Research Article

硫普罗宁和杂环巯基四唑化合物的独特单体非均相双配位一价金配合物的细胞毒活性

卷 29, 期 22, 2022

发表于: 11 January, 2022

页: [3973 - 3982] 页: 10

弟呕挨: 10.2174/0929867328666211018094206

价格: $65

conference banner
摘要

背景:NF-κB在癌症的恶性转化和转移等情况下起重要作用,抑制这种作用可能是癌症治疗策略之一。金制剂如金诺芬具有间接的NF-κB抑制作用。 目的:合成一种具有不同物理性质和化学结构的新型金配合物[硫普罗宁一价金-5-巯基-1-甲基四唑,简称TPN-Au(I)-MM4],并评价其对人THP1细胞的细胞毒活性和辐射增敏作用。 方法:用台盼蓝染料排除法计数活细胞数。通过FITC标记膜联蛋白V+和PI染色进行细胞死亡评估。为了研究TPN Au(I)-MM4的辐射增敏效应,在X射线照射前1小时将该化合物[10或25μM]添加到培养基中。 结果:在用25μM TPN-Au(I)-MM4处理72小时的细胞中,观察到THP1细胞的增殖减少[对照组和25μM处理组中活细胞的相对值分别约为6.8和4.2]。在25μM化合物治疗和X射线照射的组合中,与单独照射的情况相比,观察到在2 Gy照射下增加了约3.0倍,在4 Gy照射下增加了约1.4倍。 结论:TPN-Au(I)-MM4通过诱导细胞死亡而减少THP1细胞的增殖,TPN-Au(I)-MM4与X射线联合应用对THP1细胞具有有效的细胞毒性。

关键词: 金配合物,tpn-au[I]-mm4,辐射致敏效应,人类 thp1 细胞,抑制增殖,诱导细胞死亡

« Previous
[1]
Kitamura, H.; Onodera, Y.; Murakami, S.; Suzuki, T.; Motohashi, H. IL-11 contribution to tumorigenesis in an Kitamura H, Onodera Y, Murakami S, Suzuki T and NRF-2 addition cancer model. Oncogene, 2017, 36, 6315-6324.
[http://dx.doi.org/10.1038/onc.2017.236]
[2]
Diehn, M.; Cho, R.W.; Lobo, N.A.; Kalisky, T.; Dorie, M.J.; Kulp, A.N.; Qian, D.; Lam, J.S.; Ailles, L.E.; Wong, M.; Joshua, B.; Kaplan, M.J.; Wapnir, I.; Dirbas, F.M.; Somlo, G.; Garberoglio, C.; Paz, B.; Shen, J.; Lau, S.K.; Quake, S.R.; Brown, J.M.; Weissman, I.L.; Clarke, M.F. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 2009, 458(7239), 780-783.
[http://dx.doi.org/10.1038/nature07733] [PMID: 19194462]
[3]
Yin, M.J.; Yamamoto, Y.; Gaynor, R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature, 1998, 396(6706), 77-80.
[http://dx.doi.org/10.1038/23948] [PMID: 9817203]
[4]
Auphan, N.; DiDonato, J.A.; Rosette, C.; Helmberg, A.; Karin, M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science, 1995, 270(5234), 286-290.
[http://dx.doi.org/10.1126/science.270.5234.286] [PMID: 7569976]
[5]
Meyer, S.; Kohler, N.G.; Joly, A. Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-kappaB activation. FEBS Lett., 1997, 413(2), 354-358.
[http://dx.doi.org/10.1016/S0014-5793(97)00930-7] [PMID: 9280312]
[6]
Angelucci, F.; Sayed, A.A.; Williams, D.L.; Boumis, G.; Brunori, M.; Dimastrogiovanni, D.; Miele, A.E.; Pauly, F.; Bellelli, A. Inhibition of Schistosoma mansoni thioredoxin-glutathione reductase by auranofin: structural and kinetic aspects. J. Biol. Chem., 2009, 284(42), 28977-28985.
[http://dx.doi.org/10.1074/jbc.M109.020701] [PMID: 19710012]
[7]
Jeon, K.I.; Jeong, J.Y.; Jue, D.M. Thiol-reactive metal compounds inhibit NF-kappa B activation by blocking I kappa B kinase. J. Immunol., 2000, 164(11), 5981-5989.
[http://dx.doi.org/10.4049/jimmunol.164.11.5981] [PMID: 10820281]
[8]
Bhatia, M.; McGrath, K.L.; Trapani, G.D. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol., 2016, 8, 68-78.
[http://dx.doi.org/10.1016/j.redox.2015.12.004]
[9]
Kobayashi, Y.; Cordonier, C.E.J.; Noda, Y.; Nagase, F.; Enomoto, J.; Kageyama, T.; Honma, H.; Maruo, S.; Fukuda, J. Tailored cell sheet engineering using microstereolithography and electrochemical cell transfer. Sci. Rep., 2019, 9(1), 10415.
[http://dx.doi.org/10.1038/s41598-019-46801-9] [PMID: 31320678]
[10]
Miura, S.; Nakao, N.; Hanzawa, H.; Matsuo, Y.; Saku, K.; Karnik, S.S. Reassessment of the unique mode of binding between angiotensin II type 1 receptor and their blockers. PLoS One, 2013, 8(11), e79914.
[http://dx.doi.org/10.1371/journal.pone.0079914] [PMID: 24260317]
[11]
Praveen, C.; Dupeux, A.; Michelet, V. Catalytic gold chemistry: from simple salts to complexes for regioselective C-H bond functionalization. Chemistry, 2021, 27(41), 10495-10532.
[http://dx.doi.org/10.1002/chem.202100785] [PMID: 33904614]
[12]
Praveen, C. Cycloisomerization of π-coupled heteroatom nucleophiles by gold catalysis: En route to regiochemically defined heterocycles. Chem. Rec., 2021, 21(7), 1697-1737.
[http://dx.doi.org/10.1002/tcr.202100105] [PMID: 34061426]
[13]
Marullo, R.; Werner, E.; Degtyareva, N.; Moore, B.; Altavilla, G.; Ramalingam, S.S.; Doetsch, P.W. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One, 2013, 8(11), e81162.
[http://dx.doi.org/10.1371/journal.pone.0081162] [PMID: 24260552]
[14]
Santandreu, FM; Valle, A; Oliver, J; Roca, P Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell Physiol. Biochem., 2011, 28, 219-228.
[http://dx.doi.org/10.1159/000331733]
[15]
Yang, E.S.; Choi, M.J.; Kim, J.H.; Choi, K.S.; Kwon, T.K. Withaferin A enhances radiation-induced apoptosis in CaKi cells through induction of reactive oxygen species, Bcl-2 downregulations and Akt inhibition. Chem. Biol. Interact., 2011, 190, 9-15.
[16]
Cho, H.J.; Ahn, K.C.; Choi, J.Y.; Hwang, S.G.; Kim, W.J.; Um, H.D.; Park, J.K. Luteolin acts as a radiosensitizer in non‑small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade. Int. J. Oncol., 2015, 46(3), 1149-1158.
[http://dx.doi.org/10.3892/ijo.2015.2831] [PMID: 25586525]
[17]
Park, M.T.; Kim, M.J.; Kang, Y.H.; Choi, S.Y.; Lee, J.H.; Choi, J.A.; Kang, C.M.; Cho, C.K.; Kang, S.; Bae, S.; Lee, Y.S.; Chung, H.Y.; Lee, S.J. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Blood, 2005, 105(4), 1724-1733.
[http://dx.doi.org/10.1182/blood-2004-07-2938] [PMID: 15486061]
[18]
Endo, H.; Tashiro, K.; Ma, H. Direct gold plating selectively on UV modified polymer film using tiopronin-gold. J. Electrochem. Soc., 2015, 162, D193-D8.
[http://dx.doi.org/10.1149/2.0441506jes]
[19]
Naik, P.; Murumkar, P.; Giridhar, R.; Yadav, M.R. Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists--a perspective. Bioorg. Med. Chem., 2010, 18(24), 8418-8456.
[http://dx.doi.org/10.1016/j.bmc.2010.10.043] [PMID: 21071232]
[20]
Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. Synthesis and angiotensin II receptor antagonistic activities of benzimidazole derivatives bearing acidic heterocycles as novel tetrazole bioisosteres. J. Med. Chem., 1996, 39(26), 5228-5235.
[http://dx.doi.org/10.1021/jm960547h] [PMID: 8978851]
[21]
Vyas, V.K.; Ghate, M. Substituted benzimidazole derivatives as angiotensin II-AT1 receptor antagonist: a review. Mini Rev. Med. Chem., 2010, 10(14), 1366-1384.
[http://dx.doi.org/10.2174/138955710793564151] [PMID: 20937029]
[22]
Goto, K.; Oda, M.; Saitoh, H.; Nishida, M.; Takada, M. Effect of side chains including the N-methyl-tetrazole-thiol group of beta-lactam antibiotics on transport in cultured kidney epithelial cells LLC-PK1. Biol. Pharm. Bull., 1998, 21(10), 1113-1116.
[http://dx.doi.org/10.1248/bpb.21.1113] [PMID: 9821822]
[23]
Zou, Y.; Liu, L.; Liu, J.; Liu, G. Bioisosteres in drug discovery: focus on tetrazole. Future Med. Chem., 2020, 12(2), 91-93.
[http://dx.doi.org/10.4155/fmc-2019-0288] [PMID: 31762337]
[24]
Barsanti, P.A.; Wang, W.; Ni, Z.J.; Duhl, D.; Brammeier, N.; Martin, E.; Bussiere, D.; Walter, A.O. The discovery of tetrahydro-beta-carbolines as inhibitors of the kinesin Eg5. Bioorg. Med. Chem. Lett., 2010, 20(1), 157-160.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.012] [PMID: 19945875]
[25]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Aghazadeh Tabrizi, M.; Brancale, A.; Fu, X.H.; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem., 2012, 55(1), 475-488.
[http://dx.doi.org/10.1021/jm2013979] [PMID: 22136312]
[26]
Shaaban, S.; Negm, A.; Ashmawy, A.M.; Ahmed, D.M.; Wessjohann, L.A. Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma. Eur. J. Med. Chem., 2016, 122, 55-71.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.005] [PMID: 27343853]
[27]
Yoshino, H.; Konno, H.; Ogura, K.; Sato, Y.; Kashiwakura, I. Relationship between the regulation of caspase-8-mediated apoptosis and radioresistance in Human THP-1-derived macrophages. Int. J. Mol. Sci., 2018, 19(10), 3154-3170.
[http://dx.doi.org/10.3390/ijms19103154] [PMID: 30322167]
[28]
Yoshino, H.; Kiminarita, T.; Matsushita, Y.; Kashiwakura, I. Response of the Nrf2 protection system in human monocytic cells after ionising irradiation. Radiat. Prot. Dosimetry, 2012, 152(1-3), 104-108.
[http://dx.doi.org/10.1093/rpd/ncs201] [PMID: 22940790]
[29]
Sun, C.; Wang, Z.; Liu, Y.; Liu, Y.; Li, H.; Di, C.; Wu, Z.; Gan, L.; Zhang, H. Carbon ion beams induce hepatoma cell death by NADPH oxidase-mediated mitochondrial damage. J. Cell. Physiol., 2014, 229(1), 100-107.
[http://dx.doi.org/10.1002/jcp.24424] [PMID: 23804302]
[30]
Weyemi, U.; Redon, C.E.; Aziz, T.; Choudhuri, R.; Maeda, D.; Parekh, P.R.; Bonner, M.Y.; Arbiser, J.L.; Bonner, W.M. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat. Res., 2015, 183(3), 262-270.
[http://dx.doi.org/10.1667/RR13799.1] [PMID: 25706776]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy