres.2019.11.002] [PMID: 31835095]
[92]
Avula, P.R.; Asdaq, S.M.; Asad, M. Effect of aged garlic extract and s-allyl cysteine and their interaction with atenolol during isoproterenol induced myocardial toxicity in rats. Indian J. Pharmacol., 2014, 46(1), 94-99.
[http://dx.doi.org/10.4103/0253-7613.125185] [PMID: 24550592]
[93]
Touloupakis, E.; Ghanotakis, D.F. Nutraceutical use of garlic sulfur-containing compounds. Adv. Exp. Med. Biol., 2010, 698, 110-121.
[http://dx.doi.org/10.1007/978-1-4419-7347-4_9] [PMID: 21520707]
[94]
Li, W.R.; Shi, Q.S.; Liang, Q.; Huang, X.M.; Chen, Y.B. Antifungal effect and mechanism of garlic oil on Penicillium funiculosum. Appl. Microbiol. Biotechnol., 2014, 98(19), 8337-8346.
[http://dx.doi.org/10.1007/s00253-014-5919-9] [PMID: 25012787]
[95]
Li, W.R.; Shi, Q.S.; Dai, H.Q.; Liang, Q.; Xie, X.B.; Huang, X.M.; Zhao, G.Z.; Zhang, L.X. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci. Rep., 2016, 6(1), 22805.
[http://dx.doi.org/10.1038/srep22805] [PMID: 26948845]
[96]
Zardast, M.; Namakin, K.; Esmaelian Kaho, J.; Hashemi, S.S. Assessment of antibacterial effect of garlic in patients infected with Helicobacter pylori using urease breath test. Avicenna J. Phytomed., 2016, 6(5), 495-501.
[PMID: 27761418]
[97]
Li, Z.; Ying, X.; Shan, F.; Ji, J. The association of garlic with Helicobacter pylori infection and gastric cancer risk: A systematic review and meta-analysis. Helicobacter, 2018, 23(5), e12532.
[http://dx.doi.org/10.1111/hel.12532] [PMID: 30155945]
[98]
Naznin, M.T.; Akagawa, M.; Okukawa, K.; Maeda, T.; Morita, N. Characterization of e- and z-ajoene obtained from different varieties of garlics. Food Chem., 2008, 106(3), 1113-1119.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.041]
[99]
Thorajak, P.; Pannangrong, W.; Welbat, J.U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Effects of aged garlic extract on cholinergic, glutamatergic and gabaergic systems with regard to cognitive impairment in aβ-induced rats. Nutrients, 2017, 9(7), E686.
[http://dx.doi.org/10.3390/nu9070686] [PMID: 28671572]
[100]
Semuyaba, I.; Safiriyu, A.A.; Tiyo, E.A.; Niurka, R.F. Memory improvement effect of ethanol garlic (A. sativum) extract in streptozotocin-nicotinamide induced diabetic wistar rats is mediated through increasing of hippocampal sodium-potassium ATPase, glutamine synthetase, and calcium ATPase activities. Evid. Based Complement. Alternat. Med., 2017, 2017, 3720380.
[http://dx.doi.org/10.1155/2017/3720380] [PMID: 29445411]
[101]
Lawson, L.D.; Gardner, C.D. Composition, stability, and bioavailability of garlic products used in a clinical trial. J. Agric. Food Chem., 2005, 53(16), 6254-6261.
[http://dx.doi.org/10.1021/jf050536+] [PMID: 16076102]
[102]
Peng, Q.; Buz’Zard, A.R.; Lau, B.H. Neuroprotective effect of garlic compounds in amyloid-beta peptide-induced apoptosis in vitro. Med. Sci. Monit., 2002, 8(8), BR328-BR337.
[PMID: 12165737]
[103]
Ito, Y.; Kosuge, Y.; Sakikubo, T.; Horie, K.; Ishikawa, N.; Obokata, N.; Yokoyama, E.; Yamashina, K.; Yamamoto, M.; Saito, H.; Arakawa, M.; Ishige, K. Protective effect of S-allyl-L-cysteine, a garlic compound, on amyloid β-protein-induced cell death in nerve growth factor-differentiated PC12 cells. Neurosci. Res., 2003, 46(1), 119-125.
[http://dx.doi.org/10.1016/S0168-0102(03)00037-3] [PMID: 12725918]
[104]
Liu, Z.; Li, M.; Chen, K.; Yang, J.; Chen, R.; Wang, T.; Liu, J.; Yang, W.; Ye, Z. S-allylcysteine induces cell cycle arrest and apoptosis in androgen-independent human prostate cancer cells. Mol. Med. Rep., 2012, 5(2), 439-443.
[http://dx.doi.org/10.3892/mmr.2011.658] [PMID: 22052207]
[105]
Shoji, S.; Furuishi, K.; Yanase, R.; Miyazaka, T.; Kino, M. Allyl compounds selectively killed human immunodeficiency virus (type 1)-infected cells. Biochem. Biophys. Res. Commun., 1993, 194(2), 610-621.
[http://dx.doi.org/10.1006/bbrc.1993.1865] [PMID: 8343148]
[106]
Silprasit, K.; Seetaha, S.; Pongsanaraku, P.; Hannongbua, S.; Choowongkomon, K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J. Med. Plants Res., 2011, 5(19), 4899-4906.
[107]
Cheng, Y.C.; Chang, M.H.; Tsai, C.C.; Chen, T.S.; Fan, C.C.; Lin, C.C.; Lai, C.H.; Tsai, F.J.; Lin, J.A.; Huang, C.Y. Garlic oil attenuates the cardiac apoptosis in hamster-fed with hypercholesterol diet. Food Chem., 2013, 136(3-4), 1296-1302.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.076] [PMID: 23194526]
[108]
Yue, L.J.; Zhu, X.Y.; Li, R.S.; Chang, H.J.; Gong, B.; Tian, C.C.; Liu, C.; Xue, Y.X.; Zhou, Q.; Xu, T.S.; Wang, D.J. S-allyl-cysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. Int. J. Mol. Med., 2019, 44(5), 1943-1951.
[http://dx.doi.org/10.3892/ijmm.2019.4351] [PMID: 31573046]
[109]
Orozco-Ibarra, M.; Muñoz-Sánchez, J.; Zavala-Medina, M.E.; Pineda, B.; Magaña-Maldonado, R.; Vázquez-Contreras, E.; Maldonado, P.D.; Pedraza-Chaverri, J.; Chánez-Cárdenas, M.E. Aged garlic extract and S-allylcysteine prevent apoptotic cell death in a chemical hypoxia model. Biol. Res., 2016, 49(1), 7.
[http://dx.doi.org/10.1186/s40659-016-0067-6] [PMID: 26830333]
[110]
Ray, B.; Chauhan, N.B.; Lahiri, D.K. Oxidative insults to neurons and synapse are prevented by aged garlic extract and S-allyl-L-cysteine treatment in the neuronal culture and APP-Tg mouse model. J. Neurochem., 2011, 117(3), 388-402.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07145.x] [PMID: 21166677]
[111]
Colín-González, A.L.; Santana, R.A.; Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Santamaría, A.; Maldonado, P.D. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid. Med. Cell. Longev., 2012, 2012(1), 907162.
[http://dx.doi.org/10.1155/2012/907162] [PMID: 22685624]
[112]
Lai, Y.S.; Chen, W.C.; Ho, C.T.; Lu, K.H.; Lin, S.H.; Tseng, H.C.; Lin, S.Y.; Sheen, L.Y. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J. Agric. Food Chem., 2014, 62(25), 5897-5906.
[http://dx.doi.org/10.1021/jf500803c] [PMID: 24857364]
[113]
Hazzaa, S.M.; Abdelaziz, S.A.M.; Abd Eldaim, M.A.; Abdel-Daim, M.M.; Elgarawany, G.E. Neuroprotective potential of Allium sativum against monosodium glutamate-induced excitotoxicity: Impact on short-term memory, gliosis, and oxidative stress. Nutrients, 2020, 12(4), 1028.
[http://dx.doi.org/10.3390/nu12041028] [PMID: 32290031]
[114]
Mathew, B.; Biju, R. Neuroprotective effects of garlic a review. Libyan J. Med., 2008, 3(1), 23-33.
[http://dx.doi.org/10.4176/071110] [PMID: 21499478]
[115]
Amagase, H. Clarifying the real bioactive constituents of garlic. J. Nutr., 2006, 136(3)(Suppl.), 716S-725S.
[http://dx.doi.org/10.1093/jn/136.3.716S] [PMID: 16484550]
[116]
Sun, Y-E.; Wang, W.; Qin, J. Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein: A meta-analysis. Medicine (Baltimore), 2018, 97(18), e0255.
[http://dx.doi.org/10.1097/MD.0000000000010255] [PMID: 29718835]
[117]
Wang, J.; Zhang, X.; Lan, H.; Wang, W. Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): a meta-analysis of randomized controlled trials. Food Nutr. Res., 2017, 61(1), 1377571.
[http://dx.doi.org/10.1080/16546628.2017.1377571] [PMID: 29056888]
[118]
Soleimani, D.; Paknahad, Z.; Rouhani, M.H. Therapeutic effects of garlic on hepatic steatosis in nonalcoholic fatty liver disease patients: A randomized clinical trial. Diabetes Metab. Syndr. Obes., 2020, 13, 2389-2397.
[http://dx.doi.org/10.2147/DMSO.S254555] [PMID: 32753923]
[119]
Kim, S.; Kim, D.B.; Jin, W.; Park, J.; Yoon, W.; Lee, Y.; Kim, S.; Lee, S.; Kim, S.; Lee, O.H.; Shin, D.; Yoo, M. Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.). Nat. Prod. Res., 2018, 32(10), 1193-1197.
[http://dx.doi.org/10.1080/14786419.2017.1323211] [PMID: 28475377]
[120]
Manjili, R.H.; Zarei, M.; Habibi, M.; Manjili, M.H. COVID-19 as an acute inflammatory disease. J. Immunol., 2020, 205(1), 12-19.
[http://dx.doi.org/10.4049/jimmunol.2000413] [PMID: 32423917]
[121]
Kyo, E.; Uda, N.; Kasuga, S.; Itakura, Y. Immunomodulatory effects of aged garlic extract. J. Nutr., 2001, 131(3s), 1075S-1079S.
[http://dx.doi.org/10.1093/jn/131.3.1075S] [PMID: 11238820]
[122]
Lau, B.H.; Yamasaki, T.; Gridley, D.S. Garlic compounds modulate macrophage and T-lymphocyte functions. Mol. Biother., 1991, 3(2), 103-107.
[PMID: 1910619]
[123]
Shufan, T.Z.S.Z.L.; Xiangchun, J.; Meiyu, S.K.Y. The preventing function of garlic on experimental oral precancer and its effect on natural killer cells, T Lymphocytes and interleukin 2. Human Med. Univ., 1997, 22(5), 246-248.
[124]
Iranloye, B. Effect of chronic garlic feeding on some haematological parameters. Afr. J. Biomed. Res., 2002, 5(1–2), 81-82.
[http://dx.doi.org/10.4314/AJBR.V5I1-2.53986]
[125]
Shih, P-C.; Kuo, C-H.; Juang, J-Y.; Liu, C-H.; Hsu, L.; Liu, C-T. Effects of garlic oil on the migration of neutrophil-like cell studied by using a chemotactic gradient Labchip. J. Biomed. Biotechnol., 2010, 2010(14), 319059.
[http://dx.doi.org/10.1155/2010/319059] [PMID: 20454631]
[126]
Kim, S.R.; Jung, Y.R.; An, H.J.; Kim, D.H.; Jang, E.J.; Choi, Y.J.; Moon, K.M.; Park, M.H.; Park, C.H.; Chung, K.W.; Bae, H.R.; Choi, Y.W.; Kim, N.D.; Chung, H.Y. Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-κB signaling. PLoS One, 2013, 8(9), e73877.
[http://dx.doi.org/10.1371/journal.pone.0073877] [PMID: 24066081]
[127]
Spelman, K.; Burns, J.; Nichols, D.; Winters, N.; Ottersberg, S.; Tenborg, M. Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern. Med. Rev., 2006, 11(2), 128-150.
[http://dx.doi.org/10.1016/j.tox.2009.09.020] [PMID: 16813462]
[128]
Hodge, G.; Hodge, S.; Han, P. Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry, 2002, 48(4), 209-215.
[http://dx.doi.org/10.1002/cyto.10133] [PMID: 12210145]
[129]
Mohamed, E.H.; Baiomy, A.A.; Ibrahim, Z.S.; Soliman, M.M. Modulatory effects of levamisole and garlic oil on the immune response of Wistar rats: Biochemical, immunohistochemical, molecular and immunological study. Mol. Med. Rep., 2016, 14(3), 2755-2763.
[http://dx.doi.org/10.3892/mmr.2016.5551] [PMID: 27484629]
[130]
Espinoza, T.; Valencia, E.; Albarrán, M.; Díaz, D.; Quevedo, R.; Díaz, O.; Bastías, J. Garlic (Allium sativum L.) and its beneficial properties for health: A review. Agro Sci., 2020, 10(1), 103-115.
[http://dx.doi.org/10.17268/agroind.sci.2020.01.14]
[131]
Jafari, R.A.; Ghorbanpoor, M.; Diarjan, S.H. Study on immunomodulatory activity of dietary garlic in chickens vaccinated against avian influenza virus (subtype H9N2). Int. J. Poult. Sci., 2009, 8(4), 401-403.
[http://dx.doi.org/10.3923/ijps.2009.401.403]
[132]
Guillamón, E. Effect of phytochemical compounds of the genus allium on the immune system and the inflammatory response. Ars Pharm., 2018, 59(3), 185-196.
[http://dx.doi.org/10.30827/ars.v59i3.7479]
[133]
Nillert, N.; Pannangrong, W.; Welbat, J.U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients, 2017, 9(1), 24.
[http://dx.doi.org/10.3390/nu9010024] [PMID: 28054940]
[134]
Wakefield, D.; Gray, P.; Chang, J.; Di Girolamo, N.; McCluskey, P. The role of PAMPs and DAMPs in the pathogenesis of acute and recurrent anterior uveitis. Br. J. Ophthalmol., 2010, 94(3), 271-274.
[http://dx.doi.org/10.1136/bjo.2008.146753] [PMID: 19264730]
[135]
Secklehner, J.; de Filippo, K.; Mackey, J.B.G.; Vuononvirta, J.; Raffo Iraolagoitia, X.L.; McFarlane, A.J.; Neilson, M.; Headley, M.B.; Krummel, M.F.; Guerra, N.; Carlin, L.M. Pulmonary Natural Killer Cells Control Neutrophil Intravascular Motility and Response to Acute Inflammation; Cold Spring Harbor Laboratory 2019.
[http://dx.doi.org/10.1101/680611]
[136]
Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Balasubramanian, N.; Quinn, M.T. Neutrophil immunomodulatory activity of natural organosulfur compounds. Molecules, 2019, 24(9), 1809.
[http://dx.doi.org/10.3390/molecules24091809] [PMID: 31083328]
[137]
Lee, S-H.; Liu, Y-T.; Chen, K-M.; Lii, C-K.; Liu, C-T. Effect of garlic sulfur compounds on neutrophil infiltration and damage to the intestinal mucosa by endotoxin in rats. Food Chem. Toxicol., 2012, 50(3-4), 567-574.
[http://dx.doi.org/10.1016/j.fct.2011.11.027] [PMID: 22138247]
[138]
Hasan, N.A.; Zuhair, M.H.; Safari, E.; Bozorgmehr, M.; Moazzeni, S.M. Evaluation of the effect of the 47 kda protein isolated from aged garlic extract on dendritic cells. Iran. J. Basic Med. Sci., 2012, 15(2), 745-751.
[PMID: 23493446]
[139]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[140]
Abou-Raya, S.; Abou-Raya, A.; Naim, A.; Abuelkheir, H. Chronic inflammatory autoimmune disorders and atherosclerosis. Ann. N. Y. Acad. Sci., 2007, 1107(1), 56-67.
[http://dx.doi.org/10.1196/annals.1381.007] [PMID: 17804533]
[141]
Larypoor, M.; Bayat, M.; Zuhair, M.H.; Akhavan Sepahy, A.; Amanlou, M. Evaluation of the number of cd4(+) cd25(+) foxp3(+) treg cells in normal mice exposed to afb1 and treated with aged garlic extract. Cell J., 2013, 15(1), 37-44.
[PMID: 23700559]
[142]
Lestari, S.R.; Rifa’i, M.; Regulatory, T. Cells and anti-inflammatory cytokine profile of mice fed a high-fat diet after single-bulb garlic (Allium sativum L.) oil treatment. Trop. J. Pharm. Res., 2018, 17(11), 2157-2162.
[http://dx.doi.org/10.4314/tjpr.v17i11.7]
[143]
Xu, C.; Mathews, A.E.; Rodrigues, C.; Eudy, B.J.; Rowe, C.A.; O’Donoughue, A.; Percival, S.S. Aged garlic extract supplementation modifies inflammation and immunity of adults with obesity: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. ESPEN, 2018, 24, 148-155.
[http://dx.doi.org/10.1016/j.clnesp.2017.11.010] [PMID: 29576354]
[144]
Blasko, I.; Stampfer-Kountchev, M.; Robatscher, P.; Veerhuis, R.; Eikelenboom, P.; Grubeck-Loebenstein, B. How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell, 2004, 3(4), 169-176.
[http://dx.doi.org/10.1111/j.1474-9728.2004.00101.x] [PMID: 15268750]
[145]
Sarlus, H.; Heneka, M.T. Microglia in Alzheimer’s disease. J. Clin. Invest., 2017, 127(9), 3240-3249.
[http://dx.doi.org/10.1172/JCI90606] [PMID: 28862638]
[146]
Thurgur, H.; Pinteaux, E. Microglia in the neurovascular unit: Blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience, 2019, 405, 55-67.
[http://dx.doi.org/10.1016/j.neuroscience.2018.06.046] [PMID: 31007172]
[147]
Kim, H-J.; Cho, M-H.; Shim, W.H.; Kim, J.K.; Jeon, E-Y.; Kim, D-H.; Yoon, S-Y. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry, 2017, 22(11), 1576-1584.
[http://dx.doi.org/10.1038/mp.2016.103] [PMID: 27400854]
[148]
Keiss, H-P.; Dirsch, V.M.; Hartung, T.; Haffner, T.; Trueman, L.; Auger, J.; Kahane, R.; Vollmar, A.M. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-kappaB activity. J. Nutr., 2003, 133(7), 2171-2175.
[http://dx.doi.org/10.1093/jn/133.7.2171] [PMID: 12840173]
[149]
Tsai, Y.; Cole, L.L.; Davis, L.E.; Lockwood, S.J.; Simmons, V.; Wild, G.C. Antiviral properties of garlic: In vitro effects on influenza B, Herpes simplex and Coxsackie viruses. Planta Med., 1985, 51(5), 460-461.
[http://dx.doi.org/10.1055/s-2007-969553] [PMID: 17342616]
[150]
Liu, Z.F.; Fang, F.; Dong, Y.S.; Li, G.; Zhen, H. Experimental study on the prevention and treatment of murine cytomegalovirus hepatitis by using allitridin. Antiviral Res., 2004, 61(2), 125-128.
[http://dx.doi.org/10.1016/S0166-3542(03)00087-1] [PMID: 14670586]
[151]
Romeilah, R.M.; Fayed, S.A.; Mahmoud, G.I. Chemical compositions, antiviral and antioxidant activities of seven essential oils. J. Appl. Sci. Res., 2010, 6(1), 50-62.
[152]
Shu, S.; Fang, F.; Dong, Y. An Experimental study on the effect of allitridin on inhibiting the expression of hcmv immediate-early antigens in vitro. China J. Chinese Mater. medica, 2003, 28(10), 967-970.
[153]
Fang, F.; Li, H.; Cui, W.; Dong, Y. Treatment of hepatitis caused by cytomegalovirus with allitridin injection--an experimental study. J. Tongji Med. Univ., 1999, 19(4), 271-274.
[http://dx.doi.org/10.1007/BF02886960] [PMID: 12938515]
[154]
Tatarintsev, A.V.; Vrzhets, P.V.; Ershov, D.E.; Shchegolev, A.A.; Turgiev, A.S.; Karamov, E.V.; Kornilaeva, G.V.; Makarova, T.V.; Fedorov, N.A.; Varfolomeev, S.D. The ajoene blockade of integrin-dependent processes in an HIV-infected cell system. Vestn. Ross. Akad. Med. Nauk, 1992, 1112(11-12), 6-10.
[PMID: 1284227]
[155]
Danish Mehmood, M.; Rafique, E.; Anwar, H.; Noreen, S.; Gul, M.; Hussain, S. Antiviral activity and its prospective mechanism of action on newcastle disease virus using crude extract of four medicinal plants. World J. Pharm. Res., 2018, 7(18), 130-141.
[156]
Doostmohammadian, F.; Shomali, T.; Mosleh, N.; Mohammadi, M. In ovo evaluation of antiviral effects of aqueous garlic (Allium sativum) extract against a velogenic strain of newcastle disease virus. J. Herbmed Pharmacol., 2020, 9(3), 232-238.
[http://dx.doi.org/10.34172/jhp.2020.30]
[157]
Rahman, M.M.; Mosaddik, A.; Alam, A.K. Traditional foods with their constituent’s antiviral and immune system modulating properties. Heliyon, 2021, 7(1), e05957.
[http://dx.doi.org/10.1016/j.heliyon.2021.e05957] [PMID: 33462562]
[158]
Mohajer Shojai, T.; Ghalyanchi Langeroudi, A.; Karimi, V.; Barin, A.; Sadri, N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J. Phytomed., 2016, 6(4), 458-267.
[http://dx.doi.org/10.22038/ajp.2016.6455] [PMID: 27516987]
[159]
Rees, L.P.; Minney, S.F.; Plummer, N.T.; Slater, J.H.; Skyrme, D.A. A quantitative assessment of the antimicrobial activity of garlic (Allium sativum). World J. Microbiol. Biotechnol., 1993, 9(3), 303-307.
[http://dx.doi.org/10.1007/BF00383068] [PMID: 24420031]
[160]
Mehrbod, P.; Aini, I.; Amini, E.; Eslami, M.; Torabi, A.; Bande, F.; Kheiri, M.T. Assessment of direct immunofluorescence assay in detection of antiviral effect of garlic extract on influenza virus. Afr. J. Microbiol. Res., 2013, 7(21), 2608-2612.
[http://dx.doi.org/10.5897/AJMR12.2329]
[161]
Mikaili, P.; Maadirad, S.; Moloudizargari, M.; Aghajanshakeri, S.; Sarahroodi, S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran. J. Basic Med. Sci., 2013, 16(10), 1031-1048.
[PMID: 24379960]
[162]
AL-Ballawi, Z.F.S.; Redhwan, N.A.; Ali, M. In vitro studies of some medicinal plants extracts for antiviral activity against rotavirus. IOSR J. Pharm. Biol. Sci., 2017, 12(2), 53-58.
[http://dx.doi.org/10.9790/3008-1202025358]
[163]
Luo, R.; Dong, Y.; Fang, F. The experimental study of the anti-enterovirus effects of drugs in vitro. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 2001, 15(2), 135-138.
[PMID: 11444254]
[164]
Seo, D.J.; Lee, M.; Jeon, S.B.; Park, H.; Jeong, S.; Lee, B-H.; Choi, C. antiviral activity of herbal extracts against the hepatitis A virus. Food Control, 2017, 2017(72), 9-13.
[http://dx.doi.org/10.1016/j.foodcont.2016.07.028]
[165]
Khubber, S.; Hashemifesharaki, R.; Mohammadi, M.; Gharibzahedi, S.M.T. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr. J., 2020, 19(1), 124.
[http://dx.doi.org/10.1186/s12937-020-00643-8] [PMID: 33208167]
[166]
Donma, M.M.; Donma, O. The effects of Allium sativum on immunity within the scope of COVID-19 infection. Med. Hypotheses, 2020, 144, 109934.
[http://dx.doi.org/10.1016/j.mehy.2020.109934] [PMID: 32512493]
[167]
Josling, P. Preventing the common cold with a garlic supplement: a double-blind, placebo-controlled survey. Adv. Ther., 2001, 18(4), 189-193.
[http://dx.doi.org/10.1007/BF02850113] [PMID: 11697022]
[168]
Li, M.; Yan, Y.X.; Yu, Q.T.; Deng, Y.; Wu, D.T.; Wang, Y.; Ge, Y.Z.; Li, S.P.; Zhao, J. Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 macrophages. J. Food Sci., 2017, 82(3), 765-771.
[http://dx.doi.org/10.1111/1750-3841.13589] [PMID: 28196294]
[169]
Hiltunen, R.; Josling, P.D.; James, M.H. Preventing airborne infection with an intranasal cellulose powder formulation (Nasaleze travel). Adv. Ther., 2007, 24(5), 1146-1153.
[http://dx.doi.org/10.1007/BF02877720] [PMID: 18029341]
[170]
Andrianova, I.V.; Sobenin, I.A.; Sereda, E.V.; Borodina, L.I.; Studenikin, M.I. Effect of long-acting garlic tablets “allicor” on the incidence of acute respiratory viral infections in children. Ter. Arkh., 2003, 75(3), 53-56.
[PMID: 12718222]
[171]
Nantz, M.P.; Rowe, C.A.; Muller, C.E.; Creasy, R.A.; Stanilka, J.M.; Percival, S.S. Supplementation with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: a randomized, double-blind, placebo-controlled nutrition intervention. Clin. Nutr., 2012, 31(3), 337-344.
[http://dx.doi.org/10.1016/j.clnu.2011.11.019] [PMID: 22280901]
[172]
Charron, C.S.; Dawson, H.D.; Albaugh, G.P.; Solverson, P.M.; Vinyard, B.T.; Solano-Aguilar, G.I.; Molokin, A.; Novotny, J.A. A single meal containing raw, crushed garlic influences expression of immunity- and cancer-related genes in whole blood of humans. J. Nutr., 2015, 145(11), 2448-2455.
[http://dx.doi.org/10.3945/jn.115.215392] [PMID: 26423732]
[173]
Di Matteo, G.; Spano, M.; Grosso, M.; Salvo, A.; Ingallina, C.; Russo, M.; Ritieni, A.; Mannina, L. Food and COVID-19: Preventive/co-therapeutic strategies explored by current clinical trials and in silico studies. Foods, 2020, 9(8), 1036.
[http://dx.doi.org/10.3390/foods9081036] [PMID: 32752217]
[174]
Flórez, L.G. Pandemia COVID-19: What else can I do? Rev. Fac. Med. Hum., 2020, 20(2), 175-177.
[http://dx.doi.org/10.25176/RFMH]
[175]
Rosselli, D. Covid-19: Between panic and indifference. Acta Neurol. Colomb., 2020, 36(2), 47-48.
[http://dx.doi.org/10.22379/24224022277]
[176]
Olas, B. Anti-aggregatory potential of selected vegetables-promising dietary components for the prevention and treatment of cardiovascular disease. Adv. Nutr., 2019, 10(2), 280-290.
[http://dx.doi.org/10.1093/advances/nmy085] [PMID: 30759176]
[177]
Shahzad, F.; Anderson, D.; Najafzadeh, M. The Antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and sars-cov-2 infection. Nutrients, 2020, 12(9), 2573.
[http://dx.doi.org/10.3390/nu12092573] [PMID: 32854262]
[178]
Panyod, S.; Ho, C.T.; Sheen, L.Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med., 2020, 10(4), 420-427.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.004] [PMID: 32691006]
[179]
Barati, F.; Pouresmaieli, M.; Ekrami, E.; Asghari, S.; Ziarani, F.R.; Mamoudifard, M. Potential drugs and remedies for the treatment of covid-19: A critical review. Biol. Proced. Online, 2020, 22(1), 15.
[http://dx.doi.org/10.1186/s12575-020-00129-1] [PMID: 32754003]
[180]
Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H.S.; Al Zarzour, R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology, 2020, 28(5), 1153-1161.
[http://dx.doi.org/10.1007/s10787-020-00744-0] [PMID: 32803479]
[181]
Sheoran, N.; Kumar, R.; Kumar, A.; Batra, K.; Sihag, S.; Maan, S.; Maan, N.S. Nutrigenomic evaluation of garlic (Allium sativum) and holy basil (Ocimum sanctum) leaf powder supplementation on growth performance and immune characteristics in broilers. Vet. World, 2017, 10(1), 121-129.
[http://dx.doi.org/10.14202/vetworld.2017.121-129] [PMID: 28246456]
[182]
Mesev, E.V.; LeDesma, R.A.; Ploss, A. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol., 2019, 4(6), 914-924.
[http://dx.doi.org/10.1038/s41564-019-0421-x] [PMID: 30936491]
[183]
Bhattacharyya, M.; Girish, G.V.; Karmohapatra, S.K.; Samad, S.A.; Sinha, A.K. Systemic production of IFN-alpha by garlic (Allium sativum) in humans. J. Interferon Cytokine Res., 2007, 27(5), 377-382.
[http://dx.doi.org/10.1089/jir.2006.0124] [PMID: 17523869]
[184]
Schreiber, G. The role of type I interferons in the pathogenesis and treatment of COVID-19. Front. Immunol., 2020, 11, 595739.
[http://dx.doi.org/10.3389/fimmu.2020.595739] [PMID: 33117408]
[185]
Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev., 2001, 14(4), 778-809.
[http://dx.doi.org/10.1128/CMR.14.4.778-809.2001] [PMID: 11585785]
[186]
Percival, S.S. Aged garlic extract modifies human immunity. J. Nutr., 2016, 146(2), 433S-436S.
[http://dx.doi.org/10.3945/jn.115.210427] [PMID: 26764332]
[187]
Knowles, L.M.; Milner, J.A. Possible mechanism by which allyl sulfides suppress neoplastic cell proliferation. J. Nutr., 2001, 131(3s), 1061S-1066S.
[http://dx.doi.org/10.1093/jn/131.3.1061S] [PMID: 11238817]
[188]
Ludwig, A.; Hengel, H. Vesicular stomatitis virus infection. Encyclopedia of molecular mechanisms of disease; Springer: Berlin, Heidelberg, 2009, pp. 2204-2205.
[http://dx.doi.org/10.1007/978-3-540-29676-8_1841]
[189]
Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; Desselberger, U.; Estes, M.K. Rotavirus infection. Nat. Rev. Dis. Primers, 2017, 3(1), 17083.
[http://dx.doi.org/10.1038/nrdp.2017.83] [PMID: 29119972]
[190]
Jemal, K.; Abraham, A.; Feyissa, T. The occurrence and distribution of four viruses on garlic (Allium sativum L.) in Ethiopia. Int. J. Basic Appl. Sci., 2015, 4(1), 5-11.
[191]
Müller, A.C.; Kanfer, I. Potential pharmacokinetic interactions between antiretrovirals and medicinal plants used as complementary and African traditional medicines. Biopharm. Drug Dispos., 2011, 32(8), 458-470.
[http://dx.doi.org/10.1002/bdd.775] [PMID: 22024968]
[192]
Wang, X.Y.; Zhang, C.W.; Huang, W.T.; Yue, J.; Dou, J.J.; Wang, L.Y.; Wang, Q.; Cheng, Y.Q. Crude Garlic extract significantly inhibits replication of grapevine viruses. Plant Pathol., 2020, 69(1), 149-158.
[http://dx.doi.org/10.1111/ppa.13103]
[193]
Singh, S.G.; Tejasvi, A. Effect of some medicinal plant extracts on the infectivity of spotted wilt virus. J. Plant Dev. Sci., 2011, 3(1 & 2), 179-182.
[194]
Guo, N.L.; Lu, D.P.; Woods, G.L.; Reed, E.; Zhou, G.Z.; Zhang, L.B.; Waldman, R.H. Demonstration of the anti-viral activity of garlic extract against human cytomegalovirus in vitro. Chin. Med. J. (Engl.), 1993, 106(2), 93-96.
[PMID: 8389276]
[195]
Harazem, R.; Rahman, S.; Kenawy, A. Evaluation of antiviral activity of Allium cepa and Allium sativum extracts against newcastle disease virus. Alex. J. Vet. Sci., 2019, 61(1), 108.
[http://dx.doi.org/10.5455/ajvs.29663]
[196]
Malmgaard, L.; Melchjorsen, J.; Bowie, A.G.; Mogensen, S.C.; Paludan, S.R. Viral activation of macrophages through TLR-dependent and -independent pathways. J. Immunol., 2004, 173(11), 6890-6898.
[http://dx.doi.org/10.4049/jimmunol.173.11.6890] [PMID: 15557184]
[197]
Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants, 2020, 9(7), 619.
[http://dx.doi.org/10.3390/antiox9070619] [PMID: 32679751]
[198]
Pandey, P.; Khan, F.; Kumar, A.; Srivastava, A.; Jha, N.K. Screening of potent inhibitors against 2019 novel coronavirus (COVID-19) from alliumsativum and allium cepa: An in silico approach. Biointerface Res. Appl. Chem., 2021, 11(1), 7981-7993.
[http://dx.doi.org/10.33263/BRIAC111.79817993]
[199]
Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis., 2020, 221(11), 1762-1769.
[http://dx.doi.org/10.1093/infdis/jiaa150] [PMID: 32227123]
[200]
Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; Zhang, X.; Zhang, M.; Wu, S.; Song, J.; Chen, T.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130(5), 2620-2629.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[201]
Wang, L.; Jiao, H.; Zhao, J.; Wang, X.; Sun, S.; Lin, H. Allicin Alleviates reticuloendotheliosis virus-induced immunosuppression via ERK/mitogen-activated protein kinase pathway in specific pathogen-free chickens. Front. Immunol., 2017, 8, 1856.
[http://dx.doi.org/10.3389/fimmu.2017.01856] [PMID: 29312337]
[202]
Thuy, B.T.P.; My, T.T.A.; Hai, N.T.T.; Hieu, L.T.; Hoa, T.T.; Thi Phuong Loan, H.; Triet, N.T.; Anh, T.T.V.; Quy, P.T.; Tat, P.V.; Hue, N.V.; Quang, D.T.; Trung, N.T.; Tung, V.T.; Huynh, L.K.; Nhung, N.T.A. Investigation into Sars-cov-2 resistance of compounds in garlic essential oil. ACS Omega, 2020, 5(14), 8312-8320.
[http://dx.doi.org/10.1021/acsomega.0c00772] [PMID: 32363255]
[203]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[204]
Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol., 2020, 104, 219-234.
[http://dx.doi.org/10.1016/j.tifs.2020.08.006] [PMID: 32836826]
[205]
Kandil, O.M.; Abdullah, T.H.; Elkadi, A. Garlic and the immune-system in humans-its effect on natural-killer-cells. Fed. Proc., 1987, 46(3), 441.
[http://dx.doi.org/10.1016/j.jviromet.2015.08.023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy