Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Natural Products for Targeting Acanthamoeba spp.

Author(s): Yassmin Isse Wehelie, Aishath Leesha Nasih, Ayaz Anwar*, Ruqaiyyah Siddiqui, Sutherland Maciver and Naveed Ahmed Khan*

Volume 20, Issue 3, 2022

Published on: 16 February, 2022

Article ID: e191121198116 Pages: 13

DOI: 10.2174/2211352519666211119091316

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Pathogenic Acanthamoeba is responsible for causing serious eye and fatal brain infections. A successful prognosis remains elusive despite advances in chemotherapeutics and supportive care. Natural products of medicinal value remain a promising source for drug development due to their broad-spectrum antimicrobial activities. Herein, we discuss anti-Acanthamoebic properties of natural products originating from plants, marine, and microbial sources that could be exploited as a potential avenue for drug discovery against infections caused by Acanthamoeba.

Keywords: Natural products, parasite, granulomatous amoebic encephalitis, protozoa, keratitis, treatment.

Graphical Abstract
[1]
Maisonneuve, E.; Cateau, E.; Leveque, N.; Kaaki, S.; Beby-Defaux, A.; Rodier, M.H. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells. PLoS One, 2017, 12(6), e0178629.
[http://dx.doi.org/10.1371/journal.pone.0178629] [PMID: 28591183]
[2]
Anwar, A.; Ting, E.L.S.; Anwar, A.; Ain, N.U.; Faizi, S.; Shah, M.R.; Khan, N.A.; Siddiqui, R. Antiamoebic activity of plant-based natural products and their conjugated silver nanoparticles against Acanthamoeba castellanii (ATCC 50492). AMB Express, 2020, 10(1), 24.
[http://dx.doi.org/10.1186/s13568-020-0960-9] [PMID: 32016777]
[3]
Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasit. Vectors, 2012, 5, e6.
[http://dx.doi.org/10.1186/1756-3305-5-6]
[4]
Niyyati, M.; Dodangeh, S.; Lorenzo-Morales, J. A review of the current research trends in the application of medicinal plants as a source for novel therapeutic agents against Acanthamoeba infections. Iran. J. Pharm. Res., 2016, 15(4), 893-900.
[PMID: 28243287]
[5]
Yousuf, F.A.; Siddiqui, R.; Khan, N.A. Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasit. Vectors, 2013, 6, 169.
[http://dx.doi.org/10.1186/1756-3305-6-169] [PMID: 23742105]
[6]
Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite, 2015, 22, 10.
[http://dx.doi.org/10.1051/parasite/2015010] [PMID: 25687209]
[7]
Wei, C.E.; Yeng, C.Y.; Mahboob, T.; Ling, L.C.; Raju, C.S.; Barusrux, S.; Nissapatorn, V. Natural products: Alternative therapeutic compounds against Acanthamoeba spp. Asian J. Pharm., 2019, 3(2), 29-38.
[8]
Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev., 2003, 16(2), 273-307.
[http://dx.doi.org/10.1128/CMR.16.2.273-307.2003] [PMID: 12692099]
[9]
Anwar, A.; Khan, N.A.; Siddiqui, R. Combating Acanthamoeba spp. cysts: What are the options? Parasit. Vectors, 2018, 11(1), 26.
[http://dx.doi.org/10.1186/s13071-017-2572-z] [PMID: 29316961]
[10]
Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as potential antiparasitic drugs. Stud. Nat. Product. Chem., 2002, 779(848), 779-848.
[http://dx.doi.org/10.1016/S1572-5995(02)80019-9]
[11]
Calixto, J.B. The role of natural products in modern drug discovery. Annal Braz Acad Sci, 2019, 91(3), e20190105.
[12]
Dar, R.; Shahnawaz, M.; Rasool, S.; Qazi, P. Natural product medicines: A literature update Refaz. J. Phytopharmacol., 2017, 6(6), 340-342.
[http://dx.doi.org/10.31254/phyto.2017.6606]
[13]
Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as antiparasitic drugs. Parasitol. Res., 2003, 90(Suppl. 2), S55-S62.
[http://dx.doi.org/10.1007/s00436-002-0768-3] [PMID: 12937967]
[14]
Adhami, S.; Siraj, S.; Farooqi, H. unexplored medicinal plants of potential therapeutic importance: A Review. Trop. J. Nat. Prod. Res., 2018, 2(1), 3-11.
[http://dx.doi.org/10.26538/tjnpr/v2i1.2]
[15]
Gurnani, N.; Mehta, D.; Mehta, B. Natural products: Sources of potential drugs. Afr. J. Basic Appl. Sci., 2014, 6, 171-186.
[16]
Shoaib, H.M.; Muazzam, A.G.; Mir, A.; Jung, S.Y.; Matin, A. Evaluation of inhibitory potential of some selective methanolic plants extracts on biological characteristics of Acanthamoeba castellanii using human corneal epithelial cells in vitro. Parasitol. Res., 2013, 112(3), 1179-1188.
[http://dx.doi.org/10.1007/s00436-012-3249-3] [PMID: 23306385]
[17]
Rogers, K. Artemisinin. In: Encyclopædia Britannica; , 2014.
[18]
Wang, J.; Xu, C.; Wong, Y.K.; Li, Y.; Liao, F.; Jiang, T.; Tu, Y. Artemisinin, the magic drug discovered from traditional Chinese medicine. Engineering, 2019, 5(1), 32-39.
[http://dx.doi.org/10.1016/j.eng.2018.11.011]
[19]
Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of Quercetin leading to anticancer agents. Molecules, 2017, 22(8), 1270.
[http://dx.doi.org/10.3390/molecules22081270] [PMID: 28758919]
[20]
Moloudizargari, M.; Mikaili, P.; Aghajanshakeri, S.; Asghari, M.H.; Shayegh, J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn. Rev., 2013, 7(14), 199-212.
[http://dx.doi.org/10.4103/0973-7847.120524] [PMID: 24347928]
[21]
Shohaib, H.M.; Nawaz, S.; Matin, A. Methanolic extract of Peganum harmala exhibit potent activity against Acanthamoeba castellanii cysts and its encystment in vitro. Pak. J. Pharm. Sci., 2016, 29(6), 1993-1996.
[PMID: 28375115]
[22]
Chegeni, T.; Ghaffarifar, F.; Khoshzaban, F.; Asl, A.D.; Mirzaian, H.; Jameie, F. Effects of aqueous and ethanolic extracts of Myrtus communis leaves on Trophozoites and Cysts of Acanthamoeba: An in vitro study. Int. J. Med. Lab. Shah Sad. Univ. Med. Sci., 2019, 6(3), 219-225.
[23]
Polat, Z.A.; Tepe, B.; Vural, A. In vitro effectiveness of Thymus sipyleus subsp. sipyleus var. sipyleus on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. Parasitol. Res., 2007, 101(6), 1551-1555.
[http://dx.doi.org/10.1007/s00436-007-0674-9] [PMID: 17661186]
[24]
Goze, I.; Alim, A.; Dag, S.; Tepe, B.; Polat, Z.A. In vitro amoebicidal activity of Salvia staminea and Salvia caespitosa on Acanthamoeba castellanii and their cytotoxic potentials on corneal cells. J. Ocul. Pharmacol. Ther., 2009, 25(4), 293-298.
[http://dx.doi.org/10.1089/jop.2008.0132] [PMID: 19450152]
[25]
Tepe, B.; Malatyali, E.; Degerli, S.; Berk, S. In vitro amoebicidal activities of Teucrium polium and T. chamaedrys on Acanthamoeba castellanii trophozoites and cysts. Parasitol. Res., 2012, 110(5), 1773-1778.
[http://dx.doi.org/10.1007/s00436-011-2698-4] [PMID: 22037826]
[26]
El-Gengaihi, S.; Taha, H.S.; Kamel, A.M. In vivo and in vitro comparative studies of Origanum species. J. Food Agric. Environ., 2006, 3, 127-134.
[27]
Jafari, F.; Ghavidel, F.; Zarshenas, M.M. A critical overview on the pharmacological and clinical aspects of popular Satureja species. J. Acupunct. Meridian Stud., 2016, 9(3), 118-127.
[http://dx.doi.org/10.1016/j.jams.2016.04.003] [PMID: 27342885]
[28]
Polat, Z.A.; Vural, A.; Ozan, F.; Tepe, B.; Özcelik, S.; Cetin, A. In vitro evaluation of the amoebicidal activity of garlic (Allium sativum) extract on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. J. Ocul. Pharmacol. Ther., 2008, 24(1), 8-14.
[http://dx.doi.org/10.1089/jop.2007.0035] [PMID: 18370873]
[29]
Badria, F.A.; Hetta, M.H.; Sarhan, R.M.; Ezz El-Din, M.H. Lethal effects of Helianthemum lippii (L.) on Acanthamoeba castellanii cysts in vitro. Korean J. Parasitol., 2014, 52(3), 243-249.
[http://dx.doi.org/10.3347/kjp.2014.52.3.243] [PMID: 25031463]
[30]
Dodangeh, S.; Niyyati, M.; Kamalinejad, M. Anti-Acanthamoeba activities of chloroformic fractions of Trigonella foenum Graecum (Seed) and their cytotoxicity in mice macrophage cell. Novel Biomed, 2015, 3(4), 182-188.
[31]
Roongruangchai, K.; Kummalue, T.; Sookkua, T.; Roongruangchai, J. Several fractions of Pouzolzia indica methanolic extract were lethal to the Acanthamoeba cyst: In vitro study. Siri. Med. J., 2009, 61(6), 297-300.
[32]
Topalkara, A.; Vural, A.; Polat, Z.; Toker, M.I.; Arici, M.K.; Ozan, F.; Cetin, A. In vitro amoebicidal activity of propolis on Acanthamoeba castellanii. J. Ocul. Pharmacol. Ther., 2007, 23(1), 40-45.
[http://dx.doi.org/10.1089/jop.2006.0053] [PMID: 17341149]
[33]
Kolören, O.; Kolören, Z.; Şekeroğlu, Z.A.; Çolayvaz, M.; Karanis, P. Amoebicidal and amoebistatic effects of Artemisia argyi methanolic extracts on Acanthamoeba castellanii trophozoites and cysts. Acta Parasitol., 2019, 64(1), 63-70.
[http://dx.doi.org/10.2478/s11686-018-00009-5] [PMID: 30689190]
[34]
Pazoki, R.; Raeeni, M.G.N.; Ghaffarifar, F.; Saryazdi, A.K.; Bineshian, F. The effect of aqueous extract of Artemisia aucheri seed on Acanthamoeba in vitro J. Pharm. Res. Int.2019, 2019, v30i430274.
[http://dx.doi.org/10.9734/jpri/2019/v30i430274]
[35]
Ródio, C.; da Rocha Vianna, D.; Kowalski, K.P.; Panatieri, L.F.; von Poser, G.; Rott, M.B. In vitro evaluation of the amebicidal activity of Pterocaulon polystachyum (Asteraceae) against trophozoites of Acanthamoeba castellanii. Parasitol. Res., 2008, 104(1), 191-194.
[http://dx.doi.org/10.1007/s00436-008-1186-y] [PMID: 18795331]
[36]
Hajaji, S.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Jiménez, I.A.; Bazzocchi, I.L.; Valladares, B.; Pinero, J.E.; Lorenzo-Morales, J.; Akkari, H. Correlation of radical-scavenging capacity and amoebicidal activity of Matricaria recutita L. (Asteraceae). Exp. Parasitol., 2017, 183, 212-217.
[http://dx.doi.org/10.1016/j.exppara.2017.09.011] [PMID: 28919332]
[37]
Sifaoui, I.; López-Arencibia, A.; Martín-Navarro, C.M.; Chammem, N.; Mejri, M.; Lorenzo-Morales, J.; Abderabba, M.; Piñero, J.E. Activity assessment of Tunisian olive leaf extracts against the trophozoite stage of Acanthamoeba. Parasitol. Res., 2013, 112(8), 2825-2829.
[http://dx.doi.org/10.1007/s00436-013-3453-9] [PMID: 23681194]
[38]
Sifaoui, I.; López-Arencibia, A.; Ticona, J.C.; Martín-Navarro, C.M.; Reyes-Batlle, M.; Mejri, M.; Lorenzo-Morales, J.; Jiménez, A.I.; Valladares, B.; Lopez-Bazzocchi, I.; Abderabba, M.; Piñero, J.E. Bioassay guided isolation and identification of anti-Acanthamoeba compounds from Tunisian olive leaf extracts. Exp. Parasitol., 2014, 145(Suppl.), S111-S114.
[http://dx.doi.org/10.1016/j.exppara.2014.02.018] [PMID: 24726697]
[39]
Hajaji, S.; Jabri, M.A.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; B’chir, F.; Valladares, B.; Pinero, J.E.; Lorenzo-Morales, J.; Akkari, H. Amoebicidal, antimicrobial and in vitro ROS scavenging activities of Tunisian Rubus ulmifolius Schott, methanolic extract. Exp. Parasitol., 2017, 183, 224-230.
[http://dx.doi.org/10.1016/j.exppara.2017.09.013] [PMID: 28917707]
[40]
Malatyali, E.; Tepe, B.; Degerli, S.; Berk, S.; Akpulat, H.A. In vitro amoebicidal activity of four Peucedanum species on Acanthamoeba castellanii cysts and trophozoites. Parasitol. Res., 2012, 110(1), 167-174.
[http://dx.doi.org/10.1007/s00436-011-2466-5] [PMID: 21626154]
[41]
Degerli, S.; Berk, S.; Malatyali, E.; Tepe, B. Screening of the in vitro amoebicidal activities of Pastinaca armenea (Fisch. & C.A.Mey.) and Inula oculus-christi (L.) on Acanthamoeba castellanii cysts and trophozoites. Parasitol. Res., 2012, 110(2), 565-570.
[http://dx.doi.org/10.1007/s00436-011-2524-z] [PMID: 21735149]
[42]
El-Sayed, N.M.; Ismail, K.A.; Ahmed, S.A.; Hetta, M.H. In vitro amoebicidal activity of ethanol extracts of Arachis hypogaea L., Curcuma longa L. and Pancratium maritimum L. on Acanthamoeba castellanii cysts. Parasitol. Res., 2012, 110(5), 1985-1992.
[http://dx.doi.org/10.1007/s00436-011-2727-3] [PMID: 22146994]
[43]
Chu, D.M.; Miles, H.; Toney, D.; Ngyuen, C.; Marciano-Cabral, F. Amebicidal activity of plant extracts from Southeast Asia on Acanthamoeba spp. Parasitol. Res., 1998, 84(9), 746-752.
[http://dx.doi.org/10.1007/s004360050480] [PMID: 9766904]
[44]
Dodangeh, S.; Niyyati, M.; Kamalinejad, M.; Lorenzo-Morales, J.; Haghighi, A.; Azargashb, E. The amoebicidal activity of Ziziphus vulgaris extract and its fractions on pathogenic Acanthamoeba trophozoites and cysts. Trop. Biomed., 2017, 34(1), 127-136.
[PMID: 33592990]
[45]
Rodríguez-Expósito, R.L.; Nocchi, N.; Reyes-Batlle, M.; Sifaoui, I.; Suárez-Gómez, B.; Díaz-Marrero, A.R.; Souto, M.L.; Piñero, J.E.; Fernández, J.J.; Lorenzo-Morales, J. Antiamoebic effects of sesquiterpene lactones isolated from the zoanthid Palythoa aff. clavata. Bioorg. Chem., 2021, 108, 104682.
[http://dx.doi.org/10.1016/j.bioorg.2021.104682] [PMID: 33556696]
[46]
Albouchi, F.; Sifaoui, I.; Reyes-Batlle, M.; López-Arencibia, A.; Piñero, J.E.; Lorenzo-Morales, J.; Abderrabba, M. Chemical composition and anti-Acanthamoeba activity of Melaleuca styphelioides essential oil. Exp. Parasitol., 2017, 183, 104-108.
[http://dx.doi.org/10.1016/j.exppara.2017.10.014] [PMID: 29103900]
[47]
Souhaiel, N.; Sifaoui, I.; Ben Hassine, D.; Bleton, J.; Bonose, M.; Moussa, F.; Piñero, J.E.; Lorenzo-Morales, J.; Abderrabba, M. Ammoides pusilla (Apiaceae) essential oil: Activity against Acanthamoeba castellanii Neff. Exp. Parasitol., 2017, 183, 99-103.
[http://dx.doi.org/10.1016/j.exppara.2017.10.011] [PMID: 29102680]
[48]
Fakae, L.B.; Stevenson, C.W.; Zhu, X.Q.; Elsheikha, H.M. In vitro activity of Camellia sinensis (green tea) against trophozoites and cysts of Acanthamoeba castellanii. Int. J. Parasitol. Drugs Drug Resist., 2020, 13, 59-72.
[http://dx.doi.org/10.1016/j.ijpddr.2020.05.001] [PMID: 32512260]
[49]
Kikowska, M.; Kruszka, D.; Derda, M.; Hadaś, E.; Thiem, B. Phytochemical screening and acanthamoebic activity of shoots from in vitro cultures and in vivo plants of Eryngium alpinum L.-The endangered and protected species. Molecules, 2020, 25(6), 1416.
[http://dx.doi.org/10.3390/molecules25061416] [PMID: 32244952]
[50]
Chegeni, T.N.; Fakhar, M.; Ghaffarifar, F.; Saberi, R. Medicinal plants with anti-Acanthamoeba activity: A systematic review. Infect. Disord. Drug Targets, 2020, 20(5), 620-650.
[http://dx.doi.org/10.2174/1871526519666190716095849] [PMID: 31322072]
[51]
Sifaoui, I.; López-Arencibia, A.; Martín-Navarro, C.M.; Reyes-Batlle, M.; Wagner, C.; Chiboub, O.; Mejri, M.; Valladares, B.; Abderrabba, M.; Piñero, J.E.; Lorenzo-Morales, J. Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts. PLoS One, 2017, 12(8), e0183795.
[http://dx.doi.org/10.1371/journal.pone.0183795] [PMID: 28859105]
[52]
Sifaoui, I.; Rodríguez-Expósito, R.L.; Reyes-Batlle, M.; Rizo-Liendo, A.; Piñero, J.E.; Bazzocchi, I.L.; Lorenzo-Morales, J.; Jiménez, I.A. Ursolic acid derivatives as potential agents against Acanthamoeba Spp. Pathogens, 2019, 8(3), 130.
[http://dx.doi.org/10.3390/pathogens8030130] [PMID: 31443577]
[53]
Derda, M.; Hadaś, E.; Cholewiński, M.; Skrzypczak, Ł.; Grzondziel, A.; Wojtkowiak-Giera, A. Artemisia annua L. as a plant with potential use in the treatment of acanthamoebiasis. Parasitol. Res., 2016, 115(4), 1635-1639.
[http://dx.doi.org/10.1007/s00436-016-4902-z] [PMID: 26782959]
[54]
Derda, M.; Hadaś, E.; Thiem, B. Plant extracts as natural amoebicidal agents. Parasitol. Res., 2009, 104(3), 705-708.
[http://dx.doi.org/10.1007/s00436-008-1277-9] [PMID: 19050923]
[55]
Rodríguez-Zaragoza, S.; Ordaz, C.; Avila, G.; Muñoz, J.L.; Arciniegas, A.; Romo de Vivar, A. In vitro evaluation of the amebicidal activity of Buddleia cordata (Loganiaceae, H.B.K.) on several strains of Acanthamoeba. J. Ethnopharmacol., 1999, 66(3), 327-334.
[http://dx.doi.org/10.1016/S0378-8741(98)00186-X] [PMID: 10473180]
[56]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[57]
Dyshlovoy, S.A.; Honecker, F. Marine compounds and cancer: Where do we stand? Mar. Drugs, 2015, 13(9), 5657-5665.
[http://dx.doi.org/10.3390/md13095657] [PMID: 26540740]
[58]
Lorenzo-Morales, J.; Díaz-Marrero, A.R.; Cen-Pacheco, F.; Sifaoui, I.; Reyes-Batlle, M.; Souto, M.L.; Hernández Daranas, A.; Piñero, J.E.; Fernández, J.J. Evaluation of Oxasqualenoids from the red alga Laurencia viridis against Acanthamoeba. Mar. Drugs, 2019, 17(7), 420.
[http://dx.doi.org/10.3390/md17070420] [PMID: 31331002]
[59]
García-Davis, S.; Sifaoui, I.; Reyes-Batlle, M.; Viveros-Valdez, E.; Piñero, J.E.; Lorenzo-Morales, J.; Fernández, J.J.; Díaz-Marrero, A.R. Anti-Acanthamoeba activity of brominated sesquiterpenes from Laurencia johnstonii. Mar. Drugs, 2018, 16(11), 443.
[http://dx.doi.org/10.3390/md16110443] [PMID: 30423882]
[60]
Chiboub, O.; Ktari, L.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Mejri, M.; Valladares, B.; Abderrabba, M.; Piñero, J.E.; Lorenzo-Morales, J. In vitro amoebicidal and antioxidant activities of some Tunisian seaweeds. Exp. Parasitol., 2017, 183, 76-80.
[http://dx.doi.org/10.1016/j.exppara.2017.10.012] [PMID: 29102681]
[61]
Cartuche, L.; Sifaoui, I.; Cruz, D.; Reyes-Batlle, M.; López-Arencibia, A.; Javier Fernández, J.; Díaz-Marrero, A.R.; Piñero, J.E.; Lorenzo-Morales, J. Staurosporine from Streptomyces sanyensis activates programmed cell death in Acanthamoebavia the mitochondrial pathway and presents low in vitro cytotoxicity levels in a macrophage cell line. Sci. Rep., 2019, 9(1), 11651.
[http://dx.doi.org/10.1038/s41598-019-48261-7] [PMID: 31406269]
[62]
Rizo-Liendo, A.; Sifaoui, I.; Cartuche, L.; Arberas-Jiménez, I.; Reyes-Batlle, M.; Fernández, J.J.; Piñero, J.E.; Díaz-Marrero, A.R.; Lorenzo-Morales, J. Evaluation of indolocarbazoles from Streptomyces sanyensis as a novel source of therapeutic agents against the brain-eating amoeba Naegleria fowleri. Microorganisms, 2020, 8(5), 789.
[http://dx.doi.org/10.3390/microorganisms8050789] [PMID: 32466301]
[63]
Akbar, N.; Siddiqui, R.; Iqbal, M.; Sagathevan, K.; Khan, N.A. Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Lett. Appl. Microbiol., 2018, 66(5), 416-426.
[http://dx.doi.org/10.1111/lam.12867] [PMID: 29457249]
[64]
Costa-Neto, E.M. Animal-based medicines: Biological prospection and the sustainable use of zootherapeutic resources. An. Acad. Bras. Cienc., 2005, 77(1), 33-43.
[http://dx.doi.org/10.1590/S0001-37652005000100004] [PMID: 15692677]
[65]
Bozoghlanian, V.; Butteri, M. The diverse and promising world of animal derived medications. Pharos Alpha Omega Alpha Honor Med. Soc., 2015, 78(1), 16-22.
[PMID: 25796661]
[66]
Oduah, E.I.; Linhardt, R.J.; Sharfstein, S.T. Heparin: Past, present, and future. Pharmaceuticals (Basel), 2016, 9(3), 38.
[http://dx.doi.org/10.3390/ph9030038] [PMID: 27384570]
[67]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[68]
Siddiqui, R.; Jeyamogan, S.; Ali, S.M.; Abbas, F.; Sagathevan, K.A.; Khan, N.A. Crocodiles and alligators: Antiamoebic and antitumor compounds of crocodiles. Exp. Parasitol., 2017, 183, 194-200.
[http://dx.doi.org/10.1016/j.exppara.2017.09.008] [PMID: 28917711]
[69]
Sagheer, M.; Siddiqui, R.; Iqbal, J.; Khan, N.A. Black cobra (Naja naja karachiensis) lysates exhibit broad-spectrum antimicrobial activities. Pathog. Glob. Health, 2014, 108(3), 129-136.
[http://dx.doi.org/10.1179/2047773214Y.0000000132] [PMID: 24625321]
[70]
Sharma, G.; Kalra, S.K.; Tejan, N.; Ghoshal, U. Nanoparticles based therapeutic efficacy against Acanthamoeba: Updates and future prospect. Exp. Parasitol., 2020, 218, 108008.
[http://dx.doi.org/10.1016/j.exppara.2020.108008] [PMID: 32979343]
[71]
Anwar, A.; Abdalla, S.A.O.; Aslam, Z.; Shah, M.R.; Siddiqui, R.; Khan, N.A. Oleic acid-conjugated silver nanoparticles as efficient antiamoebic agent against Acanthamoeba castellanii. Parasitol. Res., 2019, 118(7), 2295-2304.
[http://dx.doi.org/10.1007/s00436-019-06329-3] [PMID: 31093751]
[72]
Anwar, A.; Masri, A.; Rao, K.; Rajendran, K.; Khan, N.A.; Shah, M.R.; Siddiqui, R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci. Rep., 2019, 9(1), 3122.
[http://dx.doi.org/10.1038/s41598-019-39528-0] [PMID: 30816269]
[73]
Padzik, M.; Hendiger, E.B.; Chomicz, L.; Grodzik, M.; Szmidt, M.; Grobelny, J.; Lorenzo-Morales, J. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba. Parasitol. Res., 2018, 117(11), 3519-3525.
[http://dx.doi.org/10.1007/s00436-018-6049-6] [PMID: 30112674]
[74]
Anwar, A.; Siddiqui, R.; Shah, M.R.; Khan, N.A. Gold nanoparticle-conjugated cinnamic acid exhibits antiacanthamoebic and antibacterial properties. Antimicrob. Agents Chemother., 2018, 62(9), e00630-e18.
[http://dx.doi.org/10.1128/AAC.00630-18] [PMID: 29967024]
[75]
Mahboob, T.; Nawaz, M.; Tian-Chye, T.; Samudi, C.; Wiart, C.; Nissapatorn, V. Preparation of poly (dl-lactide-co-glycolide) nanoparticles encapsulated with periglaucine A and betulinic acid for in vitro anti-Acanthamoeba and cytotoxicity activities. Pathogens, 2018, 7(3), 62.
[http://dx.doi.org/10.3390/pathogens7030062] [PMID: 30012991]
[76]
Panatieri, L.F.; Brazil, N.T.; Faber, K.; Medeiros-Neves, B.; von Poser, G.L.; Rott, M.B.; Zorzi, G.K.; Teixeira, H.F. Nanoemulsions containing a coumarin-rich extract from Pterocaulon balansae (Asteraceae) for the treatment of ocular Acanthamoeba keratitis. AAPS PharmSciTech, 2017, 18(3), 721-728.
[http://dx.doi.org/10.1208/s12249-016-0550-y] [PMID: 27225384]
[77]
Borase, H.P.; Patil, C.D.; Sauter, I.P.; Rott, M.B.; Patil, S.V. Amoebicidal activity of phytosynthesized silver nanoparticles and their in vitro cytotoxicity to human cells. FEMS Microbiol. Lett., 2013, 345(2), 127-131.
[http://dx.doi.org/10.1111/1574-6968.12195] [PMID: 23746354]
[78]
Hendiger, E.B.; Padzik, M.; Żochowska, A.; Baltaza, W.; Olędzka, G.; Zyskowska, D.; Bluszcz, J.; Jarzynka, S.; Chomicz, L.; Grodzik, M.; Hendiger, J.; Piñero, J.E.; Grobelny, J.; Ranoszek-Soliwoda, K.; Lorenzo-Morales, J. Tannic acid-modified silver nanoparticles enhance the anti-Acanthamoeba activity of three multipurpose contact lens solutions without increasing their cytotoxicity. Parasit. Vectors, 2020, 13(1), 624.
[http://dx.doi.org/10.1186/s13071-020-04453-z] [PMID: 33353560]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy