Review Article

靶向雌激素受体的PROTACs综述:生物学和药物研究成果

卷 29, 期 22, 2022

发表于: 13 January, 2022

页: [3922 - 3944] 页: 23

弟呕挨: 10.2174/0929867328666211110101018

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

雌激素受体(ER)是类固醇激素受体,它属于一个大型核受体家族。内分泌疾病与雌激素受体信号失调密切相关。传统疗法继续依赖小分子抑制剂,包括芳香化酶抑制剂(AIs)和选择性雌激素受体调节剂(SERM),所有这些都会对内分泌治疗产生获得性抵抗。蛋白水解靶向嵌合体(PROTACs)具有前所未有的解决获得性内分泌抵抗的潜力。ARV-471是Arvinas开发的一种靶向ER的PROTAC,在2019年时被美国FDA认定为一种研究新药,并启动了一项针对局部晚期或转移性ER阳性/HER2阴性乳腺癌患者的I期试验。在这篇综述中,我们将重点介绍从内分泌疾病治疗的出版物和专利中开发ER靶向PROTAC的进展。

关键词: 蛋白质水解靶向嵌合体,雌激素受体(ERs),核受体,DNA结合功能域,α雌激素受体多肽,β雌激素受体多肽

[1]
Kuiper, G.G.; Enmark, E.; Pelto-Huikko, M.; Nilsson, S.; Gustafsson, J.A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA, 1996, 93(12), 5925-5930.
[http://dx.doi.org/10.1073/pnas.93.12.5925] [PMID: 8650195]
[2]
Jia, M.; Dahlman-Wright, K.; Gustafsson, J-Å. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab., 2015, 29(4), 557-568.
[http://dx.doi.org/10.1016/j.beem.2015.04.008] [PMID: 26303083]
[3]
Murphy, E. Estrogen signaling and cardiovascular disease. Circ. Res., 2011, 109(6), 687-696.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.236687] [PMID: 21885836]
[4]
McInerney, E.M.; Katzenellenbogen, B.S. Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J. Biol. Chem., 1996, 271(39), 24172-24178.
[http://dx.doi.org/10.1074/jbc.271.39.24172] [PMID: 8798658]
[5]
Nilsson, S.; Mäkelä, S.; Treuter, E.; Tujague, M.; Thomsen, J.; Andersson, G.; Enmark, E.; Pettersson, K.; Warner, M.; Gustafsson, J-Å. Mechanisms of estrogen action. Physiol. Rev., 2001, 81(4), 1535-1565.
[http://dx.doi.org/10.1152/physrev.2001.81.4.1535] [PMID: 11581496]
[6]
Langdon, S.P. Estrogen receptor signaling in cancer. Cancers (Basel), 2020, 12(10), 2744.
[http://dx.doi.org/10.3390/cancers12102744] [PMID: 32987743]
[7]
Cahua-Pablo, J.Á.; Flores-Alfaro, E.; Cruz, M. Estrogen receptor alpha in obesity and diabetes. Rev. Med. Inst. Mex. Seguro Soc., 2016, 54(4), 521-530.
[PMID: 27197110]
[8]
Gajadeera, N.; Hanson, R.N. Review of fluorescent steroidal ligands for the estrogen receptor 1995-2018. Steroids, 2019, 144, 30-46.
[http://dx.doi.org/10.1016/j.steroids.2019.02.002] [PMID: 30738074]
[9]
Farzaneh, S.; Zarghi, A. Estrogen receptor ligands: A review (2013-2015). Sci. Pharm., 2016, 84(3), 409-427.
[http://dx.doi.org/10.3390/scipharm84030409] [PMID: 28117309]
[10]
Russo, J.; Russo, I.H. The role of estrogen in the initiation of breast cancer. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 89-96.
[http://dx.doi.org/10.1016/j.jsbmb.2006.09.004] [PMID: 17113977]
[11]
Miyoshi, Y.; Murase, K.; Saito, M.; Imamura, M.; Oh, K. Mechanisms of estrogen receptor-α upregulation in breast cancers. Med. Mol. Morphol., 2010, 43(4), 193-196.
[http://dx.doi.org/10.1007/s00795-010-0514-3] [PMID: 21267694]
[12]
McDonnell, D.P.; Wardell, S.E.; Norris, J.D. Oral Selective Estrogen Receptor Downregulators (SERDs), a breakthrough endocrine therapy for breast cancer. J. Med. Chem., 2015, 58(12), 4883-4887.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00760] [PMID: 26039356]
[13]
Bhatnagar, A.S.; Häusler, A.; Schieweck, K.; Lang, M.; Bowman, R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol., 1990, 37(6), 1021-1027.
[http://dx.doi.org/10.1016/0960-0760(90)90460-3] [PMID: 2149502]
[14]
Jordan, V.C. Tamoxifen: Toxicities and drug resistance during the treatment and prevention of breast cancer. Annu. Rev. Pharmacol. Toxicol., 1995, 35(1), 195-211.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.001211] [PMID: 7598491]
[15]
Komm, B.S.; Mirkin, S. An overview of current and emerging SERMs. J. Steroid Biochem. Mol. Biol., 2014, 143, 207-222.
[http://dx.doi.org/10.1016/j.jsbmb.2014.03.003] [PMID: 24667357]
[16]
Osborne, C.K.; Wakeling, A.; Nicholson, R.I. Fulvestrant: An oestrogen receptor antagonist with a novel mechanism of action. Br. J. Cancer, 2004, 90(1)(Suppl. 1), S2-S6.
[http://dx.doi.org/10.1038/sj.bjc.6601629] [PMID: 15094757]
[17]
Boér, K. Fulvestrant in advanced breast cancer: Evidence to date and place in therapy. Ther. Adv. Med. Oncol., 2017, 9(7), 465-479.
[http://dx.doi.org/10.1177/1758834017711097] [PMID: 28717399]
[18]
Perey, L.; Paridaens, R.; Hawle, H.; Zaman, K.; Nolé, F.; Wildiers, H.; Fiche, M.; Dietrich, D.; Clément, P.; Köberle, D.; Goldhirsch, A.; Thürlimann, B. Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer and primary or acquired resistance to aromatase inhibitors: Final results of phase II Swiss Group for Clinical Cancer Research Trial (SAKK 21/00). Ann. Oncol., 2007, 18(1), 64-69.
[http://dx.doi.org/10.1093/annonc/mdl341] [PMID: 17030543]
[19]
van Kruchten, M.; de Vries, E.G.; Glaudemans, A.W.; van Lanschot, M.C.; van Faassen, M.; Kema, I.P.; Brown, M.; Schröder, C.P.; de Vries, E.F.; Hospers, G.A. Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer Discov., 2015, 5(1), 72-81.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0697] [PMID: 25380844]
[20]
Kuter, I.; Gee, J.M.W.; Hegg, R.; Singer, C.F.; Badwe, R.A.; Lowe, E.S.; Emeribe, U.A.; Anderson, E.; Sapunar, F.; Finlay, P.; Nicholson, R.I.; Bines, J.; Harbeck, N. Dose-dependent change in biomarkers during neoadjuvant endocrine therapy with fulvestrant: results from NEWEST, a randomized Phase II study. Breast Cancer Res. Treat., 2012, 133(1), 237-246.
[http://dx.doi.org/10.1007/s10549-011-1947-7] [PMID: 22286314]
[21]
Robertson, J.F.R.; Harrison, M. Fulvestrant: Pharmacokinetics and pharmacology. Br. J. Cancer, 2004, 90(1)(Suppl. 1), S7-S10.
[http://dx.doi.org/10.1038/sj.bjc.6601630] [PMID: 15094758]
[22]
Flanagan, J.J.; Neklesa, T.K. Targeting Nuclear Receptors with PROTAC degraders. Mol. Cell. Endocrinol., 2019, 493, 110452.
[http://dx.doi.org/10.1016/j.mce.2019.110452] [PMID: 31125586]
[23]
Luh, L.M.; Scheib, U.; Juenemann, K.; Wortmann, L.; Brands, M.; Cromm, P.M. Prey for the proteasome: Targeted protein degradation-a medicinal chemist’s perspective. Angew. Chem. Int. Ed. Engl., 2020, 59(36), 15448-15466.
[http://dx.doi.org/10.1002/anie.202004310] [PMID: 32428344]
[24]
Adjei, A.A. What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J. Clin. Oncol., 2006, 24(25), 4054-4055.
[http://dx.doi.org/10.1200/JCO.2006.07.4658] [PMID: 16943522]
[25]
Hopkins, A.L.; Groom, C.R. The druggable genome. Nat. Rev. Drug Discov., 2002, 1(9), 727-730.
[http://dx.doi.org/10.1038/nrd892] [PMID: 12209152]
[26]
Paik, Y-K.; Jeong, S-K.; Omenn, G.S.; Uhlen, M.; Hanash, S.; Cho, S.Y.; Lee, H-J.; Na, K.; Choi, E-Y.; Yan, F.; Zhang, F.; Zhang, Y.; Snyder, M.; Cheng, Y.; Chen, R.; Marko-Varga, G.; Deutsch, E.W.; Kim, H.; Kwon, J-Y.; Aebersold, R.; Bairoch, A.; Taylor, A.D.; Kim, K.Y.; Lee, E-Y.; Hochstrasser, D.; Legrain, P.; Hancock, W.S. The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome. Nat. Biotechnol., 2012, 30(3), 221-223.
[http://dx.doi.org/10.1038/nbt.2152] [PMID: 22398612]
[27]
Lai, A.C.; Crews, C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov., 2017, 16(2), 101-114.
[http://dx.doi.org/10.1038/nrd.2016.211] [PMID: 27885283]
[28]
Dang, C.V.; Reddy, E.P.; Shokat, K.M.; Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer, 2017, 17(8), 502-508.
[http://dx.doi.org/10.1038/nrc.2017.36] [PMID: 28643779]
[29]
Jin, L.; Wang, W.; Fang, G. Targeting protein-protein interaction by small molecules. Annu. Rev. Pharmacol. Toxicol., 2014, 54(1), 435-456.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-140028] [PMID: 24160698]
[30]
Lazo, J.S.; Sharlow, E.R. Drugging undruggable molecular cancer targets. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 23-40.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103440] [PMID: 26527069]
[31]
Burslem, G.M.; Crews, C.M. Small-molecule modulation of protein homeostasis. Chem. Rev., 2017, 117(17), 11269-11301.
[http://dx.doi.org/10.1021/acs.chemrev.7b00077] [PMID: 28777566]
[32]
Cromm, P.M.; Crews, C.M. Targeted protein degradation: From chemical biology to drug discovery. Cell Chem. Biol., 2017, 24(9), 1181-1190.
[http://dx.doi.org/10.1016/j.chembiol.2017.05.024] [PMID: 28648379]
[33]
Bondeson, D.P.; Mares, A.; Smith, I.E.; Ko, E.; Campos, S.; Miah, A.H.; Mulholland, K.E.; Routly, N.; Buckley, D.L.; Gustafson, J.L.; Zinn, N.; Grandi, P.; Shimamura, S.; Bergamini, G.; Faelth-Savitski, M.; Bantscheff, M.; Cox, C.; Gordon, D.A.; Willard, R.R.; Flanagan, J.J.; Casillas, L.N.; Votta, B.J.; den Besten, W.; Famm, K.; Kruidenier, L.; Carter, P.S.; Harling, J.D.; Churcher, I.; Crews, C.M. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol., 2015, 11(8), 611-617.
[http://dx.doi.org/10.1038/nchembio.1858] [PMID: 26075522]
[34]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.141230798] [PMID: 11438690]
[35]
Komander, D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans., 2009, 37(Pt 5), 937-953.
[http://dx.doi.org/10.1042/BST0370937] [PMID: 19754430]
[36]
Skaar, J.R.; Pagan, J.K.; Pagano, M. SCF ubiquitin ligase-targeted therapies. Nat. Rev. Drug Discov., 2014, 13(12), 889-903.
[http://dx.doi.org/10.1038/nrd4432] [PMID: 25394868]
[37]
Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A.P. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One, 2008, 3(1), e1487.
[http://dx.doi.org/10.1371/journal.pone.0001487] [PMID: 18213395]
[38]
Hatakeyama, S.; Nakayama, K-I. U-box proteins as a new family of ubiquitin ligases. Biochem. Biophys. Res. Commun., 2003, 302(4), 635-645.
[http://dx.doi.org/10.1016/S0006-291X(03)00245-6] [PMID: 12646216]
[39]
Petroski, M.D.; Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol., 2005, 6(1), 9-20.
[http://dx.doi.org/10.1038/nrm1547] [PMID: 15688063]
[40]
Deshaies, R.J.; Joazeiro, C.A.P. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem., 2009, 78(1), 399-434.
[http://dx.doi.org/10.1146/annurev.biochem.78.101807.093809] [PMID: 19489725]
[41]
Metzger, M.B.; Hristova, V.A.; Weissman, A.M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci., 2012, 125(Pt 3), 531-537.
[http://dx.doi.org/10.1242/jcs.091777] [PMID: 22389392]
[42]
Metzger, M.B.; Pruneda, J.N.; Klevit, R.E.; Weissman, A.M. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta, 2014, 1843(1), 47-60.
[http://dx.doi.org/10.1016/j.bbamcr.2013.05.026] [PMID: 23747565]
[43]
Chamberlain, P.P.; Lopez-Girona, A.; Miller, K.; Carmel, G.; Pagarigan, B.; Chie-Leon, B.; Rychak, E.; Corral, L.G.; Ren, Y.J.; Wang, M.; Riley, M.; Delker, S.L.; Ito, T.; Ando, H.; Mori, T.; Hirano, Y.; Handa, H.; Hakoshima, T.; Daniel, T.O.; Cathers, B.E. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol., 2014, 21(9), 803-809.
[http://dx.doi.org/10.1038/nsmb.2874] [PMID: 25108355]
[44]
Ohoka, N.; Okuhira, K.; Ito, M.; Nagai, K.; Shibata, N.; Hattori, T.; Ujikawa, O.; Shimokawa, K.; Sano, O.; Koyama, R.; Fujita, H.; Teratani, M.; Matsumoto, H.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. In vivo knockdown of pathogenic proteins via specific and nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs). J. Biol. Chem., 2017, 292(11), 4556-4570.
[http://dx.doi.org/10.1074/jbc.M116.768853] [PMID: 28154167]
[45]
Ottis, P.; Toure, M.; Cromm, P.M.; Ko, E.; Gustafson, J.L.; Crews, C.M. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem. Biol., 2017, 12(10), 2570-2578.
[http://dx.doi.org/10.1021/acschembio.7b00485] [PMID: 28767222]
[46]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.114] [PMID: 18752944]
[47]
Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a primary target of thalidomide teratogenicity. Science, 2010, 327(5971), 1345-1350.
[http://dx.doi.org/10.1126/science.1177319] [PMID: 20223979]
[48]
Krönke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; Ciarlo, C.; Hartman, E.; Munshi, N.; Schenone, M.; Schreiber, S.L.; Carr, S.A.; Ebert, B.L. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science, 2014, 343(6168), 301-305.
[http://dx.doi.org/10.1126/science.1244851] [PMID: 24292625]
[49]
Sekine, K.; Takubo, K.; Kikuchi, R.; Nishimoto, M.; Kitagawa, M.; Abe, F.; Nishikawa, K.; Tsuruo, T.; Naito, M. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J. Biol. Chem., 2008, 283(14), 8961-8968.
[http://dx.doi.org/10.1074/jbc.M709525200] [PMID: 18230607]
[50]
Buckley, D.L.; Van Molle, I.; Gareiss, P.C.; Tae, H.S.; Michel, J.; Noblin, D.J.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc., 2012, 134(10), 4465-4468.
[http://dx.doi.org/10.1021/ja209924v] [PMID: 22369643]
[51]
Ottis, P.; Crews, C.M. Proteolysis-targeting chimeras: Induced protein degradation as a therapeutic strategy. ACS Chem. Biol., 2017, 12(4), 892-898.
[http://dx.doi.org/10.1021/acschembio.6b01068] [PMID: 28263557]
[52]
Sakamoto, K.M.; Kim, K.B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C.M.; Deshaies, R.J. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics, 2003, 2(12), 1350-1358.
[http://dx.doi.org/10.1074/mcp.T300009-MCP200] [PMID: 14525958]
[53]
Jaakkola, P.; Mole, D.R.; Tian, Y-M.; Wilson, M.I.; Gielbert, J.; Gaskell, S.J.; von Kriegsheim, A.; Hebestreit, H.F.; Mukherji, M.; Schofield, C.J.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001, 292(5516), 468-472.
[http://dx.doi.org/10.1126/science.1059796] [PMID: 11292861]
[54]
Semenza, G.L. HIF-1 and human disease: One highly involved factor. Genes Dev., 2000, 14(16), 1983-1991.
[PMID: 10950862]
[55]
Zhang, D.; Baek, S.H.; Ho, A.; Lee, H.; Jeong, Y.S.; Kim, K. Targeted degradation of proteins by small molecules: A novel tool for functional proteomics. Comb. Chem. High Throughput Screen., 2004, 7(7), 689-697.
[http://dx.doi.org/10.2174/1386207043328364] [PMID: 15578931]
[56]
Zhang, D.; Baek, S-H.; Ho, A.; Kim, K. Degradation of target protein in living cells by small-molecule proteolysis inducer. Bioorg. Med. Chem. Lett., 2004, 14(3), 645-648.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.042] [PMID: 14741260]
[57]
Bargagna-Mohan, P.; Baek, S-H.; Lee, H.; Kim, K.; Mohan, R. Use of PROTACS as molecular probes of angiogenesis. Bioorg. Med. Chem. Lett., 2005, 15(11), 2724-2727.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.008] [PMID: 15876533]
[58]
Cyrus, K.; Wehenkel, M.; Choi, E.Y.; Lee, H.; Swanson, H.; Kim, K.B. Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACs. ChemMedChem, 2010, 5(7), 979-985.
[http://dx.doi.org/10.1002/cmdc.201000146] [PMID: 20512796]
[59]
Cyrus, K.; Wehenkel, M.; Choi, E-Y.; Han, H-J.; Lee, H.; Swanson, H.; Kim, K-B. Impact of linker length on the activity of PROTACs. Mol. Biosyst., 2011, 7(2), 359-364.
[http://dx.doi.org/10.1039/C0MB00074D] [PMID: 20922213]
[60]
Cyrus, K.; Wehenkel, M.; Choi, E-Y.; Swanson, H.; Kim, K-B. Two-headed PROTAC: An effective new tool for targeted protein degradation. ChemBioChem, 2010, 11(11), 1531-1534.
[http://dx.doi.org/10.1002/cbic.201000222] [PMID: 20572252]
[61]
Jiang, Y.; Deng, Q.; Zhao, H.; Xie, M.; Chen, L.; Yin, F.; Qin, X.; Zheng, W.; Zhao, Y.; Li, Z. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem. Biol., 2018, 13(3), 628-635.
[http://dx.doi.org/10.1021/acschembio.7b00985] [PMID: 29271628]
[62]
Dai, Y.; Yue, N.; Gong, J.; Liu, C.; Li, Q.; Zhou, J.; Huang, W.; Qian, H. Development of cell-permeable peptide-based PROTACs targeting estrogen receptor α. Eur. J. Med. Chem., 2020, 187, 111967.
[http://dx.doi.org/10.1016/j.ejmech.2019.111967] [PMID: 31865016]
[63]
Schneekloth, J.S., Jr; Fonseca, F.N.; Koldobskiy, M.; Mandal, A.; Deshaies, R.; Sakamoto, K.; Crews, C.M. Chemical genetic control of protein levels: Selective in vivo targeted degradation. J. Am. Chem. Soc., 2004, 126(12), 3748-3754.
[http://dx.doi.org/10.1021/ja039025z] [PMID: 15038727]
[64]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[65]
Galdeano, C.; Gadd, M.S.; Soares, P.; Scaffidi, S.; Van Molle, I.; Birced, I.; Hewitt, S.; Dias, D.M.; Ciulli, A. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem., 2014, 57(20), 8657-8663.
[http://dx.doi.org/10.1021/jm5011258] [PMID: 25166285]
[66]
Lu, G.; Middleton, R.E.; Sun, H.; Naniong, M.; Ott, C.J.; Mitsiades, C.S.; Wong, K-K.; Bradner, J.E.; Kaelin, W.G., Jr The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science, 2014, 343(6168), 305-309.
[http://dx.doi.org/10.1126/science.1244917] [PMID: 24292623]
[67]
Krönke, J.; Fink, E.C.; Hollenbach, P.W.; MacBeth, K.J.; Hurst, S.N.; Udeshi, N.D.; Chamberlain, P.P.; Mani, D.R.; Man, H.W.; Gandhi, A.K.; Svinkina, T.; Schneider, R.K.; McConkey, M.; Järås, M.; Griffiths, E.; Wetzler, M.; Bullinger, L.; Cathers, B.E.; Carr, S.A.; Chopra, R.; Ebert, B.L. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature, 2015, 523(7559), 183-188.
[http://dx.doi.org/10.1038/nature14610] [PMID: 26131937]
[68]
Buckley, D.L.; Gustafson, J.L.; Van Molle, I.; Roth, A.G.; Tae, H.S.; Gareiss, P.C.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew. Chem. Int. Ed. Engl., 2012, 51(46), 11463-11467.
[http://dx.doi.org/10.1002/anie.201206231] [PMID: 23065727]
[69]
Toure, M.; Crews, C.M. Small-Molecule PROTACS: New Approaches to Protein Degradation. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 1966-1973.
[http://dx.doi.org/10.1002/anie.201507978] [PMID: 26756721]
[70]
An, S.; Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 2018, 36, 553-562.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.005] [PMID: 30224312]
[71]
Martín-Acosta, P.; Xiao, X. PROTACs to address the challenges facing small molecule inhibitors. Eur. J. Med. Chem., 2021, 210, 112993.
[http://dx.doi.org/10.1016/j.ejmech.2020.112993] [PMID: 33189436]
[72]
Gyrd-Hansen, M.; Meier, P. IAPs: From caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat. Rev. Cancer, 2010, 10(8), 561-574.
[http://dx.doi.org/10.1038/nrc2889] [PMID: 20651737]
[73]
Bertrand, M.J.; Lippens, S.; Staes, A.; Gilbert, B.; Roelandt, R.; De Medts, J.; Gevaert, K.; Declercq, W.; Vandenabeele, P. cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4). PLoS One, 2011, 6(9), e22356.
[http://dx.doi.org/10.1371/journal.pone.0022356] [PMID: 21931591]
[74]
Yang, Y.; Fang, S.; Jensen, J.P.; Weissman, A.M.; Ashwell, J.D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science, 2000, 288(5467), 874-877.
[http://dx.doi.org/10.1126/science.288.5467.874] [PMID: 10797013]
[75]
Park, S-M.; Yoon, J-B.; Lee, T.H. Receptor interacting protein is ubiquitinated by cellular inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) in vitro. FEBS Lett., 2004, 566(1-3), 151-156.
[http://dx.doi.org/10.1016/j.febslet.2004.04.021] [PMID: 15147886]
[76]
Bertrand, M.J.M.; Milutinovic, S.; Dickson, K.M.; Ho, W.C.; Boudreault, A.; Durkin, J.; Gillard, J.W.; Jaquith, J.B.; Morris, S.J.; Barker, P.A. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell, 2008, 30(6), 689-700.
[http://dx.doi.org/10.1016/j.molcel.2008.05.014] [PMID: 18570872]
[77]
Gyrd-Hansen, M.; Darding, M.; Miasari, M.; Santoro, M.M.; Zender, L.; Xue, W.; Tenev, T.; da Fonseca, P.C.A.; Zvelebil, M.; Bujnicki, J.M.; Lowe, S.; Silke, J.; Meier, P. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat. Cell Biol., 2008, 10(11), 1309-1317.
[http://dx.doi.org/10.1038/ncb1789] [PMID: 18931663]
[78]
Blankenship, J.W.; Varfolomeev, E.; Goncharov, T. Fedorova, Anna, V.; Kirkpatrick, Donald, S.; Izrael-Tomasevic, A.; Phu, L.; Arnott, D.; Aghajan, M.; Zobel, K.; Bazan, J.F.; Fairbrother, Wayne, J.; Deshayes, K.; Vucic, D. Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP21. Biochem. J., 2008, 417(1), 149-165.
[http://dx.doi.org/10.1042/BJ20081885] [PMID: 18939944]
[79]
Itoh, Y.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: Design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc., 2010, 132(16), 5820-5826.
[http://dx.doi.org/10.1021/ja100691p] [PMID: 20369832]
[80]
Suda, H.; Takita, T.; Aoyagi, T.; Umezawa, H. The structure of bestatin. J. Antibiot. (Tokyo), 1976, 29(1), 100-101.
[http://dx.doi.org/10.7164/antibiotics.29.100] [PMID: 931786]
[81]
Sato, S.; Aoyama, H.; Miyachi, H.; Naito, M.; Hashimoto, Y. Demonstration of direct binding of cIAP1 degradation-promoting bestatin analogs to BIR3 domain: Synthesis and application of fluorescent bestatin ester analogs. Bioorg. Med. Chem. Lett., 2008, 18(11), 3354-3358.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.031] [PMID: 18448338]
[82]
Muddana, S.S.; Peterson, B.R. Facile synthesis of cids: biotinylated estrone oximes efficiently heterodimerize estrogen receptor and streptavidin proteins in yeast three hybrid systems. Org. Lett., 2004, 6(9), 1409-1412.
[http://dx.doi.org/10.1021/ol0497537] [PMID: 15101754]
[83]
Itoh, Y.; Ishikawa, M.; Kitaguchi, R.; Sato, S.; Naito, M.; Hashimoto, Y. Development of target protein-selective degradation inducer for protein knockdown. Bioorg. Med. Chem., 2011, 19(10), 3229-3241.
[http://dx.doi.org/10.1016/j.bmc.2011.03.057] [PMID: 21515062]
[84]
Itoh, Y.; Kitaguchi, R.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg. Med. Chem., 2011, 19(22), 6768-6778.
[http://dx.doi.org/10.1016/j.bmc.2011.09.041] [PMID: 22014751]
[85]
Demizu, Y.; Okuhira, K.; Motoi, H.; Ohno, A.; Shoda, T.; Fukuhara, K.; Okuda, H.; Naito, M.; Kurihara, M. Design and synthesis of estrogen receptor degradation inducer based on a protein knockdown strategy. Bioorg. Med. Chem. Lett., 2012, 22(4), 1793-1796.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.086] [PMID: 22277276]
[86]
Okuhira, K.; Demizu, Y.; Hattori, T.; Ohoka, N.; Shibata, N.; Nishimaki-Mogami, T.; Okuda, H.; Kurihara, M.; Naito, M. Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci., 2013, 104(11), 1492-1498.
[http://dx.doi.org/10.1111/cas.12272] [PMID: 23992566]
[87]
Yang, L.; Kumar, B.; Shen, C.; Zhao, S.; Blakaj, D.; Li, T.; Romito, M.; Teknos, T.N.; Williams, T.M. LCL161, a SMAC-mimetic, preferentially radiosensitizes human papillomavirus-negative head and neck squamous cell carcinoma. Mol. Cancer Ther., 2019, 18(6), 1025-1035.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1157] [PMID: 31015310]
[88]
Korneluk, R.G.; Lacasse, E.C.; Beug, S.T.; Tang, V.A. SMAC protein mimetic compounds (SMCs) in combination with other therapeutic agents for the treatment of cancer. WO Patent, WO2015109391A1, 2015.
[89]
Okuhira, K.; Ohoka, N.; Sai, K.; Nishimaki-Mogami, T.; Itoh, Y.; Ishikawa, M.; Hashimoto, Y.; Naito, M. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein. FEBS Lett., 2011, 585(8), 1147-1152.
[http://dx.doi.org/10.1016/j.febslet.2011.03.019] [PMID: 21414315]
[90]
Ohoka, N.; Nagai, K.; Hattori, T.; Okuhira, K.; Shibata, N.; Cho, N.; Naito, M. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis., 2014, 5(11), e1513-e1513.
[http://dx.doi.org/10.1038/cddis.2014.471] [PMID: 25375378]
[91]
Fulda, S.; Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov., 2012, 11(2), 109-124.
[http://dx.doi.org/10.1038/nrd3627] [PMID: 22293567]
[92]
Varfolomeev, E.; Blankenship, J.W.; Wayson, S.M.; Fedorova, A.V.; Kayagaki, N.; Garg, P.; Zobel, K.; Dynek, J.N.; Elliott, L.O.; Wallweber, H.J.A.; Flygare, J.A.; Fairbrother, W.J.; Deshayes, K.; Dixit, V.M.; Vucic, D. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell, 2007, 131(4), 669-681.
[http://dx.doi.org/10.1016/j.cell.2007.10.030] [PMID: 18022362]
[93]
Vince, J.E.; Wong, W.W-L.; Khan, N.; Feltham, R.; Chau, D.; Ahmed, A.U.; Benetatos, C.A.; Chunduru, S.K.; Condon, S.M.; McKinlay, M.; Brink, R.; Leverkus, M.; Tergaonkar, V.; Schneider, P.; Callus, B.A.; Koentgen, F.; Vaux, D.L.; Silke, J. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell, 2007, 131(4), 682-693.
[http://dx.doi.org/10.1016/j.cell.2007.10.037] [PMID: 18022363]
[94]
Pedersen, J.; LaCasse, E.C.; Seidelin, J.B.; Coskun, M.; Nielsen, O.H. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol. Med., 2014, 20(11), 652-665.
[http://dx.doi.org/10.1016/j.molmed.2014.09.006] [PMID: 25282548]
[95]
Ohoka, N.; Morita, Y.; Nagai, K.; Shimokawa, K.; Ujikawa, O.; Fujimori, I.; Ito, M.; Hayase, Y.; Okuhira, K.; Shibata, N.; Hattori, T.; Sameshima, T.; Sano, O.; Koyama, R.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. J. Biol. Chem., 2018, 293(18), 6776-6790.
[http://dx.doi.org/10.1074/jbc.RA117.001091] [PMID: 29545311]
[96]
Harling, J.D.; Smith, I.E.D. Preparation of IAP E3 ligase directed proteolysis targeting chimeric molecules. WO Patent, WO2016169989A1, 2016.
[97]
Duan, D.R.; Humphrey, J.S.; Chen, D.Y.; Weng, Y.; Sukegawa, J.; Lee, S.; Gnarra, J.R.; Linehan, W.M.; Klausner, R.D. Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc. Natl. Acad. Sci. USA, 1995, 92(14), 6459-6463.
[http://dx.doi.org/10.1073/pnas.92.14.6459] [PMID: 7604013]
[98]
Pause, A.; Lee, S.; Worrell, R.A.; Chen, D.Y.T.; Burgess, W.H.; Linehan, W.M.; Klausner, R.D. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. USA, 1997, 94(6), 2156-2161.
[http://dx.doi.org/10.1073/pnas.94.6.2156] [PMID: 9122164]
[99]
Iliopoulos, O.; Ohh, M.; Kaelin, W.G., Jr pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 11661-11666.
[http://dx.doi.org/10.1073/pnas.95.20.11661] [PMID: 9751722]
[100]
Gossage, L.; Eisen, T.; Maher, E.R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer, 2015, 15(1), 55-64.
[http://dx.doi.org/10.1038/nrc3844] [PMID: 25533676]
[101]
Lisztwan, J.; Imbert, G.; Wirbelauer, C.; Gstaiger, M.; Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev., 1999, 13(14), 1822-1833.
[http://dx.doi.org/10.1101/gad.13.14.1822] [PMID: 10421634]
[102]
Iwai, K.; Yamanaka, K.; Kamura, T.; Minato, N.; Conaway, R.C.; Conaway, J.W.; Klausner, R.D.; Pause, A. Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12436-12441.
[http://dx.doi.org/10.1073/pnas.96.22.12436] [PMID: 10535940]
[103]
Krek, W. VHL takes HIF’s breath away. Nat. Cell Biol., 2000, 2(7), E121-E123.
[http://dx.doi.org/10.1038/35017129] [PMID: 10878820]
[104]
Chitrakar, A.; Budda, S.A.; Henderson, J.G.; Axtell, R.C.; Zenewicz, L.A. E3 Ubiquitin ligase Von Hippel-Lindau protein promotes Th17 differentiation. J. Immunol., 2020, 205(4), 1009-1023.
[http://dx.doi.org/10.4049/jimmunol.2000243] [PMID: 32690659]
[105]
Campos, S.A.; Harling, J.D.; Miah, A.H.; Smith, I.E.D. Proteolysis targeting chimeras (protacs) directed to the modulation of the estrogen receptor. WO Patent, WO2014108452A1, 2014.
[106]
Patch, R.J.; Searle, L.L.; Kim, A.J.; De, D.; Zhu, X.; Askari, H.B.; O’Neill, J.C.; Abad, M.C.; Rentzeperis, D.; Liu, J.; Kemmerer, M.; Lin, L.; Kasturi, J.; Geisler, J.G.; Lenhard, J.M.; Player, M.R.; Gaul, M.D. Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents. J. Med. Chem., 2011, 54(3), 788-808.
[http://dx.doi.org/10.1021/jm101063h] [PMID: 21218783]
[107]
Crews, C.M.; Buckley, D.; Ciulli, A.; Jorgensen, W.; Gareiss, P.C.; Van Molle, I.; Gustafson, J.; Tae, H.-S.; Michel, J.; Hoyer, D.W.; Roth, A.G.; Harling, J.D.; Smith, I.E.D.; Miah, A.H.; Campos, S.A.; Le, J. Preparation of hydroxyproline analogs as inhibitors of the VCB E3 ubiquitin ligase for treating especially anemia and ischemia. WO Patent, WO2013106646A2, 2013.
[108]
Meng, L.; Mohan, R.; Kwok, B.H.B.; Elofsson, M.; Sin, N.; Crews, C.M. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 10403-10408.
[http://dx.doi.org/10.1073/pnas.96.18.10403] [PMID: 10468620]
[109]
Hu, J.; Hu, B.; Wang, M.; Xu, F.; Miao, B.; Yang, C-Y.; Wang, M.; Liu, Z.; Hayes, D.F.; Chinnaswamy, K.; Delproposto, J.; Stuckey, J.; Wang, S. Discovery of ERD-308 as a highly Potent Proteolysis Targeting Chimera (PROTAC) degrader of Estrogen Receptor (ER). J. Med. Chem., 2019, 62(3), 1420-1442.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01572] [PMID: 30990042]
[110]
Yang, B.; Kettle, J.G.; Hayhow, T.G.C.; Rasmusson, T.G.; Nissink, J.W.M.; Fallan, C.; Lamont, G.M. Preparation of dipeptides and their use in treating cancer. Patent, WO2019123367A1, 2019.
[111]
Kargbo, R.B. PROTAC-mediated degradation of estrogen receptor in the treatment of cancer. ACS Med. Chem. Lett., 2019, 10(10), 1367-1369.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00397] [PMID: 31620216]
[112]
Fan, J.; Liu, Ke. Novel compounds having estrogen receptor alpha degradation. US Patent, US20180208590, 2018.
[113]
Fan, J.; Liu, K. Preparation of hydroxyproline analogs for degradation of estrogen receptor alpha and their use for treating positive breast cancer. US Patent, WO2018013559A1, 2018.
[114]
Fan, J.; Liu, K. Novel compounds having estrogen receptor alpha degradation. US Patent, US20200024269, 2020.
[115]
Dragovich, P.S.; Adhikari, P.; Blake, R.A.; Blaquiere, N.; Chen, J.; Cheng, Y-X.; den Besten, W.; Han, J.; Hartman, S.J.; He, J.; He, M.; Rei Ingalla, E.; Kamath, A.V.; Kleinheinz, T.; Lai, T.; Leipold, D.D.; Li, C.S.; Liu, Q.; Lu, J.; Lu, Y.; Meng, F.; Meng, L.; Ng, C.; Peng, K.; Lewis Phillips, G.; Pillow, T.H.; Rowntree, R.K.; Sadowsky, J.D.; Sampath, D.; Staben, L.; Staben, S.T.; Wai, J.; Wan, K.; Wang, X.; Wei, B.; Wertz, I.E.; Xin, J.; Xu, K.; Yao, H.; Zang, R.; Zhang, D.; Zhou, H.; Zhao, Y. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg. Med. Chem. Lett., 2020, 30(4), 126907.
[http://dx.doi.org/10.1016/j.bmcl.2019.126907] [PMID: 31902710]
[116]
Roberts, B.L.; Ma, Z-X.; Gao, A.; Leisten, E.D.; Yin, D.; Xu, W.; Tang, W. Two-stage strategy for development of proteolysis targeting chimeras and its application for estrogen receptor degraders. ACS Chem. Biol., 2020, 15(6), 1487-1496.
[http://dx.doi.org/10.1021/acschembio.0c00140] [PMID: 32255606]
[117]
Higgins, J.J.; Tal, A.L.; Sun, X.; Hauck, S.C.R.; Hao, J.; Kosofosky, B.E.; Rajadhyaksha, A.M. Temporal and spatial mouse brain expression of cereblon, an ionic channel regulator involved in human intelligence. J. Neurogenet., 2010, 24(1), 18-26.
[http://dx.doi.org/10.3109/01677060903567849] [PMID: 20131966]
[118]
Lopez-Girona, A.; Mendy, D.; Ito, T.; Miller, K.; Gandhi, A.K.; Kang, J.; Karasawa, S.; Carmel, G.; Jackson, P.; Abbasian, M.; Mahmoudi, A.; Cathers, B.; Rychak, E.; Gaidarova, S.; Chen, R.; Schafer, P.H.; Handa, H.; Daniel, T.O.; Evans, J.F.; Chopra, R. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia, 2012, 26(11), 2326-2335.
[http://dx.doi.org/10.1038/leu.2012.119] [PMID: 22552008]
[119]
Jo, S.; Lee, K-H.; Song, S.; Jung, Y-K.; Park, C-S. Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J. Neurochem., 2005, 94(5), 1212-1224.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03344.x] [PMID: 16045448]
[120]
Xin, W.; Xiaohua, N.; Peilin, C.; Xin, C.; Yaqiong, S.; Qihan, W. Primary function analysis of human mental retardation related gene CRBN. Mol. Biol. Rep., 2008, 35(2), 251-256.
[http://dx.doi.org/10.1007/s11033-007-9077-3] [PMID: 17380424]
[121]
Hohberger, B.; Enz, R. Cereblon is expressed in the retina and binds to voltage-gated chloride channels. FEBS Lett., 2009, 583(4), 633-637.
[http://dx.doi.org/10.1016/j.febslet.2009.01.018] [PMID: 19166841]
[122]
Lee, K.M.; Jo, S.; Kim, H.; Lee, J.; Park, C-S. Functional modulation of AMP-activated protein kinase by cereblon. Biochim. Biophys. Acta, 2011, 1813(3), 448-455.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.005] [PMID: 21232561]
[123]
Fischer, E.S.; Böhm, K.; Lydeard, J.R.; Yang, H.; Stadler, M.B.; Cavadini, S.; Nagel, J.; Serluca, F.; Acker, V.; Lingaraju, G.M.; Tichkule, R.B.; Schebesta, M.; Forrester, W.C.; Schirle, M.; Hassiepen, U.; Ottl, J.; Hild, M.; Beckwith, R.E.J.; Harper, J.W.; Jenkins, J.L.; Thomä, N.H. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512(7512), 49-53.
[http://dx.doi.org/10.1038/nature13527] [PMID: 25043012]
[124]
Krajcovicova, S.; Jorda, R.; Hendrychova, D.; Krystof, V.; Soural, M. Solid-phase synthesis for thalidomide-based proteolysis-targeting chimeras (PROTAC). Chem. Commun. (Camb.), 2019, 55(7), 929-932.
[http://dx.doi.org/10.1039/C8CC08716D] [PMID: 30601480]
[125]
Chen, H.; Chen, F.; Pei, S.; Gou, S. Pomalidomide hybrids act as proteolysis targeting chimeras: Synthesis, anticancer activity and B-Raf degradation. Bioorg. Chem., 2019, 87, 191-199.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.035] [PMID: 30901674]
[126]
Crew, A.P.; Qian, Y.; Dong, H.; Wang, J.; Crews, C.M. Preparation of indole derivatives as estrogen receptor degraders. US Patent, US20180072711A1, 2018.
[127]
Crew, A.P.; Qian, Y.; Dong, H.; Wang, J.; Hornberger, K.R.; Crews, C.M. Tetrahydronaphthalene and tetrahydroisoquinoline derivatives as estrogen receptor degraders and their preparation. WO Patent, WO2018102725A1, 2018.
[128]
Crew, A.P.; Crews, C.M.; Dong, H.; Hornberger, K.R.; Wang, J.; Qian, Y.; Zimmermann, K.; Berlin, M.; Snyder, L.B. Prepn. of cereblon E3 ligase ligands and bifunctional PROTAC compds. for targeting and degradation of androgen receptor, estrogen receptor alpha, bromodomain-contg. protein 4, and BRaf. US Patent, US20180228907A1, 2018.
[129]
Crew, A.P.; Berlin, M.; Dong, H.; Homberger, K.R.; Qian, Y.; Snyder, L.B.; Wang, J.; Zimmermann, K. Preparation of cereblon E3 ligase ligands and bifunctional PROTAC compounds comprising them for the degradation of targeted proteins including TANK-binding kinase 1, estrogen receptor alpha, bromodomain-containing protein 4 and tau protein. US Patent, US20180215731A1, 2018.
[130]
Crew, A.P.; Crews, C.M.; Dong, H.; Hornberger, K.R.; Wang, J.; Qian, Y.; Zimmermann, K.; Berlin, M.; Snyder, L.B. Prepn. of cereblon E3 ligase ligands and bifunctional PROTAC compds. for targeting and degradation of androgen receptor, estrogen receptor alpha, bromodomain-contg. protein 4, and BRaf. WO Patent, WO2019199816A1, 2019.
[131]
Flanagan, J.J.; Qian, Y.; Gough, S.M.; Andreoli, M.; Bookbinder, M.; Cadelina, G.; Bradley, J.; Rousseau, E.; Willard, R.; Pizzano, J.; Crews, C.; Crew, A.; Taylor, I.; Houston, J. Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. Cancer Res., 2019, 79, 5-04.
[132]
Li, X.; Song, Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol., 2020, 13(1), 50.
[http://dx.doi.org/10.1186/s13045-020-00885-3] [PMID: 32404196]
[133]
Bethany, H. Arvinas unveils PROTAC structures. Chem. Eng. News, 2021, 99(14), 5.
[http://dx.doi.org/10.47287/cen-09914-scicon1]
[134]
Salvati, A.; Gigantino, V.; Nassa, G.; Mirici Cappa, V.; Ventola, G.M.; Cracas, D.G.C.; Mastrocinque, R.; Rizzo, F.; Tarallo, R.; Weisz, A.; Giurato, G. Global view of candidate therapeutic target genes in hormone-responsive breast cancer. Int. J. Mol. Sci., 2020, 21(11), 4068.
[http://dx.doi.org/10.3390/ijms21114068] [PMID: 32517194]
[135]
Bi, M.; Zhang, Z.; Jiang, Y-Z.; Xue, P.; Wang, H.; Lai, Z.; Fu, X.; De Angelis, C.; Gong, Y.; Gao, Z.; Ruan, J.; Jin, V.X.; Marangoni, E.; Montaudon, E.; Glass, C.K.; Li, W.; Huang, T.H-M.; Shao, Z-M.; Schiff, R.; Chen, L.; Liu, Z. Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat. Cell Biol., 2020, 22(6), 701-715.
[http://dx.doi.org/10.1038/s41556-020-0514-z] [PMID: 32424275]
[136]
Gombos, A. Selective oestrogen receptor degraders in breast cancer: A review and perspectives. Curr. Opin. Oncol., 2019, 31(5), 424-429.
[http://dx.doi.org/10.1097/CCO.0000000000000567] [PMID: 31335829]
[137]
Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241), 1376-1381.
[http://dx.doi.org/10.1126/science.aab1433] [PMID: 25999370]
[138]
Sun, X.; Wang, J.; Yao, X.; Zheng, W.; Mao, Y.; Lan, T.; Wang, L.; Sun, Y.; Zhang, X.; Zhao, Q.; Zhao, J.; Xiao, R-P.; Zhang, X.; Ji, G.; Rao, Y. A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov., 2019, 5(1), 10.
[http://dx.doi.org/10.1038/s41421-018-0079-1] [PMID: 30729032]
[139]
Lin, X.; Xiang, H.; Luo, G. Targeting estrogen receptor α for degradation with PROTACs: A promising approach to overcome endocrine resistance. Eur. J. Med. Chem., 2020, 206, 112689.
[http://dx.doi.org/10.1016/j.ejmech.2020.112689] [PMID: 32829249]
[140]
Gao, H.; Sun, X.; Rao, Y. PROTAC technology: Opportunities and challenges. ACS Med. Chem. Lett., 2020, 11(3), 237-240.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00597] [PMID: 32184950]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy