Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

The Influence of Wuzhi Capsule on the Pharmacokinetics of Cyclophosphamide

Author(s): Lu Chen, Ning Ji, Min Zhang and Wanyi Chen*

Volume 17, Issue 2, 2022

Published on: 29 November, 2021

Page: [195 - 203] Pages: 9

DOI: 10.2174/1574892816666211110152119

Price: $65

conference banner
Abstract

Background: Cyclophosphamide is approved for the treatment of a variety of tumors, yet the use of cyclophosphamide is limited by kidney and liver toxicity. In the clinic, the Wuzhi capsule is approved to attenuate cyclophosphamide toxicity in the kidney and liver.

Objectives: We aimed to investigate the effects of the principal ingredients of Wuzhi capsule, schisandrin A (SIA) and schisantherin A (STA), on the pharmacokinetics of cyclophosphamide.

Methods: The essential pharmacokinetic data and physicochemical parameters of SIA, STA, and cyclophosphamide were collected. Physiologically based pharmacokinetic (PBPK) models of SIA, STA, and cyclophosphamide were built in Simcyp Simulator and verified using published clinical pharmacokinetic data. The verified PBPK models were used to predict potential herb-drug interactions (HDIs) between cyclophosphamide and SIA and STA in cancer patients.

Results: The area under the plasma concentration–time curve (AUC) of cyclophosphamide was increased by 18% and 1% when co-administered with STA and SIA at a single dose, respectively, and increased by 301% and 29% when co-administered with STA and SIA at multiple doses, respectively. The maximum concentration (Cmax) of cyclophosphamide was increased by 75% and 7% when co-administered with STA and SIA at multiple doses, respectively.

Conclusion: The AUC and Cmax of cyclophosphamide were increased when cyclophosphamide was combined with the Wuzhi capsule, compared to cyclophosphamide alone. Our study shows that the adverse drug reactions and toxicity of cyclophosphamide should be closely monitored and an effective dosage adjustment of cyclophosphamide may need to be considered when co-administered with the Wuzhi capsule.

Keywords: Cyclophosphamide, wuzhi capsule, anticancer agents, herb-drug interactions, pharmacokinetics, PBPK.

[1]
Fan Y, Mansoor N, Ahmad T, et al. Enzyme and transporter kinetics for CPT-11 (irinotecan) and SN-38: An insight on tumor tissue compartment pharmacokinetics using PBPK. Recent Patents Anticancer Drug Discov 2019; 14(2): 177-86.
[http://dx.doi.org/10.2174/1574892814666190212164356] [PMID: 30760193]
[2]
Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017; 377(6): 523-33.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[3]
Madden R, Kosari S, Peterson GM, Bagheri N, Thomas J. Lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer: A systematic review. Int J Clin Pharmacol Ther 2018; 56(2): 72-80.
[http://dx.doi.org/10.5414/CP203123] [PMID: 29231164]
[4]
Heudel P, Delaloge S, Parent D, et al. Real-world evaluation of oral vinorelbine in the treatment of metastatic breast cancer: An ESME-MBC Study. Anticancer Res 2020; 40(7): 3905-13.
[http://dx.doi.org/10.21873/anticanres.14381] [PMID: 32620631]
[5]
Yuan P, Hu X, Sun T, et al. Eribulin mesilate versus vinorelbine in women with locally recurrent or metastatic breast cancer: A randomised clinical trial. Eur J Cancer 2019; 112: 57-65.
[http://dx.doi.org/10.1016/j.ejca.2019.02.002] [PMID: 30928806]
[6]
Robson M, Ruddy KJ, Im SA, et al. Patient-reported outcomes in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer receiving olaparib versus chemotherapy in the OlympiAD trial. Eur J Cancer 2019; 120: 20-30.
[http://dx.doi.org/10.1016/j.ejca.2019.06.023] [PMID: 31446213]
[7]
Engdal S, Klepp O, Nilsen OG. Identification and exploration of herb-drug combinations used by cancer patients. Integr Cancer Ther 2009; 8(1): 29-36.
[http://dx.doi.org/10.1177/1534735408330202] [PMID: 19174505]
[8]
Liu Z, Huang P, Law S, Tian H, Leung W, Xu C. Preventive effect of curcumin against chemotherapy-induced side-effects. Front Pharmacol 2018; 9: 1374.
[http://dx.doi.org/10.3389/fphar.2018.01374] [PMID: 30538634]
[9]
Feng Y, Wang N, Zhu M, Feng Y, Li H, Tsao S. Recent progress on anticancer candidates in patents of herbal medicinal products. Recent Pat Food Nutr Agric 2011; 3(1): 30-48.
[http://dx.doi.org/10.2174/2212798411103010030] [PMID: 21114469]
[10]
Fu B, Wang N, Tan HY, Li S, Cheung F, Feng Y. Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: A review on experimental and clinical evidences. Front Pharmacol 2018; 9: 1394.
[http://dx.doi.org/10.3389/fphar.2018.01394] [PMID: 30555327]
[11]
Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. Advances in toxicological research of the anticancer drug cisplatin. Chem Res Toxicol 2019; 32(8): 1469-86.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00204] [PMID: 31353895]
[12]
Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollut Res Int 2018; 25(21): 20968-84.
[http://dx.doi.org/10.1007/s11356-018-2242-5] [PMID: 29766429]
[13]
Gelen V, Şengül E, Yıldırım S, Atila G. The protective effects of naringin against 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Iran J Basic Med Sci 2018; 21(4): 404-10.
[PMID: 29796225]
[14]
Zhai X, Zhang Z, Liu W, et al. Protective effect of ALDH2 against cyclophosphamide-induced acute hepatotoxicity via attenuating oxidative stress and reactive aldehydes. Biochem Biophys Res Commun 2018; 499(1): 93-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.041] [PMID: 29524404]
[15]
Hu X. Use of Fructus schisandrae and extracts thereof in preventing and decreasing toxic and side effects of antineoplastic drugs. US20090022831, 2009.
[16]
Zhao Y, Miao D, Hou S, Huang J. Compositions of schisandra extracts and methods thereof. US20200188466 A1, 2020.
[17]
Wang XQ, Wang L, Tu YC, Zhang YC. Traditional Chinese medicine for refractory nephrotic syndrome: Strategies and promising treatments. Evid Based Complement Alternat Med 2018; 2018: 8746349.
[http://dx.doi.org/10.1155/2018/8746349] [PMID: 29507594]
[18]
Wei H, Tao X, Di P, et al. Effects of traditional chinese medicine Wuzhi capsule on pharmacokinetics of tacrolimus in rats. Drug Metab Dispos 2013; 41(7): 1398-403.
[http://dx.doi.org/10.1124/dmd.112.050302] [PMID: 23628674]
[19]
Wei H, Miao H, Yun Y, et al. Validation of an LC-MS/MS method for quantitative analysis of the 5 bioactive components of Wuzhi capsule in human plasma samples. Ther Drug Monit 2014; 36(6): 781-8.
[http://dx.doi.org/10.1097/FTD.0000000000000079] [PMID: 25392942]
[20]
Sun Z, Ren M, Wu Q, Du X. Co-administration of Wuzhi capsules and tacrolimus in patients with idiopathic membranous nephropathy: clinical efficacy and pharmacoeconomics. Int Urol Nephrol 2014; 46(10): 1977-82.
[http://dx.doi.org/10.1007/s11255-014-0801-3] [PMID: 25145781]
[21]
Qin XL, Yu T, Li LJ, et al. Effect of long-term co-administration of Wuzhi tablet (Schisandra sphenanthera extract) and prednisone on the pharmacokinetics of tacrolimus. Phytomedicine 2013; 20(3-4): 375-9.
[http://dx.doi.org/10.1016/j.phymed.2012.11.008] [PMID: 23267661]
[22]
Fan X, Chen P, Jiang Y, et al. Therapeutic efficacy of Wuzhi tablet (Schisandra sphenanthera Extract) on acetaminophen-induced hepatotoxicity through a mechanism distinct from N-acetylcysteine. Drug Metab Dispos 2015; 43(3): 317-24.
[http://dx.doi.org/10.1124/dmd.114.062067] [PMID: 25534769]
[23]
Zhang H, Bu F, Li L, et al. Prediction of drug–drug interaction between tacrolimus and principal ingredients of Wuzhi capsule in Chinese healthy volunteers using physiologically-based pharmacokinetic modelling. Basic Clin Pharmacol Toxicol 2018; 122(3): 331-40.
[http://dx.doi.org/10.1111/bcpt.12914] [PMID: 28945011]
[24]
Jing Y, Kong Y, Hou X, et al. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients. J Clin Pharm Ther 2021; 46(4): 1117-28.
[http://dx.doi.org/10.1111/jcpt.13407] [PMID: 33768546]
[25]
Kalra R, Chavada B, Madhani NR, Purohit B, Tripathi CB. Cyclophosphamide and/or anthracyclines induced epiphora in breast cancer patients: A rare side-effect. Curr Drug Saf 2018; 13(1): 62-4.
[http://dx.doi.org/10.2174/1574886312666170919175614] [PMID: 28933276]
[26]
Park JH, Im SA, Byun JM, et al. Cyclophosphamide, methotrexate, and 5-fluorouracil as palliative treatment for heavily pretreated patients with metastatic breast cancer: A multicenter retrospective analysis. J Breast Cancer 2017; 20(4): 347-55.
[http://dx.doi.org/10.4048/jbc.2017.20.4.347] [PMID: 29285039]
[27]
Ntellas P, Spathas N, Agelaki S, Zintzaras E, Saloustros E. Taxane & cyclophosphamide vs anthracycline & taxane-based chemotherapy as adjuvant treatment for breast cancer: A pooled analysis of randomized controlled trials by the Hellenic Academy of Oncology. Oncotarget 2019; 10(11): 1209-16.
[http://dx.doi.org/10.18632/oncotarget.26632] [PMID: 30838092]
[28]
Davids MS, Brander DM, Kim HT, et al. Ibrutinib plus fludarabine, cyclophosphamide, and rituximab as initial treatment for younger patients with chronic lymphocytic leukaemia: A single-arm, multicentre, phase 2 trial. Lancet Haematol 2019; 6(8): e419-28.
[http://dx.doi.org/10.1016/S2352-3026(19)30104-8] [PMID: 31208944]
[29]
Svoboda J, Bair SM, Landsburg DJ, et al. Brentuximab vedotin in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone as frontline treatment for patients with CD30-positive B-cell lymphomas. Haematologica 2020.
[http://dx.doi.org/10.3324/haematol.2019.238675] [PMID: 32414850]
[30]
O'Dwyer M, Ryan A. Combination therapies for CD38-positive hematological malignances with ANTI-CD38 antibodies and cyclophosphamide. US2018011715, 2018.
[31]
Filippo B, Maria S S, Caterina L, Francesca S, Simona D, Enrico P. Combination of cyclophosphamide and dendritic cells for use in the treatment of uterine cervix carcinoma. WO2013084250 A1, 2013.
[32]
Patel P, Patel M, Patel M, Singh B, Ashish S. Pharmaceutical composition comprising capecitabine and cyclophosphamide. WO2015044961 A2, 2015.
[33]
Bhat N, Kalthur SG, Padmashali S, Monappa V. Toxic effects of different doses of cyclophosphamide on liver and kidney tissue in swiss albino mice: A histopathological study. Ethiop J Health Sci 2018; 28(6): 711-6.
[PMID: 30607087]
[34]
Kanno TYN, Sensiate LA, de Paula NA, Salles MJS. Toxic effects of different doses of cyclophosphamide on the reproductive parameters of male mice. Braz J Pharm Sci 2009; 45: 313-9.
[http://dx.doi.org/10.1590/S1984-82502009000200017]
[35]
Farkas Péter. Monitoring the side effects with DSC caused by cyclophosphamide treatment. J Therm Anal and Calorim 2019; (2):
[36]
Deng J, Zhong YF, Wu YP, et al. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage. Redox Biol 2018; 14: 1-6.
[http://dx.doi.org/10.1016/j.redox.2017.08.003] [PMID: 28826042]
[37]
Lindman H, Andersson M, Ahlgren J, et al. A randomised study of tailored toxicity-based dosage of fluorouracil-epirubicin-cyclophosphamide chemotherapy for early breast cancer (SBG 2000-1). Eur J Cancer 2018; 94: 79-86.
[http://dx.doi.org/10.1016/j.ejca.2018.02.016] [PMID: 29547834]
[38]
Zhai J, Zhang F, Gao S, et al. Schisandra chinensis extract decreases chloroacetaldehyde production in rats and attenuates cyclophosphamide toxicity in liver, kidney and brain. J Ethnopharmacol 2018; 210: 223-31.
[http://dx.doi.org/10.1016/j.jep.2017.08.020] [PMID: 28821392]
[39]
Roe AL, Paine MF, Gurley BJ, Brouwer KR, Jordan S, Griffiths JC. Assessing natural product-drug interactions: An end-to-end safety framework. Regul Toxicol Pharmacol 2016; 76: 1-6.
[http://dx.doi.org/10.1016/j.yrtph.2016.01.004] [PMID: 26776752]
[40]
Adiwidjaja J, Boddy AV, McLachlan AJ. Physiologically-based pharmacokinetic predictions of the effect of curcumin on metabolism of imatinib and bosutinib: in vitro and In vivo disconnect. Pharm Res 2020; 37(7): 128.
[http://dx.doi.org/10.1007/s11095-020-02834-8] [PMID: 32529309]
[41]
Yeo KR, Jamei M, Rostami-Hodjegan A. Predicting drug-drug interactions: Application of physiologically based pharmacokinetic models under a systems biology approach. Expert Rev Clin Pharmacol 2013; 6(2): 143-57.
[http://dx.doi.org/10.1586/ecp.13.4] [PMID: 23473592]
[42]
Adiwidjaja J, Boddy AV, McLachlan AJ. Potential for pharmacokinetic interactions between Schisandra sphenanthera and bosutinib, but not imatinib: in vitro metabolism study combined with a physiologically-based pharmacokinetic modelling approach. Br J Clin Pharmacol 2020; 86(10): 2080-94.
[http://dx.doi.org/10.1111/bcp.14303] [PMID: 32250458]
[43]
Yang L, Yan C, Zhang F, et al. Effects of ketoconazole on cyclophosphamide metabolism: evaluation of CYP3A4 inhibition effect using the in vitro and in vivo models. Exp Anim 2018; 67(1): 71-82.
[http://dx.doi.org/10.1538/expanim.17-0048] [PMID: 29129847]
[44]
Iwata H, Tezuka Y, Kadota S, Hiratsuka A, Watabe T. Identification and characterization of potent CYP3A4 inhibitors in Schisandra fruit extract. Drug Metab Dispos 2004; 32(12): 1351-8.
[http://dx.doi.org/10.1124/dmd.104.000646] [PMID: 15342469]
[45]
Kummar S, Ji J, Morgan R, et al. A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin Cancer Res 2012; 18(6): 1726-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2821] [PMID: 22307137]
[46]
Busse D, Busch FW, Bohnenstengel F, et al. Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J Clin Oncol 1997; 15(5): 1885-96.
[http://dx.doi.org/10.1200/JCO.1997.15.5.1885] [PMID: 9164199]
[47]
Sun F, Lee L, Zhang Z, et al. Preclinical pharmacokinetic studies of 3-deazaneplanocin A, a potent epigenetic anticancer agent, and its human pharmacokinetic prediction using GastroPlus™. Eur J Pharm Sci 2015; 77: 290-302.
[http://dx.doi.org/10.1200/JCO.1997.15.5.1885]
[48]
Jones HM, Parrott N, Jorga K, Lavé T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet 2006; 45(5): 511-42.
[http://dx.doi.org/10.2165/00003088-200645050-00006] [PMID: 16640456]
[49]
Qi F, Zhu L, Li N, Ge T, Xu G, Liao S. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole. Int J Antimicrob Agents 2017; 49(4): 403-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.11.025] [PMID: 28159656]
[50]
Fan J, Chen L, Lu X, Li M, Zhu L. The pharmacokinetic prediction of cyclosporin A after coadministration with wuzhi capsule. AAPS PharmSciTech 2019; 20(6): 247.
[http://dx.doi.org/10.1208/s12249-019-1444-6] [PMID: 31286321]
[51]
Zhang M, Zheng J, Deng C, Song XM, Han L. Vinegar steam effect on oil–water partition coefficients of Fructus Schisandrae sphenantherae. Lishizhen Med Mater Med Res 2012; 23: 2695-6.
[52]
Qin XL, Chen X, Zhong GP, et al. Effect of Tacrolimus on the pharmacokinetics of bioactive lignans of Wuzhi tablet (Schisandra sphenanthera extract) and the potential roles of CYP3A and P-gp. Phytomedicine 2014; 21(5): 766-72.
[http://dx.doi.org/10.1016/j.phymed.2013.12.006] [PMID: 24462213]
[53]
Liang Y, Zhou YY, Liu YN, et al. Study on the plasma protein binding rate of Schisandra lignans based on the LC-IT-TOF/MS technique with relative quantitative analysis. Chin J Nat Med 2013; 11(4): 442-8.
[http://dx.doi.org/10.1016/S1875-5364(13)60066-7] [PMID: 23845557]
[54]
Peng Y, Cheng Z, Xie F. Evaluation of pharmacokinetic drug- drug interactions: A review of the mechanisms, in vitro and in silico approaches. Metabolites 2021; 11(2): 75.
[http://dx.doi.org/10.3390/metabo11020075] [PMID: 33513941]
[55]
Choi JG, Eom SM, Kim J, et al. A comprehensive review of recent studies on herb–drug interaction: A focus on pharmacodynamic interaction. J Altern Complement Med 2016; 22(4): 262-79.
[http://dx.doi.org/10.1089/acm.2015.0235] [PMID: 27003511]
[56]
Yang Z, Zhang Q, Yu L, Zhu J, Cao Y, Gao X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J Ethnopharmacol 2021; 264: 113249.
[http://dx.doi.org/10.1016/j.jep.2020.113249] [PMID: 32810619]
[57]
Cai YQ, Hu JH, Qin J, Sun T, Li XL. Rhododendron Molle (Ericaceae): phytochemistry, pharmacology, and toxicology. Chin J Nat Med 2018; 16(6): 401-10.
[http://dx.doi.org/10.1016/S1875-5364(18)30073-6] [PMID: 30047461]
[58]
Zhang HT, Huang MX, Liu X, et al. Evaluation of the adjuvant efficacy of natural herbal medicine on COVID-19: A retrospective matched case-control study. Am J Chin Med 2020; 48(4): 779-92.
[http://dx.doi.org/10.1142/S0192415X20500391] [PMID: 32420751]
[59]
Yang B, Xie Y, Guo M, Rosner MH, Yang H, Ronco C. Nephrotoxicity and Chinese Herbal Medicine. Clin J Am Soc Nephrol 2018; 13(10): 1605-11.
[http://dx.doi.org/10.2215/CJN.11571017] [PMID: 29615394]
[60]
Luo H, Vong CT, Chen H, et al. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14: 48.
[http://dx.doi.org/10.1186/s13020-019-0270-9] [PMID: 31719837]
[61]
Peng F, Xie X, Peng C. Chinese herbal medicine-based cancer therapy: novel anticancer agents targeting microRNAs to regulate tumor growth and metastasis. Am J Chin Med 2019; 47(8): 1711-35.
[http://dx.doi.org/10.1142/S0192415X19500873] [PMID: 31801358]
[62]
Wong CN, Wong CN, Liu FS. Continuous oral cyclophosphamide as salvage or maintenance therapy in ovarian, primary peritoneal, and fallopian tube cancers: A retrospective, single institute study. Taiwan J Obstet Gynecol 2017; 56(3): 302-5.
[http://dx.doi.org/10.1016/j.tjog.2017.04.006] [PMID: 28600037]
[63]
Nielsen TO, Jensen MB, Burugu S, et al. High-risk premenopausal luminal a breast cancer patients derive no benefit from adjuvant cyclophosphamide-based chemotherapy: results from the DBCG77B clinical trial. Clin Cancer Res 2017; 23(4): 946-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1278] [PMID: 27601592]
[64]
Asai S, Katabami T, Tsuiki M, Tanaka Y, Naruse M. Controlling tumor progression with cyclophosphamide, vincristine, and dacarbazine treatment improves survival in patients with metastatic and unresectable malignant pheochromocytomas/paragangliomas. Horm Cancer 2017; 8(2): 108-18.
[http://dx.doi.org/10.1007/s12672-017-0284-7] [PMID: 28108930]
[65]
Chen L, Xiong X, Hou X, et al. Wuzhi capsule regulates chloroacetaldehyde pharmacokinetics behaviour and alleviates high-dose cyclophosphamide-induced nephrotoxicity and neurotoxicity in rats. Basic Clin Pharmacol Toxicol 2019; 125(2): 142-51.
[http://dx.doi.org/10.1111/bcpt.13211] [PMID: 30793490]
[66]
Temel Y, Kucukler S, Yıldırım S, Caglayan C, Kandemir FM. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(3): 325-37.
[http://dx.doi.org/10.1007/s00210-019-01741-z] [PMID: 31620822]
[67]
Wanas H, El-Shabrawy M, Mishriki A, Attia H, Emam M, Aboulhoda BE. Nebivolol protects against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammation, and apoptosis. Clin Exp Pharmacol Physiol 2021; 48(5): 811-9.
[http://dx.doi.org/10.1111/1440-1681.13481] [PMID: 33590494]
[68]
Jiang X, Ren Z, Zhao B, Zhou S, Ying X, Tang Y. Ameliorating effect of pentadecapeptide derived from cyclina sinensis on cyclophosphamide-induced nephrotoxicity. Mar Drugs 2020; 18(9): 462.
[http://dx.doi.org/10.3390/md18090462] [PMID: 32916975]
[69]
Waz S, Heeba GH, Hassanin SO, Abdel-Latif RG. Nephroprotective effect of exogenous hydrogen sulfide donor against cyclophosphamide-induced toxicity is mediated by Nrf2/HO-1/NF-κB signaling pathway. Life Sci 2021; 264: 118630.
[http://dx.doi.org/10.1016/j.lfs.2020.118630] [PMID: 33169683]
[70]
Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol 2009; 5(2): 211-23.
[http://dx.doi.org/10.1517/17425250802691074] [PMID: 19199378]
[71]
Qin XL, Chen X, Wang Y, et al. In vivo to in vitro effects of six bioactive lignans of Wuzhi tablet (Schisandra sphenanthera extract) on the CYP3A/P-glycoprotein-mediated absorption and metabolism of tacrolimus. Drug Metab Dispos 2014; 42(1): 193-9.
[http://dx.doi.org/10.1124/dmd.113.053892] [PMID: 24195812]
[72]
Low SK, Kiyotani K, Mushiroda T, Daigo Y, Nakamura Y, Zembutsu H. Association study of genetic polymorphism in ABCC4 with cyclophosphamide-induced adverse drug reactions in breast cancer patients. J Hum Genet 2009; 54(10): 564-71.
[http://dx.doi.org/10.1038/jhg.2009.79] [PMID: 19696793]
[73]
Le Merdy M, Tan ML, Sun D, et al. Physiologically based pharmacokinetic modeling approach to identify the drug-drug interaction mechanism of nifedipine and a proton pump inhibitor, omeprazole. Eur J Drug Metab Pharmacokinet 2021; 46(1): 41-51.
[http://dx.doi.org/10.1007/s13318-020-00649-x] [PMID: 33064292]
[74]
Ariyoshi N, Ohara M, Kaneko M, et al. Q172H replacement overcomes effects on the metabolism of cyclophosphamide and efavirenz caused by CYP2B6 variant with Arg262. Drug Metab Dispos 2011; 39(11): 2045-8.
[http://dx.doi.org/10.1124/dmd.111.039586] [PMID: 21821736]
[75]
Kang D, Shao Y, Zhu Z, et al. Systematically identifying the hepatoprotective ingredients of schisandra lignan extract from pharmacokinetic and pharmacodynamic perspectives. Phytomedicine 2019; 53: 182-92.
[http://dx.doi.org/10.1016/j.phymed.2018.09.010] [PMID: 30668398]
[76]
Li B, Li D, Wang Y, et al. Schisantherin A alleviated alcohol-induced liver injury by the regulation of alcohol metabolism and NF-kB pathway. Exp Anim 2018; 67(4): 451-61.
[http://dx.doi.org/10.1538/expanim.18-0021] [PMID: 29806627]
[77]
Seo HJ, Ji SB, Kim SE, et al. Inhibitory effects of schisandra lignans on cytochrome P450s and uridine 5′-diphospho-glucuronosyl transferases in human liver microsomes. Pharmaceutics 2021; 13(3): 371.
[http://dx.doi.org/10.3390/pharmaceutics13030371] [PMID: 33802239]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy