Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

A Review of Artificial Intelligence in Cerebrovascular Disease Imaging: Applications and Challenges

Author(s): Xi Chen, Yu Lei, Jiabin Su, Heng Yang, Wei Ni, Jinhua Yu*, Yuxiang Gu* and Ying Mao

Volume 20, Issue 7, 2022

Published on: 28 March, 2022

Page: [1359 - 1382] Pages: 24

DOI: 10.2174/1570159X19666211108141446

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: A variety of emerging medical imaging technologies based on artificial intelligence have been widely applied in many diseases, but they are still limitedly used in the cerebrovascular field even though the diseases can lead to catastrophic consequences.

Objective: This work aims to discuss the current challenges and future directions of artificial intelligence technology in cerebrovascular diseases through reviewing the existing literature related to applications in terms of computer-aided detection, prediction and treatment of cerebrovascular diseases.

Methods: Based on artificial intelligence applications in four representative cerebrovascular diseases including intracranial aneurysm, arteriovenous malformation, arteriosclerosis and moyamoya disease, this paper systematically reviews studies published between 2006 and 2021 in five databases: National Center for Biotechnology Information, Elsevier Science Direct, IEEE Xplore Digital Library, Web of Science and Springer Link. And three refinement steps were further conducted after identifying relevant literature from these databases.

Results: For the popular research topic, most of the included publications involved computer-aided detection and prediction of aneurysms, while studies about arteriovenous malformation, arteriosclerosis and moyamoya disease showed an upward trend in recent years. Both conventional machine learning and deep learning algorithms were utilized in these publications, but machine learning techniques accounted for a larger proportion.

Conclusion: Algorithms related to artificial intelligence, especially deep learning, are promising tools for medical imaging analysis and will enhance the performance of computer-aided detection, prediction and treatment of cerebrovascular diseases.

Keywords: Cerebrovascular diseases, artificial intelligence, machine learning, computer-aided detection, computer-aided prediction, computer-aided treatment decision.

Graphical Abstract
[1]
Jauch EC, Saver JL, Adams HP Jr, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44(3): 870-947.
[http://dx.doi.org/10.1161/STR.0b013e318284056a] [PMID: 23370205]
[2]
Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 2010; 121(7): e46-e215.
[PMID: 20019324]
[3]
Roy K, Chaudhury SS, Burman M, et al. A Comparative study of Lung Cancer detection using supervised neural network. 2019 International Conference on Opto-Electronics and Applied Optics. Kolkata, India. March 18-20, 2019; 1-5.
[http://dx.doi.org/10.1109/OPTRONIX.2019.8862326]
[4]
Vas M, Dessai A. Lung cancer detection system using lung CT image processing. 3rd International Conference on Computing, Commu-nication, Control and Automation. Pune, India. August 17-18, 2017; 1-5.
[http://dx.doi.org/10.1109/ICCUBEA.2017.8463851]
[5]
Moradi P, Jamzad M. Detecting lung cancer lesions in CT images using 3D convolutional neural networks. 4th International Conference on Pattern Recognition and Image Analysis. Tehran, Iran. March 06-07, 2019; 114-8.
[http://dx.doi.org/10.1109/PRIA.2019.8785971]
[6]
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH. Deep learning for identifying metastatic breast cancer 2016.
[7]
Lin H, Chen H, Dou Q, Wang L, Heng PA. ScanNet: A fast and dense scanning framework for metastastic breast cancer detection from whole-slide image. 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV, USA. March 12-15, 2018; 539-46.
[http://dx.doi.org/10.1109/WACV.2018.00065]
[8]
Bi WL, Hosny A, Schabath MB, et al. Artificial in-telligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin 2019; 69(2): 127-57.
[http://dx.doi.org/10.3322/caac.21552] [PMID: 30720861]
[9]
Shen W, Zhou M, Yang F, Yang C, Tian J. Multi-scale convolutional neural networks for lung nodule classification. 24th Interna-tional Conference on Information processing in medical imaging. June 28- July 3, 2015; 588-99.
[http://dx.doi.org/10.1007/978-3-319-19992-4_46]
[10]
Wang Q, Zheng Y, Yang G, Jin W, Chen X, Yin Y. Multiscale rotation-invariant convolutional neural networks for lung texture classification. IEEE J Biomed Health Inform 2018; 22(1): 184-95.
[http://dx.doi.org/10.1109/JBHI.2017.2685586] [PMID: 28333649]
[11]
Jiang H, Ma H, Qian W, Gao M, Li Y, Hongyang Jiang. He Ma; Wei Qian; Mengdi Gao; Yan Li, An automatic detection system of lung nodule based on multigroup patch-based deep learning network. IEEE J Biomed Health Inform 2018; 22(4): 1227-37.
[http://dx.doi.org/10.1109/JBHI.2017.2725903] [PMID: 28715341]
[12]
Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 2017; 7(1): 5467.
[http://dx.doi.org/10.1038/s41598-017-05848-2] [PMID: 28710497]
[13]
Yonekura A, Kawanaka H, Prasath VBS, Aronow BJ, Takase H. Improving the generalization of disease stage classification with deep CNN for glioma histopathological images. 2017 IEEE International Conference on Bioinformatics and Biomedicine. Kansas City, USA. November 13-16, 2017; 1222-6.
[http://dx.doi.org/10.1109/BIBM.2017.8217831]
[14]
González SR, Zemmoura I, Tauber C. Deep convolutional neural network to predict 1p19q co-deletion and IDH1 mutation status from MRI in low grade Gliomas. 10th International Conference on Pattern Recognition Systems. Tours, France. 2019.
[http://dx.doi.org/10.1049/cp.2019.0240]
[15]
Li Z, Wang Y, Yu J, et al. Low-grade glioma segmentation based on CNN with fully connected CRF. J Healthc Eng 2017; 2017, 9283480.
[http://dx.doi.org/10.1155/2017/9283480] [PMID: 29065666]
[16]
Mouridsen K, Thurner P, Zaharchuk G. Artificial intelligence applications in stroke. Stroke 2020; 51(8): 2573-9.
[http://dx.doi.org/10.1161/STROKEAHA.119.027479] [PMID: 32693750]
[17]
Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967; 13(1): 21-7.
[http://dx.doi.org/10.1109/TIT.1967.1053964]
[18]
Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen 1936; 7: 179-88.
[http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x]
[19]
Burges CJC. A tutorial on Support Vector Machines for pattern recognition. Data Min Knowl Discov 1998; 2(2): 121-67.
[http://dx.doi.org/10.1023/A:1009715923555]
[20]
Breiman L. Random forests. Mach Learn 2001; 45(1): 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[21]
Werbos PJ. Back propagation through time: what it does and how to do it. Proc IEEE 1990; 78(10): 1550-60.
[http://dx.doi.org/10.1109/5.58337]
[22]
Hartigan JA, Wong MA. Algorithm AS 136: A K-Means Clustering Algorithm. Appl Stat 1979; 28(1): 100-8.
[http://dx.doi.org/10.2307/2346830]
[23]
Bezdek J, Jm K, Krisnapuram R, Pal N. Fuzzy models and algorithms for pattern recognition and image processing. Mass.: Kluwer Academic Publishers 1999.
[http://dx.doi.org/10.1007/b106267]
[24]
Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998; 86(11): 2278-324.
[http://dx.doi.org/10.1109/5.726791]
[25]
Ghosal P, Nandanwar L, Kanchan S, Bhadra A, Nandi D. Brain tumor classification using ResNet-101 based squeeze and excitation deep neural network. 2019 Second International Conference on Advanced Computational and Communication Paradigms. Gangtok, India. February 25-28, 2019; 1-6.
[http://dx.doi.org/10.1109/ICACCP.2019.8882973]
[26]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany. October 5-9, 2015; 234-41.
[http://dx.doi.org/10.1007/978-3-319-24574-4_28]
[27]
Sak Hi, Senior A, Rao K, Beaufays Fo. Fast and accurate recurrent neural network acoustic models for speech recognition. 16th Annual Conference of the International-Speech-Communi-cation-Association. Dresden, Germany. September 6-10, 2015;
[28]
Adel H, Ngoc Thang V, Kraus F, Schlippe T, Li H, Schultz T. Recurrent neural netowrk language modeling for code switching con-versational speech. 2013 IEEE International Conference on Acoustics, Speech Speech and Signal Processing. Beijing, China. July 6-10, 2013; 8411-5.
[http://dx.doi.org/10.1109/ICASSP.2013.6639306]
[29]
Hochreiter S, Schmidhuber J. LSTM can solve hard long time lag problems. 10th Annual Conference on Neural Information Processing Systems. Denver, USA. December 2-5, 1997; 473-9.
[30]
A study of cross-validation and bootstrap for accuracy estimation and model selection. 14th International Joint Conference on Artificial Intelligence, 1995; Morgan Kaufmann: San Francisco, USA, 1995 1995; 1137-1143.
[31]
Bandos AI, Rockette HE, Gur D. Subject-centered free-response ROC (FROC) analysis. Med Phys 2013; 40(5), 051706.
[http://dx.doi.org/10.1118/1.4799843] [PMID: 23635254]
[32]
Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng 2000; 2: 315-37.
[http://dx.doi.org/10.1146/annurev.bioeng.2.1.315] [PMID: 11701515]
[33]
Uchiyama Y, Ando H, Yokoyama R, Hara T, Fujita H, Iwama T. Computer-aided diagnosis scheme for detection of unruptured intracranial aneurysms in MR angiography. 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China, January 17-18, 2006; pp. 3031- 3034.
[34]
Arimura H, Li Q, Korogi Y, et al. Computerized detection of intracranial aneurysms for three-dimensional MR angiography: feature extraction of small protrusions based on a shape-based difference image tech-nique. Med Phys 2006; 33(2): 394-401.
[http://dx.doi.org/10.1118/1.2163389] [PMID: 16532946]
[35]
Lauric A, Miller E, Frisken S, Malek AM. Automated detection of intracranial aneurysms based on parent vessel 3D analysis. Med Image Anal 2010; 14(2): 149-59.
[http://dx.doi.org/10.1016/j.media.2009.10.005] [PMID: 20004607]
[36]
Yang X, Blezek DJ, Cheng LTE, Ryan WJ, Kallmes DF, Erickson BJ. Computer-aided detection of intracranial aneurysms in MR angiography. J Digit Imaging 2011; 24(1): 86-95.
[http://dx.doi.org/10.1007/s10278-009-9254-0] [PMID: 19937083]
[37]
Macía I, Graña M, Maiora J, Paloc C, de Blas M. Detection of type II endoleaks in abdominal aortic aneurysms after endovascular repair. Comput Biol Med 2011; 41(10): 871-80.
[http://dx.doi.org/10.1016/j.compbiomed.2011.07.005] [PMID: 21855862]
[38]
Nakao T, Hanaoka S, Nomura Y, et al. Deep neural net-work-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging 2018; 47(4): 948-53.
[http://dx.doi.org/10.1002/jmri.25842] [PMID: 28836310]
[39]
Malik KM, Anjum SM, Soltanian-Zadeh H, Malik H, Malik GJIA. ISADAQ: A framework for intracranial saccular aneurysm detection and quantification using morphological analysis of cerebral angiograms. IEEE Access 2018; 6: 7970-86.
[http://dx.doi.org/10.1109/ACCESS.2018.2799307]
[40]
Rahmany I, Arfaoui B, Khlifa N, Megdiche H. Cerebral aneurysm computer-aided detection system by combing MSER, SURF and SIFT descriptors. 5th International Conference on Control, Decision and Information Technologies. Thessaloniki, Greece. April 10-13, 2018; 1122-7.
[http://dx.doi.org/10.1109/CoDIT.2018.8394937]
[41]
Chandra A, Mondal S. One novel algorithm for the detection of Cerebral Aneurysm using morphological filtering. 2014 International Conference on Communications and Signal Processing. Melmaruvathur, India. April 3-5, 2014; 137-41.
[42]
Sulayman N, Al-Mawaldi M, Kanafani Q. Semi-automatic detection and segmentation algorithm of saccular aneurysms in 2D cerebral DSA images. Egypt J Radiol Nucl Med 2016; 47(3): 859-65.
[http://dx.doi.org/10.1016/j.ejrnm.2016.03.016]
[43]
Otsu N. Threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern 1979; 9(1): 62-6.
[http://dx.doi.org/10.1109/TSMC.1979.4310076]
[44]
Kohout J, Chiarini A, Clapworthy GJ, Klajnšek G. Aneurysm identification by analysis of the blood-vessel skeleton. Comput Methods Programs Biomed 2013; 109(1): 32-47.
[http://dx.doi.org/10.1016/j.cmpb.2012.08.018] [PMID: 22989925]
[45]
Suniaga S, Werner R, Kemmling A, Groth M, Forkert ND. Computer-aided detection of aneurysms in 3D time-of-flight MRA da-taset. 3rd International Workshop on Machine Learning in Medical Imaging. Nice, France. 2012.
[http://dx.doi.org/10.1007/978-3-642-35428-1_8]
[46]
Jerman T, Pernus F, Likar B, Spiclin Z. Computer-aided detection and quantification of intracranial aneurysms. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany. October 5-9, 2015; 3-10.
[http://dx.doi.org/10.1007/978-3-319-24571-3_1]
[47]
Hentschke CM, Beuing O, Nickl R, Toennies KD. Automatic cerebral aneurysm detection in multimodal angiographic images. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference. Valencia, Spain. October 23-29, 2011; 3116-20.
[http://dx.doi.org/10.1109/NSSMIC.2011.6152566]
[48]
Hentschke CM, Tonnies KD, Beuing O, Nickl R. A new feature for automatic aneurysm detection. 9th IEEE International Symposium on Biomedical Imaging, Barcelona, Spain May 2-5, pp. 800-803.
[http://dx.doi.org/10.1109/ISBI.2012.6235669]
[49]
Hentschke CM, Beuing O, Paukisch H, Scherlach C, Skalej M, Tönnies KD. A system to detect cerebral aneurysms in multimodal-ity angiographic data sets. Med Phys 2014; 41(9), 091904.
[http://dx.doi.org/10.1118/1.4890775] [PMID: 25186391]
[50]
Arimura H, Li Q, Korogi Y, et al. CAD scheme for detection of intracranial aneurysms in MRA based on 3D analysis of vessel skeletons and enhanced aneurysms. Medical Imaging 2005 Conference, San Diego, USA February 15-17 pp. 967-974.
[51]
Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. 1st International Conference on Med-ical Image Computing and Computer-Assisted Intervention. Cambridge, MA., USA. October 11-13, 1998; 130-7.
[52]
Hanaoka S, Nomura Y, Nemoto M, et al. HoTPiG: A novel geometrical feature for vessel morphometry and its application to cerebral aneurysm detection 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany October 5-9, pp. 103-110.
[http://dx.doi.org/10.1007/978-3-319-24571-3_13]
[53]
Rahmany I, Khlifa N. Detection of intracranial aneurysm in angiographic images using fuzzy approaches. 1st International Image Processing, Applications and Systems Conference, Sfax, Tunisia Novmber 5-7
[http://dx.doi.org/10.1109/IPAS.2014.7043312]
[54]
Geng C, Xia W, Huang L, et al. Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network. Biomed Eng Online 2020; 19(1): 38.
[http://dx.doi.org/10.1186/s12938-020-00770-7] [PMID: 32471439]
[55]
Park A, Chute C, Rajpurkar P, et al. Deep learning-assisted di-agnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open 2019; 2(6), e195600.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.5600] [PMID: 31173130]
[56]
Sichtermann T, Faron A, Sijben R, Teichert N, Freiherr J, Wiesmann M. Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA. AJNR Am J Neuroradiol 2019; 40(1): 25-32.
[http://dx.doi.org/10.3174/ajnr.A5911] [PMID: 30573461]
[57]
Shahzad R, Pennig L, Goertz L, et al. Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning. Sci Rep 2020; 10(1): 21799.
[http://dx.doi.org/10.1038/s41598-020-78384-1] [PMID: 33311535]
[58]
Shi Z, Miao C, Schoepf UJ, et al. A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nat Commun 2020; 11(1): 6090.
[http://dx.doi.org/10.1038/s41467-020-19527-w] [PMID: 33257700]
[59]
Joo B, Ahn SS, Yoon PH, et al. A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance. Eur Radiol 2020; 30(11): 5785-93.
[http://dx.doi.org/10.1007/s00330-020-06966-8] [PMID: 32474633]
[60]
Dai XL, Huang LX, Qian Y, et al. Deep learning for automated cerebral aneu-rysm detection on computed tomography images. Int J CARS 2020; 15(4): 715-23.
[http://dx.doi.org/10.1007/s11548-020-02121-2] [PMID: 32056126]
[61]
Jerman T, Pernus F, Likar B, Spiclin Z. Aneurysm detection in 3D cerebral angiograms based on intra-vascular distance mapping and convolutional neural networks. 14th IEEE International Symposium on Biomedical Imaging. Melbourne, Australia. April 18-21, 2017; 612-5.
[http://dx.doi.org/10.1109/ISBI.2017.7950595]
[62]
Podgorsak AR, Rava RA, Shiraz Bhurwani MM, et al. Automatic radiomic feature extraction using deep learning for angiographic parametric imaging of intracranial aneurysms. J Neurointerv Surg 2020; 12(4): 417-21.
[http://dx.doi.org/10.1136/neurintsurg-2019-015214] [PMID: 31444288]
[63]
Rahmany I, Guetari R, Khlifa N. A fully automatic based deep learning approach for aneurysm detection in DSA images. 3rd IEEE International Conference on Image Processing, Applications and Systems. Sophia Antipolis, France. December 12-14, 2018; 303-7.
[http://dx.doi.org/10.1109/IPAS.2018.8708897]
[64]
Ueda D, Yamamoto A, Nishimori M, et al. Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology 2019; 290(1): 187-94.
[http://dx.doi.org/10.1148/radiol.2018180901] [PMID: 30351253]
[65]
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA June 27-30, 2016; pp. 2818-2826.
[http://dx.doi.org/10.1109/CVPR.2016.308]
[66]
He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. 29th IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA. June 27-30, 2016; 770-8.
[67]
Jin H, Geng J, Yin Y, et al. Fully automated intracra-nial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network. J Neurointerv Surg 2020; 12(10): 1023-7.
[http://dx.doi.org/10.1136/neurintsurg-2020-015824] [PMID: 32471827]
[68]
Duan HH, Huang YZ, Liu LX, Dai HM, Chen LY, Zhou LX. Automatic detection on intracranial aneurysm from digital subtrac-tion angiography with cascade convolutional neural networks. Biomed Eng Online 2019; 18(1): 110.
[http://dx.doi.org/10.1186/s12938-019-0726-2] [PMID: 31727057]
[69]
Stember JN, Chang P, Stember DM, et al. Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. J Digit Imaging 2019; 32(5): 808-15.
[http://dx.doi.org/10.1007/s10278-018-0162-z] [PMID: 30511281]
[70]
Zeng Y, Liu X, Xiao N, et al. Automatic diagnosis based on spatial information fusion feature for intra-cranial aneurysm. IEEE Trans Med Imaging 2020; 39(5): 1448-58.
[http://dx.doi.org/10.1109/TMI.2019.2951439] [PMID: 31689186]
[71]
Hahn S, Morris CS, Bertges DJ, Wshah S. Deep learning for recognition of endoleak after endovascular abdominal aortic aneurysm repair. 16th IEEE International Symposium on Biomedical Imaging. Venice, Italy. April 8-11, 2019; 759-63.
[http://dx.doi.org/10.1109/ISBI.2019.8759187]
[72]
Yang X, Xia D, Kin T, Igarashi T. IntrA: 3D intracranial aneurysm dataset for deep learning. 2020 IEEE Conference on Computer Vision and Pattern Recognition. June 14-19, 2020; 2653-63.
[73]
Ye H, Gao F, Yin Y, et al. Precise di-agnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur Radiol 2019; 29(11): 6191-201.
[http://dx.doi.org/10.1007/s00330-019-06163-2] [PMID: 31041565]
[74]
Danilov G, Kotik K, Negreeva A, et al. Classification of intracranial hemorrhage subtypes using deep learning on CT scans. Stud Health Technol Inform 2020; 272: 370-3.
[PMID: 32604679]
[75]
Cho J, Park KS, Karki M, et al. Improving sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models. J Digit Imaging 2019; 32(3): 450-61.
[http://dx.doi.org/10.1007/s10278-018-00172-1] [PMID: 30680471]
[76]
Lahmiri S, Boukadoum M, Ieva AD. Detrended fluctuation analysis of brain hemisphere magnetic resonnance images to detect cere-bral arteriovenous malformations. 2014 IEEE International Symposium on Circuits and Systems. Melbourne, Australia. June 1-5, 2014; 2409-12.
[http://dx.doi.org/10.1109/ISCAS.2014.6865658]
[77]
Lahmiri S, Boukadoum M, Di Ieva A. Fractal-Based Arteriovenous Malformations Detection in Brain Magnetic Resonance Images. 12th IEEE International New Circuits and Systems Conference. Trois-Rivieres. June 22-25, 2014; 21-4.
[http://dx.doi.org/10.1109/NEWCAS.2014.6933975]
[78]
Babin D, Spyrantis M, Pizurica A, Philips W. Skeleton calculation for automatic extraction of arteriovenous malformation in 3-D CTA images. 11th IEEE International Symposium on Biomedical Imaging. Beijing, China. April 29- May 2, 2014; 425-8.
[http://dx.doi.org/10.1109/ISBI.2014.6867899]
[79]
Babin D, Spyrantis M, Pizurica A, Philips W, Velicki L, Zlokolica V. Pixel profiling for extraction of arteriovenous malformation in 3-D CTA images. 56th ELMAR International Symposium. Zadar, Croatia. September 10-12, 2014; 183-6.
[http://dx.doi.org/10.1109/ELMAR.2014.6923346]
[80]
Lian YX, Wang YY, Yu JH, Guo Y, Chen L. Segmentation of Arteriovenous Malformations Nidus and Vessel in Digital Subtrac-tion Angiography Images Based on an Iterative Thresholding Method. 8th International Conference on Biomedical Engineering and In-formatics. Shenyang, China. October 14-16, 2015; 111-5.
[http://dx.doi.org/10.1109/BMEI.2015.7401483]
[81]
Peng SJ, Lee CC, Wu HM, et al. Fully automated tis-sue segmentation of the prescription isodose region delineated through the Gamma knife plan for cerebral arteriovenous malformation (AVM) using fuzzy C-means (FCM) clustering. Neuroimage Clin 2019; 21, 101608.
[http://dx.doi.org/10.1016/j.nicl.2018.11.018] [PMID: 30497981]
[82]
Lee CC, Yang HC, Lin CJ, et al. In-tervening nidal brain parenchyma and rsk of radiation-induced changes after radiosurgery for brain arteriovenous malformation: A study using an unsupervised machine learning algorithm. World Neurosurg 2019; 125: e132-8.
[http://dx.doi.org/10.1016/j.wneu.2018.12.220] [PMID: 30677586]
[83]
Wang TH, Lei Y, Tian SB, et al. Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery. Med Phys 2019; 46(7): 3133-41.
[http://dx.doi.org/10.1002/mp.13560] [PMID: 31050804]
[84]
Wardlaw JM, White PM. The detection and management of unruptured intracranial aneurysms. Brain 2000; 123(Pt 2): 205-21.
[http://dx.doi.org/10.1093/brain/123.2.205] [PMID: 10648430]
[85]
Juvela S. Treatment options of unruptured intracranial aneurysms. Stroke 2004; 35(2): 372-4.
[http://dx.doi.org/10.1161/01.STR.0000115299.02909.68] [PMID: 14757884]
[86]
Suarez JI, Tarr RW, Selman WRJS. Aneurysmal subarachnoid hemorrhage. N Engl J Med 2006; 354(4): 387-96.
[http://dx.doi.org/10.1056/NEJMra052732] [PMID: 16436770]
[87]
Morita A, Kirino T, Hashi K, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 2012; 366(26): 2474-82.
[http://dx.doi.org/10.1056/NEJMoa1113260] [PMID: 22738097]
[88]
Ujiie H, Tamano Y, Sasaki K, Hori T. Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 2001; 48(3): 495-502.
[http://dx.doi.org/10.1097/00006123-200103000-00007] [PMID: 11270538]
[89]
Kongable GL, Lanzino G, Germanson TP, et al. Gender-related differences in aneurysmal subarachnoid hemorrhage. J Neurosurg 1996; 84(1): 43-8.
[http://dx.doi.org/10.3171/jns.1996.84.1.0043] [PMID: 8613834]
[90]
Chen G, Lu M, Shi Z, et al. Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study. Eur Radiol 2020; 30(9): 5170-82.
[http://dx.doi.org/10.1007/s00330-020-06886-7] [PMID: 32350658]
[91]
Liu J, Chen Y, Lan L, et al. Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network. Eur Radiol 2018; 28(8): 3268-75.
[http://dx.doi.org/10.1007/s00330-017-5300-3] [PMID: 29476219]
[92]
Ou CB, Liu JH, Qian Y, et al. Rupture risk assessment for cerebral aneurysm using interpretable machine learning on multidimensional data. Front Neurol 2020; 11, 570181.
[http://dx.doi.org/10.3389/fneur.2020.570181] [PMID: 33424738]
[93]
He H, Bai Y, Garcia EA, Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China 2008; pp. 1322-1328.
[94]
de Jong GA, Aquarius R. Use of artificial neural networks to predict anterior communicating artery aneurysm rupture: possible method-ological considerations. Eur Radiol 2019; 29(5): 2724-6.
[http://dx.doi.org/10.1007/s00330-018-5794-3] [PMID: 30413952]
[95]
Tang B, He H. KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning. IEEE Congress on Evolution-ary Computation. Sendai, Japan. May 25-28 2015; 664-71.
[http://dx.doi.org/10.1109/CEC.2015.7256954]
[96]
Shi Z, Chen GZ, Mao L, et al. Machine Learning-Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study. AJNR Am J Neuroradiol 2021; 42(4): 648-54.
[http://dx.doi.org/10.3174/ajnr.A7034] [PMID: 33664115]
[97]
Lauric A, Miller EL, Baharoglu MI, Malek AM. Rupture status discrimination in intracranial aneurysms using the centroid-radii model. IEEE Trans Biomed Eng 2011; 58(10): 2895-903.
[http://dx.doi.org/10.1109/TBME.2011.2162410] [PMID: 21775251]
[98]
Niemann U, Berg P, Niemann A, et al. Rupture status classification of intracranial aneu-rysms using morphological parameters. 31st IEEE International Symposium on Computer-Based Medical Systems. Karlstad. June 18-21, 2018; 48-53.
[http://dx.doi.org/10.1109/CBMS.2018.00016]
[99]
Kim HC, Rhim JK, Ahn JH, et al. Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. J Clin Med 2019; 8(5), E683.
[http://dx.doi.org/10.3390/jcm8050683] [PMID: 31096607]
[100]
Liu Q, Jiang P, Jiang Y, et al. Prediction of aneurysm stability using a machine learning model based on PyRa-diomics-derived morphological features. Stroke 2019; 50(9): 2314-21.
[http://dx.doi.org/10.1161/STROKEAHA.119.025777] [PMID: 31288671]
[101]
Paliwal N, Jaiswal P, Tutino VM, et al. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg Focus 2018; 45(5), E7.
[http://dx.doi.org/10.3171/2018.8.FOCUS18332] [PMID: 30453461]
[102]
de Toledo P, Rios PM, Ledezma A, Sanchis A, Alen JF, Lagares A. Predicting the outcome of patients with subarachnoid hemor-rhage using machine learning techniques. IEEE Trans Inf Technol Biomed 2009; 13(5): 794-801.
[http://dx.doi.org/10.1109/TITB.2009.2020434] [PMID: 19369161]
[103]
Xia NZ, Chen J, Zhan CY, et al. Prediction of clinical outcome at discharge after rupture of anterior communicating artery aneurysm using the Random Forest Technique. Front Neurol 2020; 11, 538052.
[http://dx.doi.org/10.3389/fneur.2020.538052] [PMID: 33192969]
[104]
Hong JS, Lin CJ, Lin YH, et al. Machine learning application with quantitative digital subtraction angiography for detection of hemorrhagic brain arteriovenous malformations. IEEE Access 2020; 8: 204573-84.
[http://dx.doi.org/10.1109/ACCESS.2020.3036692]
[105]
Asadi H, Kok HK, Looby S, Brennan P, O’Hare A, Thornton J. Outcomes and complications after endovascular treatment of brain arteriovenous malformations: A prognostication attempt using artificial intelligence. World Neurosurg 2016; 96: 562-569.e1.
[http://dx.doi.org/10.1016/j.wneu.2016.09.086] [PMID: 27693769]
[106]
Oermann EK, Rubinsteyn A, Ding D, et al. Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malfor-mations. Sci Rep 2016; 6: 21161.
[http://dx.doi.org/10.1038/srep21161] [PMID: 26856372]
[107]
Zhou YJ, Xie XL, Hou ZG, Bian GB, Zhou XHFRR-NET. Fast recurrent residual networks for real-time catheter segmentation and tracking in endovascular aneurysm repair. 17th IEEE International Symposium on Biomedical Imaging. April 3-7, 2020; 961-4.
[http://dx.doi.org/10.1109/ISBI45749.2020.9098632]
[108]
Gao W, Zhang J. Estimation of arteriosclerosis based on fuzzy support vector machine. 1st International Symposium on Computer Net-work and Multimedia Technology. Wuhan, China. January 18-20, 2009; 1-4.
[http://dx.doi.org/10.1109/CNMT.2009.5374599]
[109]
Terrada O, Cherradi B, Raihani A, Bouattane O. Atherosclerosis disease prediction using supervised machine learning techniques. 1st International Conference on Innovative Research in Applied Science, Engineering and Technology. Meknes, Morocco. April 16-19, 2020; 1-5.
[110]
Ding L, Zhou R, Liu G. Study on the classification algorithm of degree of arteriosclerosis based on fuzzy pattern recognition. Interna-tional Conference on Image Processing and Pattern Recognition in Industrial Engineering. Xian, China. August 7-8, 2010;
[http://dx.doi.org/10.1117/12.867445]
[111]
Zhang Y, Pan J. Arteriosclerosis diagnosis based on support vector machine. 5th International Conference on Information Science and Control Engineering. Zhengzhou, China. July 20-22, 2018; 138-42.
[112]
Kim T, Heo J, Jang D-K, et al. Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 2019; 40: 636-42.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.043] [PMID: 30598372]
[113]
Akiyama Y, Mikami T, Mikuni N. Deep learning-based approach for the diagnosis of moyamoya disease. J Stroke Cerebrovasc Dis 2020; 29(12), 105322.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105322] [PMID: 32992181]
[114]
Hu T, Lei Y, Su J, et al. Learning spatiotemporal features of DSA using 3D CNN and BiConvGRU for moyamoya disease detection. Int J Neurosci 2021; 1-14.
[http://dx.doi.org/10.1080/00207454.2021.1929214] [PMID: 34042552]
[115]
Lei Y, Zhang X, Ni W, et al. Recognition of moyamoya disease and its hemorrhagic risk using deep learning algorithms: sourced from retrospective studies. Neural Regen Res 2021; 16(5): 830-5.
[http://dx.doi.org/10.4103/1673-5374.297085] [PMID: 33229716]
[116]
Lei Y, Chen X, Su JB, et al. Recognition of cognitive impair-ment in adult moyamoya disease: A classifier based on high-order resting-state functional connectivity network. Front Neural Circuits 2020; 14, 603208.
[http://dx.doi.org/10.3389/fncir.2020.603208] [PMID: 33408614]
[117]
Isgum I, Rutten A, Prokop M, van Ginneken B. Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Med Phys 2007; 34(4): 1450-61.
[http://dx.doi.org/10.1118/1.2710548] [PMID: 17500476]
[118]
Isgum I, Prokop M, Niemeijer M, Viergever MA, van Ginneken B. Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging 2012; 31(12): 2322-34.
[http://dx.doi.org/10.1109/TMI.2012.2216889] [PMID: 22961297]
[119]
Martin SS, van Assen M, Rapaka S, et al. Evaluation of a deep learning-based automated CT coronary artery calcium scoring algo-rithm. JACC Cardiovasc Imaging 2020; 13(2 Pt 1): 524-6.
[http://dx.doi.org/10.1016/j.jcmg.2019.09.015] [PMID: 31734200]
[120]
Wolterink JM, Leiner T, Takx RAP, Viergever MA, Isgum I. Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans Med Imaging 2015; 34(9): 1867-78.
[http://dx.doi.org/10.1109/TMI.2015.2412651] [PMID: 25794387]
[121]
Lessmann N, Isgum I, Setio AAA, et al. Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. Medical Imaging 2016: Computer-Aided Diagnosis, San Diego, United States February 28-March 2016.
[122]
Lessmann N, van Ginneken B, Zreik M, et al. Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging 2018; 37(2): 615-25.
[http://dx.doi.org/10.1109/TMI.2017.2769839] [PMID: 29408789]
[123]
Li YC, Shen TY, Chen CC, Chang WT, Lee PY, Huang CC. Automatic detection of atherosclerotic plaque and calcification from intravascular ultrasound images by using deep convolutional neural networks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2021.
[124]
Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 2016; 34: 123-36.
[http://dx.doi.org/10.1016/j.media.2016.04.004] [PMID: 27138584]
[125]
Zhang N, Yang G, Zhang W, et al. Fully automatic framework for comprehensive coronary artery calcium scores analysis on non-contrast cardiac-gated CT scan: Total and vessel-specific quantifications. Eur J Radiol 2021; 134, 109420.
[http://dx.doi.org/10.1016/j.ejrad.2020.109420] [PMID: 33302029]
[126]
Kelm BM, Mittal S, Zheng Y, et al. Detection, grading and classification of coronary stenoses in computed tomography angiography. 14th International Conference on Medical Image Compu-ting and Computer-Assisted Intervention. Toronto, Canada. September 18-22, 2011; 25.
[http://dx.doi.org/10.1007/978-3-642-23626-6_4]
[127]
Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Isgum I. A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 2019; 38(7): 1588-98.
[http://dx.doi.org/10.1109/TMI.2018.2883807] [PMID: 30507498]
[128]
Wu W, Zhang J, Xie H, Zhao Y, Zhang S, Gu L. Automatic detection of coronary artery stenosis by convolutional neural network with temporal constraint. Comput Biol Med 2020; 118, 103657.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103657] [PMID: 32174325]
[129]
Denzinger F, Wels M, Ravikumar N, et al. Coronary artery plaque characterization from CCTA scans using deep learning and radiomics. 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen, China. October 13-17, 2019; 593-601.
[http://dx.doi.org/10.1007/978-3-030-32251-9_65]
[130]
Gessert N, Lutz M, Heyder M, et al. Automatic plaque detection in IVOCT pull-backs using convolutional neural networks. IEEE Trans Med Imaging 2019; 38(2): 426-34.
[http://dx.doi.org/10.1109/TMI.2018.2865659] [PMID: 30130180]
[131]
Oliveira DAB, Macedo MMG, Nicz P, Campos C, Lemos P, Gutierrez MA. Coronary calcification identification in Optical Coherence Tomography using convolutional neural networks. SPIE Conference on Medical Imaging - Biomedical Applications in Molecular, Structural, and Functional Imaging, Houston, USA February 11-13, 2018.
[http://dx.doi.org/10.1117/12.2293753]
[132]
Arsanjani R, Xu Y, Dey D, et al. Im-proved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol 2013; 20(4): 553-62.
[http://dx.doi.org/10.1007/s12350-013-9706-2] [PMID: 23703378]
[133]
Arsanjani R, Xu Y, Hayes SW, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med 2013; 54(2): 221-8.
[http://dx.doi.org/10.2967/jnumed.112.108969] [PMID: 23315665]
[134]
Olender ML, Athanasiou LS, Michalis LK, Fotiadis DI, Edelman ER. A domain enriched deep learning approach to classify ath-erosclerosis using intravascular ultrasound imaging. IEEE J Sel Top Signal Process 2020; 14(6): 1210-20.
[http://dx.doi.org/10.1109/JSTSP.2020.3002385] [PMID: 33520048]
[135]
Shen H, Zhang W, Wang H, Ding G, Xie J. NDDR-LCS: A multi-task learning method for classification of carotid plaques. 2020 IEEE International Conference on Image Processing. Abu Dhabi, United Arab Emirates. October 25-28, 2020; 2461-5.
[http://dx.doi.org/10.1109/ICIP40778.2020.9190690]
[136]
Jiang M, Spence JD, Chiu B. Segmentation of 3D ultrasound carotid vessel wall using U-Net and segmentation average network. 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, Canada July 20-24, 2020; pp. 2043-2046.
[137]
Tsakanikas VD, Siogkas PK, Mantzaris MD, et al. A deep learning oriented method for automated 3D reconstruction of carotid arterial trees from MR imaging. 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, Canada July 20-24, 2020; pp. 2408-2411.
[138]
Zheng Y, Loziczonek M, Georgescu B, Zhou SK, Vega-Higuera F, Comaniciu D. Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes. Conference on Medical Imaging 2011 - Image Processing, Lake Buena Vista, FL, USA February 14-16, 2011.
[http://dx.doi.org/10.1117/12.877233]
[139]
Itu L, Rapaka S, Passerini T, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 2016; 121(1): 42-52.
[http://dx.doi.org/10.1152/japplphysiol.00752.2015] [PMID: 27079692]
[140]
Coenen A, Kim Y-H, Kruk M, et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve result from the MACHINE consortium. Circ Cardiovasc Imaging 2018; 11(6), e007217.
[http://dx.doi.org/10.1161/CIRCIMAGING.117.007217] [PMID: 29914866]
[141]
Zreik M, van Hamersvelt RW, Khalili N, et al. Deep learning analysis of coronary arteries in cardiac CT angiography for detection of patients requiring invasive coronary angiography. IEEE Trans Med Imaging 2020; 39(5): 1545-57.
[http://dx.doi.org/10.1109/TMI.2019.2953054] [PMID: 31725371]
[142]
Dey D, Gaur S, Ovrehus KA, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angi-ography using machine learning: a multicentre study. Eur Radiol 2018; 28(6): 2655-64.
[http://dx.doi.org/10.1007/s00330-017-5223-z] [PMID: 29352380]
[143]
Yang S, Koo B-K, Hoshino M, et al. CT angiographic and plaque predictors of functionally significant coronary disease and outcome using machine learning. JACC Cardiovasc Imaging 2021; 14(3): 629-41.
[http://dx.doi.org/10.1016/j.jcmg.2020.08.025] [PMID: 33248965]
[144]
Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT a multicenter study. JACC Cardiovasc Imaging 2018; 11(11): 1654-63.
[http://dx.doi.org/10.1016/j.jcmg.2018.01.020] [PMID: 29550305]
[145]
Islam MDS, Umran HM, Umran SM, Karim M. Intelligent Healthcare Platform: Cardiovascular Disease Risk Factors Prediction Using Attention Module Based LSTM. 2nd International Conference on Artificial Intelligence and Big Data. Chengdu, China. May 25-28, 2019; 167-75.
[http://dx.doi.org/10.1109/ICAIBD.2019.8836998]
[146]
Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in pa-tients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 2017; 38(7): 500-7.
[PMID: 27252451]
[147]
Commandeur F, Slomka PJ, Goeller M, et al. Machine learning to predict the long-term risk of myocardial in-farction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res 2020; 116(14): 2216-25.
[http://dx.doi.org/10.1093/cvr/cvz321] [PMID: 31853543]
[148]
Lee J, Kam HJ, Kim H-Y, et al. Prediction of 4-year risk for Coronary Artery Calcification using Ensemble-based Classification. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan July 3-7. 2013; pp. 3210-3.
[http://dx.doi.org/10.1109/EMBC.2013.6610224]
[149]
Arsanjani R, Dey D, Khachatryan T, et al. Predic-tion of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol 2015; 22(5): 877-84.
[http://dx.doi.org/10.1007/s12350-014-0027-x] [PMID: 25480110]
[150]
Lorch B, Vaillant G, Baumgartner C, Bai W, Rueckert D, Maier A. Automated detection of motion artefacts in MR imaging using decision forests. J Med Eng 2017; 2017, 4501647.
[http://dx.doi.org/10.1155/2017/4501647] [PMID: 28695126]
[151]
Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA. Real-time cardiovascular MR with spatio-temporal artifact suppres-sion using deep learning-proof of concept in congenital heart disease. Magn Reson Med 2019; 81(2): 1143-56.
[http://dx.doi.org/10.1002/mrm.27480] [PMID: 30194880]
[152]
van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017; 77(21): e104-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0339] [PMID: 29092951]
[153]
Narang S, Lehrer M, Yang D, Lee J, Rao A. Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res 2016; 5(4): 383-97.
[http://dx.doi.org/10.21037/tcr.2016.06.31]
[154]
Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 2009; 45(1)(Suppl.): S199-209.
[http://dx.doi.org/10.1016/j.neuroimage.2008.11.007] [PMID: 19070668]
[155]
Franke K, Ziegler G, Klöppel S, Gaser C, Alzheimers Dis Neuroimaging I. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 2010; 50(3): 883-92.
[http://dx.doi.org/10.1016/j.neuroimage.2010.01.005] [PMID: 20070949]
[156]
Frost C, Kallis C, Chu C, et al. Reply: A plea for con-fidence intervals and consideration of generalizability in diagnostic studies. Brain 2009; 132(Pt 4), e103.
[PMID: 19382289]
[157]
Lin M, Chen Q, Yan S. Network In Network. 2014 International Conference on Learning Representations. Banff, Canada. 2013.
[158]
Zhang Y, Yang Q. A Survey on Multi-Task Learning 2017.https://arxiv.org/pdf/1707.08114.pdf
[159]
Chaddad A, Desrosiers C, Abdulkarim B, Niazi T. Predicting the gene status and survival outcome of lower grade glioma patients with multimodal MRI features. IEEE Access 2019; 7: 75976-84.
[http://dx.doi.org/10.1109/ACCESS.2019.2920396]
[160]
Peng Y, Bi L, Guo Y, Feng D, Fulham M, Kim J. Deep multi-modality collaborative learning for distant metastases predication in PET-CT soft-tissue sarcoma studies. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin July 23-27 2019; 3685-8.
[http://dx.doi.org/10.1109/EMBC.2019.8857666]
[161]
Liu S, Liu S, Cai W, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng 2015; 62(4): 1132-40.
[http://dx.doi.org/10.1109/TBME.2014.2372011] [PMID: 25423647]
[162]
Calhoun VD, Sui J. Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness. Biol Psychiatry Cogn Neurosci Neuroimaging 2016; 1(3): 230-44.
[http://dx.doi.org/10.1016/j.bpsc.2015.12.005] [PMID: 27347565]
[163]
Yamada I, Suzuki S, Matsushima Y. Moyamoya disease: diagnostic accuracy of MRI. Neuroradiology 1995; 37(5): 356-61.
[http://dx.doi.org/10.1007/BF00588011] [PMID: 7477833]
[164]
Harada A, Fujii Y, Yoneoka Y, Takeuchi S, Tanaka R, Nakada T. High-field magnetic resonance imaging in patients with mo-yamoya disease. J Neurosurg 2001; 94(2): 233-7.
[http://dx.doi.org/10.3171/jns.2001.94.2.0233] [PMID: 11213959]
[165]
Ogawa A, Yoshimoto T, Suzuki J, Sakurai Y. Cerebral blood flow in moyamoya disease. Part 1: Correlation with age and regional distribution. Acta Neurochir (Wien) 1990; 105(1-2): 30-4.
[http://dx.doi.org/10.1007/BF01664854] [PMID: 2239376]
[166]
Kuroda S, Houkin K, Kamiyama H, Abe H, Mitsumori K. Regional cerebral hemodynamics in childhood moyamoya disease. Childs Nerv Syst 1995; 11(10): 584-90.
[http://dx.doi.org/10.1007/BF00300997] [PMID: 8556725]
[167]
Galvin R, Geraghty C, Motterlini N, Dimitrov BD, Fahey T. Prognostic value of the ABCD² clinical prediction rule: a systematic review and meta-analysis. Fam Pract 2011; 28(4): 366-76.
[http://dx.doi.org/10.1093/fampra/cmr008] [PMID: 21486940]
[168]
Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 2011; 42(1): 144-52.
[http://dx.doi.org/10.1161/STROKEAHA.110.592923] [PMID: 21106956]
[169]
Gao Y, Liu Y, Wang Y, Shi Z, Yu J. A universal intensity standardization method based on a many-to-one weak-paired cycle genera-tive adversarial network for magnetic resonance images. IEEE Trans Med Imaging 2019; 38(9): 2059-69.
[http://dx.doi.org/10.1109/TMI.2019.2894692] [PMID: 30676951]
[170]
Gu J, Li Z, Wang Y, Yang H, Qiao Z, Yu J. Deep generative adversarial networks for thin-section infant image reconstruction. IEEE Access 2019; 7: 68290-304.
[http://dx.doi.org/10.1109/ACCESS.2019.2918926]
[171]
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019; 25(1): 24-9.
[http://dx.doi.org/10.1038/s41591-018-0316-z] [PMID: 30617335]
[172]
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA. June 27-30, 2016; 2921-9.
[173]
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradi-ent-based localization. 2017 IEEE International Conference on Computer Vision. Venice, Italy. October 22-29, 2017; 618-26.
[http://dx.doi.org/10.1109/ICCV.2017.74]
[174]
Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. 13th European Conference on Computer Vision. Zurich, Switzerland. September 6-12, 2014; 818-33.
[175]
Broen MPG, Smits M, Wijnenga MMJ, et al. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro-oncol 2018; 20(10): 1393-9.
[http://dx.doi.org/10.1093/neuonc/noy048] [PMID: 29590424]
[176]
Banerjee S, Mitra S, Shankar BU, Hayashi Y. A novel GBM saliency detection model using multi-channel MRI. PLoS One 2016; 11(1), e0146388.
[http://dx.doi.org/10.1371/journal.pone.0146388] [PMID: 26752735]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy