Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Mini-Review Article

Role of the Osteochondral Unit in the Pathogenesis of Osteoarthritis: Focus on the Potential Use of Clodronate

Author(s): Luigi Molfetta, Andrea Casabella, Sergio Rosini, Gianantonio Saviola* and Augusto Palermo

Volume 18, Issue 1, 2022

Published on: 05 October, 2021

Page: [2 - 11] Pages: 10

DOI: 10.2174/1573397117666211006094117

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Osteoarthritis (OA) is a chronic disease characterized by inflammation and progressive deterioration of the joint. The etiology of OA includes genetic, phlogistic, dismetabolic and mechanical factors. Historically, cartilage was considered the target of the disease and therapy was aimed at protecting and lubricating the articular cartilage. The osteochondral unit is composed of articular cartilage, calcified cartilage, and subchondral and trabecular bone, which work synergistically to support the functional loading of the joint. Numerous studies today show that OA involves the osteochondral unit, with the participation therefore of the bone in the starting and progression of the disease, which is associated with chondropathy. Cytokines involved in the process leading to cartilage damage are also mediators of subchondral bone edema. Therefore, OA therapy must be based on the use of painkillers and bisphosphonates for both the control of osteometabolic damage and its analgesic activity. Monitoring of the disease of the osteochondral unit must be extensive, since bone marrow edema can be considered as a marker of the evolution of OA. In the present review, we discuss some of the pathogenetic mechanisms associated with osteoarthritis, with a particular focus on the osteochondral unit and the use of clodronate.

Keywords: Osteoarthritis, osteochondral unit, bone marrow edema, joint prosthesis, bisphosphonates, clodronate, rehabilitation.

[1]
Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008; 58(1): 26-35.
[http://dx.doi.org/10.1002/art.23176] [PMID: 18163497]
[2]
Murphy L, Schwartz TA, Helmick CG, et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 2008; 59: 1207-13.
[http://dx.doi.org/10.1002/art.24021]
[3]
Altman RD. The syndrome of osteoarthritis. J Rheumatol 1997; 24(4): 766-7.
[PMID: 9101515]
[4]
Hochberg MC, Altman RD, April KT, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken) 2012; 64(4): 465-74.
[http://dx.doi.org/10.1002/acr.21596] [PMID: 22563589]
[5]
Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 2008; 16(2): 137-62.
[http://dx.doi.org/10.1016/j.joca.2007.12.013] [PMID: 18279766]
[6]
McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 2014; 22(3): 363-88.
[http://dx.doi.org/10.1016/j.joca.2014.01.003] [PMID: 24462672]
[7]
Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol 2020; 72(2): 220-33.
[http://dx.doi.org/10.1002/art.41142] [PMID: 31908163]
[8]
Qvist P, Bay-Jensen A-C, Christiansen C, Dam EB, Pastoureau P, Karsdal MA. The disease modifying osteoarthritis drug (DMOAD): Is it in the horizon? Pharmacol Res 2008; 58(1): 1-7.
[http://dx.doi.org/10.1016/j.phrs.2008.06.001] [PMID: 18590824]
[9]
Ghouri A, Conaghan PG. Update on novel pharmacological therapies for osteoarthritis. Ther Adv Musculoskelet Dis 2019; 11: X19864492.
[http://dx.doi.org/10.1177/1759720X19864492] [PMID: 31384314]
[10]
Farr J, Gomoll AH, Eds. Cartilage Restoration: Practical Clinical Applications. New York: Springer-Verlag 2014.
[http://dx.doi.org/10.1007/978-1-4614-0427-9]
[11]
Smith MRW, Kawcak CE, McIlwraith CW. Science in brief: Report on the Havemeyer Foundation workshop on subchondral bone problems in the equine athlete. Equine Vet J 2016; 48(1): 6-8.
[http://dx.doi.org/10.1111/evj.12518] [PMID: 26663405]
[12]
Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12(11): 632-44.
[http://dx.doi.org/10.1038/nrrheum.2016.148] [PMID: 27652499]
[13]
Valdes AM, Doherty M, Spector TD. The additive effect of individual genes in predicting risk of knee osteoarthritis. Ann Rheum Dis 2008; 67(1): 124-7.
[http://dx.doi.org/10.1136/ard.2007.075838] [PMID: 17704066]
[14]
MacGregor AJ, Li Q, Spector TD, Williams FMK. The genetic influence on radiographic osteoarthritis is site specific at the hand, hip and knee. Rheumatology (Oxford) 2009; 48(3): 277-80.
[http://dx.doi.org/10.1093/rheumatology/ken475] [PMID: 19153142]
[15]
Rountree RB, Schoor M, Chen H, et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2004; 2(11): e355.
[http://dx.doi.org/10.1371/journal.pbio.0020355] [PMID: 15492776]
[16]
Miyamoto Y, Mabuchi A, Shi D, et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet 2007; 39(4): 529-33.
[http://dx.doi.org/10.1038/2005] [PMID: 17384641]
[17]
Coleman CM, Tuan RS. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech Dev 2003; 120(7): 823-36.
[http://dx.doi.org/10.1016/S0925-4773(03)00067-4] [PMID: 12915232]
[18]
Vaes RBA, Rivadeneira F, Kerkhof JM, et al. Genetic variation in the GDF5 region is associated with osteoarthritis, height, hip axis length and fracture risk: the Rotterdam study. Ann Rheum Dis 2009; 68(11): 1754-60.
[http://dx.doi.org/10.1136/ard.2008.099655] [PMID: 19029166]
[19]
Rhee DK, Marcelino J, Baker M, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 2005; 115(3): 622-31.
[http://dx.doi.org/10.1172/JCI200522263] [PMID: 15719068]
[20]
Solovieva S, Kamarainen O-P, Hirvonen A, et al. Association between interleukin 1 gene cluster polymorphisms and bilateral distal interphalangeal osteoarthritis. J Rheumatol 2009; 36(9): 1977-86.
[http://dx.doi.org/10.3899/jrheum.081238] [PMID: 19684156]
[21]
Luyten FP, Tylzanowski P, Lories RJ. WNT signaling and osteoarthritis. Bone 2009; 44(4): 522-7.
[http://dx.doi.org/10.1016/j.bone.2008.12.006] [PMID: 19136083]
[22]
Lodewyckx L, Luyten FP, Lories RJ. Genetic deletion of low-density lipoprotein receptor-related protein 5 increases cartilage degradation in instability-induced osteoarthritis. Rheumatology (Oxford) 2012; 51(11): 1973-8.
[http://dx.doi.org/10.1093/rheumatology/kes178] [PMID: 22850184]
[23]
Sono T, Akiyama H, Miura S, et al. THRAP3 interacts with and inhibits the transcriptional activity of SOX9 during chondrogenesis. J Bone Miner Metab 2018; 36(4): 410-9.
[http://dx.doi.org/10.1007/s00774-017-0855-2] [PMID: 28770354]
[24]
Topol L, Chen W, Song H, Day TF, Yang Y. Sox9 inhibits Wnt signaling by promoting β-catenin phosphorylation in the nucleus. J Biol Chem 2009; 284(5): 3323-33.
[http://dx.doi.org/10.1074/jbc.M808048200] [PMID: 19047045]
[25]
Koyama E, Shibukawa Y, Nagayama M, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 2008; 316(1): 62-73.
[http://dx.doi.org/10.1016/j.ydbio.2008.01.012] [PMID: 18295755]
[26]
Dao DY, Jonason JH, Zhang Y, et al. Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res 2012; 27(8): 1680-94.
[http://dx.doi.org/10.1002/jbmr.1639] [PMID: 22508079]
[27]
Kerkhof JM, Uitterlinden AG, Valdes AM, et al. Radiographic osteoarthritis at three joint sites and FRZB, LRP5, and LRP6 polymorphisms in two population-based cohorts. Osteoarthritis Cartilage 2008; 16(10): 1141-9.
[http://dx.doi.org/10.1016/j.joca.2008.02.007] [PMID: 18406176]
[28]
Fernandez-Torres J, Zamudio-Cuevas Y, López-Reyes A, et al. Gene-gene interactions of the Wnt/β-catenin signaling pathway in knee osteoarthritis. Mol Biol Rep 2018; 45(5): 1089-98.
[http://dx.doi.org/10.1007/s11033-018-4260-2] [PMID: 30083988]
[29]
Zhou Y, Wang T, Hamilton JL, Chen D. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis. Curr Rheumatol Rep 2017; 19(9): 53.
[http://dx.doi.org/10.1007/s11926-017-0679-z] [PMID: 28752488]
[30]
Deshmukh V, Hu H, Barroga C, et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 2018; 26(1): 18-27.
[http://dx.doi.org/10.1016/j.joca.2017.08.015] [PMID: 28888902]
[31]
Lane NE, Lian K, Nevitt MC, et al. Frizzled-related protein variants are risk factors for hip osteoarthritis. Arthritis Rheum 2006; 54(4): 1246-54.
[http://dx.doi.org/10.1002/art.21673] [PMID: 16572458]
[32]
Min JL, Meulenbelt I, Riyazi N, et al. Association of the Frizzled-related protein gene with symptomatic osteoarthritis at multiple sites. Arthritis Rheum 2005; 52(4): 1077-80.
[http://dx.doi.org/10.1002/art.20993] [PMID: 15818669]
[33]
Lories RJ, Boonen S, Peeters J, de Vlam K, Luyten FP. Evidence for a differential association of the Arg200Trp single-nucleotide polymorphism in FRZB with hip osteoarthritis and osteoporosis. Rheumatology (Oxford) 2006; 45(1): 113-4.
[http://dx.doi.org/10.1093/rheumatology/kei148] [PMID: 16287928]
[34]
Valdes AM, Loughlin J, Oene MV, et al. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum 2007; 56(1): 137-46.
[http://dx.doi.org/10.1002/art.22301] [PMID: 17195216]
[35]
Lories RJU, Peeters J, Bakker A, et al. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 2007; 56(12): 4095-103.
[http://dx.doi.org/10.1002/art.23137] [PMID: 18050203]
[36]
Smith AJP, Gidley J, Sandy JR, et al. Haplotypes of the low-density lipoprotein receptor-related protein 5 (LRP5) gene: are they a risk factor in osteoarthritis? Osteoarthritis Cartilage 2005; 13(7): 608-13.
[http://dx.doi.org/10.1016/j.joca.2005.01.008] [PMID: 15979013]
[37]
Urano T, Shiraki M, Narusawa K, et al. Q89R polymorphism in the LDL receptor-related protein 5 gene is associated with spinal osteoarthritis in postmenopausal Japanese women. Spine 2007; 32(1): 25-9.
[http://dx.doi.org/10.1097/01.brs.0000251003.62212.5b] [PMID: 17202888]
[38]
Lane NE, Nevitt MC, Lui L-Y, de Leon P, Corr M. Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 2007; 56(10): 3319-25.
[http://dx.doi.org/10.1002/art.22867] [PMID: 17907185]
[39]
Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 2013; 15(6): 223.
[http://dx.doi.org/10.1186/ar4405] [PMID: 24321104]
[40]
Oliveira Silva M, Gregory JL, Ansari N, Stok KS. Molecular signaling interactions and transport at the osteochondral interface: A review. Front Cell Dev Biol 2020; 8: 750.
[http://dx.doi.org/10.3389/fcell.2020.00750] [PMID: 32974333]
[41]
Lepage SIM, Robson N, Gilmore H, et al. Beyond cartilage repair: The role of the osteochondral unit in joint health and disease. Tissue Eng Part B Rev 2019; 25(2): 114-25.
[http://dx.doi.org/10.1089/ten.teb.2018.0122] [PMID: 30638141]
[42]
Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 2009; 11(3): 224.
[http://dx.doi.org/10.1186/ar2592] [PMID: 19519926]
[43]
Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci 2019; 234: 116786.
[http://dx.doi.org/10.1016/j.lfs.2019.116786] [PMID: 31445934]
[44]
Ruhlen R, Marberry K. The chondrocyte primary cilium. Osteoarthritis Cartilage 2014; 22(8): 1071-6.
[http://dx.doi.org/10.1016/j.joca.2014.05.011] [PMID: 24879961]
[45]
Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192: 230-7.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05240.x] [PMID: 20392241]
[46]
Pratta MA, Su JL, Leesnitzer MA, et al. Development and characterization of a highly specific and sensitive sandwich ELISA for detection of aggrecanase-generated aggrecan fragments. Osteoarthritis Cartilage 2006; 14(7): 702-13.
[http://dx.doi.org/10.1016/j.joca.2006.01.012] [PMID: 16549371]
[47]
Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 2008; 22(2): 351-84.
[http://dx.doi.org/10.1016/j.berh.2008.02.001] [PMID: 18455690]
[48]
Knäuper V, López-Otin C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem 1996; 271(3): 1544-50.
[http://dx.doi.org/10.1074/jbc.271.3.1544] [PMID: 8576151]
[49]
Knäuper V, Cowell S, Smith B, et al. The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 1997; 272(12): 7608-16.
[http://dx.doi.org/10.1074/jbc.272.12.7608] [PMID: 9065415]
[50]
Wang M, Sampson ER, Jin H, et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther 2013; 15(1): R5.
[http://dx.doi.org/10.1186/ar4133] [PMID: 23298463]
[51]
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J-P, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 2011; 7(1): 33-42.
[http://dx.doi.org/10.1038/nrrheum.2010.196] [PMID: 21119608]
[52]
Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci 2006; 11: 529-43.
[http://dx.doi.org/10.2741/1817] [PMID: 16146751]
[53]
Yakar S, Werner H, Rosen CJ. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 2018; 61(1): T115-37.
[http://dx.doi.org/10.1530/JME-17-0298] [PMID: 29626053]
[54]
Abella V, Scotece M, Conde J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 2017; 13(2): 100-9.
[http://dx.doi.org/10.1038/nrrheum.2016.209] [PMID: 28053336]
[55]
Vuolteenaho K, Koskinen A, Moilanen T, Moilanen E. Leptin levels are increased and its negative regulators, SOCS-3 and sOb-R are decreased in obese patients with osteoarthritis: a link between obesity and osteoarthritis. Ann Rheum Dis 2012; 71(11): 1912-3.
[http://dx.doi.org/10.1136/annrheumdis-2011-201242] [PMID: 22689314]
[56]
Koskinen-Kolasa A, Vuolteenaho K, Korhonen R, Moilanen T, Moilanen E. Catabolic and proinflammatory effects of leptin in chondrocytes are regulated by suppressor of cytokine signaling-3. Arthritis Res Ther 2016; 18(1): 215.
[http://dx.doi.org/10.1186/s13075-016-1112-0] [PMID: 27716333]
[57]
Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism. Metabolism 2015; 64(1): 105-13.
[http://dx.doi.org/10.1016/j.metabol.2014.10.021] [PMID: 25497343]
[58]
Saini RK, Kaneko I, Jurutka PW, et al. 1,25-dihydroxyvitamin D(3) regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6. Calcif Tissue Int 2013; 92(4): 339-53.
[http://dx.doi.org/10.1007/s00223-012-9683-5] [PMID: 23263654]
[59]
Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 2010; 25(8): 1711-23.
[http://dx.doi.org/10.1002/jbmr.65] [PMID: 20200981]
[60]
Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys 2014; 561: 137-46.
[http://dx.doi.org/10.1016/j.abb.2014.05.022] [PMID: 24893146]
[61]
Milz S, Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 1994; 185(Pt 1): 103-10.
[PMID: 7559105]
[62]
Newberry WN, Zukosky DK, Haut RC. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage. J Orthop Res 1997; 15(3): 450-5.
[http://dx.doi.org/10.1002/jor.1100150319] [PMID: 9246093]
[63]
Fang H, Huang L, Welch I, et al. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis. Sci Rep 2018; 8(1): 2855.
[http://dx.doi.org/10.1038/s41598-018-21184-5] [PMID: 29434267]
[64]
Sprecher CM, Schmidutz F, Helfen T, Richards RG, Blauth M, Milz S. Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals: Significantly Reduced Bone Stock in the Metaphyseal and Subcapital Regions of Osteoporotic Individuals. Medicine (Baltimore) 2015; 94(51): e2043.
[http://dx.doi.org/10.1097/MD.0000000000002043] [PMID: 26705200]
[65]
Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr Opin Rheumatol 2015; 27(4): 420-6.
[http://dx.doi.org/10.1097/BOR.0000000000000181] [PMID: 26002035]
[66]
Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am 2003; 29(4): 675-85.
[http://dx.doi.org/10.1016/S0889-857X(03)00061-9] [PMID: 14603577]
[67]
Steadman JR, Rodkey WG, Briggs KK. Microfracture. Cartilage 2010; 1(2): 78-86.
[http://dx.doi.org/10.1177/1947603510365533] [PMID: 26069538]
[68]
Sokoloff L. Microcracks in the calcified layer of articular cartilage. Arch Pathol Lab Med 1993; 117(2): 191-5.
[PMID: 8427570]
[69]
Blaney Davidson EN, Remst DFG, Vitters EL, et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol 2009; 182(12): 7937-45.
[http://dx.doi.org/10.4049/jimmunol.0803991] [PMID: 19494318]
[70]
Clark AG, Jordan JM, Vilim V, et al. Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project. Arthritis Rheum 1999; 42(11): 2356-64.
[http://dx.doi.org/10.1002/1529-0131(199911)42:11<2356::AID-ANR14>3.0.CO;2-R] [PMID: 10555031]
[71]
Hart DJ, Cronin C, Daniels M, Worthy T, Doyle DV, Spector TD. The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford Study. Arthritis Rheum 2002; 46(1): 92-9.
[http://dx.doi.org/10.1002/1529-0131(200201)46:1<92::AID-ART10057>3.0.CO;2-#] [PMID: 11817613]
[72]
Dequeker J, Aerssens J, Luyten FP. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res 2003; 15(5): 426-39.
[http://dx.doi.org/10.1007/BF03327364] [PMID: 14703009]
[73]
Bettica P, Cline G, Hart DJ, Meyer J, Spector TD. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum 2002; 46(12): 3178-84.
[http://dx.doi.org/10.1002/art.10630] [PMID: 12483721]
[74]
Hunter DJ, Hart D, Snieder H, Bettica P, Swaminathan R, Spector TD. Evidence of altered bone turnover, vitamin D and calcium regulation with knee osteoarthritis in female twins. Rheumatology (Oxford) 2003; 42(11): 1311-6.
[http://dx.doi.org/10.1093/rheumatology/keg373] [PMID: 12867590]
[75]
Bergink AP, Uitterlinden AG, Van Leeuwen JPTM, et al. Vitamin D status, bone mineral density, and the development of radiographic osteoarthritis of the knee: The Rotterdam Study. J Clin Rheumatol 2009; 15(5): 230-7.
[http://dx.doi.org/10.1097/RHU.0b013e3181b08f20] [PMID: 19654490]
[76]
Park CY. Vitamin D in the prevention and treatment of osteoarthritis: From clinical interventions to cellular evidence. Nutrients 2019; 11(2): E243.
[http://dx.doi.org/10.3390/nu11020243] [PMID: 30678273]
[77]
Gao X-R, Chen Y-S, Deng W. The effect of vitamin D supplementation on knee osteoarthritis: A meta-analysis of randomized controlled trials. Int J Surg 2017; 46: 14-20.
[http://dx.doi.org/10.1016/j.ijsu.2017.08.010] [PMID: 28797917]
[78]
Lo GH, Hunter DJ, Zhang Y, et al. Bone marrow lesions in the knee are associated with increased local bone density. Arthritis Rheum 2005; 52(9): 2814-21.
[http://dx.doi.org/10.1002/art.21290] [PMID: 16145676]
[79]
Marcacci M, Andriolo L, Kon E, Shabshin N, Filardo G. Aetiology and pathogenesis of bone marrow lesions and osteonecrosis of the knee. EFORT Open Rev 2017; 1(5): 219-24.
[http://dx.doi.org/10.1302/2058-5241.1.000044] [PMID: 28461951]
[80]
Tanamas SK, Wluka AE, Pelletier J-P, et al. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology (Oxford) 2010; 49(12): 2413-9.
[http://dx.doi.org/10.1093/rheumatology/keq286] [PMID: 20823092]
[81]
Link TM, Steinbach LS, Ghosh S, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003; 226(2): 373-81.
[http://dx.doi.org/10.1148/radiol.2262012190] [PMID: 12563128]
[82]
Felson DT, Chaisson CE, Hill CL, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134(7): 541-9.
[http://dx.doi.org/10.7326/0003-4819-134-7-200104030-00007] [PMID: 11281736]
[83]
Yusuf E, Kortekaas MC, Watt I, Huizinga TWJ, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis 2011; 70(1): 60-7.
[http://dx.doi.org/10.1136/ard.2010.131904] [PMID: 20829200]
[84]
Kornaat PR, Bloem JL, Ceulemans RYT, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 2006; 239(3): 811-7.
[http://dx.doi.org/10.1148/radiol.2393050253] [PMID: 16714463]
[85]
Driban JB, Price L, Lo GH, et al. Evaluation of bone marrow lesion volume as a knee osteoarthritis biomarker--longitudinal relationships with pain and structural changes: data from the Osteoarthritis Initiative. Arthritis Res Ther 2013; 15(5): R112.
[http://dx.doi.org/10.1186/ar4292] [PMID: 24020939]
[86]
Nico B, Mangieri D, Benagiano V, Crivellato E, Ribatti D. Nerve growth factor as an angiogenic factor. Microvasc Res 2008; 75(2): 135-41.
[http://dx.doi.org/10.1016/j.mvr.2007.07.004] [PMID: 17764704]
[87]
Wluka AE, Wang Y, Davies-Tuck M, English DR, Giles GG, Cicuttini FM. Bone marrow lesions predict progression of cartilage defects and loss of cartilage volume in healthy middle-aged adults without knee pain over 2 yrs. Rheumatology (Oxford) 2008; 47(9): 1392-6.
[http://dx.doi.org/10.1093/rheumatology/ken237] [PMID: 18606620]
[88]
Roemer FW, Frobell R, Hunter DJ, et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage 2009; 17(9): 1115-31.
[http://dx.doi.org/10.1016/j.joca.2009.03.012] [PMID: 19358902]
[89]
Neogi T, Felson D, Niu J, et al. Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies. BMJ 2009; 339: b2844.
[http://dx.doi.org/10.1136/bmj.b2844] [PMID: 19700505]
[90]
Conaghan PG, Felson DT. Structural associations of osteoarthritis pain: Lessons from magnetic resonance imaging. Novartis Found Symp 2004; 260: 191-201.
[91]
Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000; 215(3): 835-40.
[http://dx.doi.org/10.1148/radiology.215.3.r00jn05835] [PMID: 10831707]
[92]
Hunter DJ, Gerstenfeld L, Bishop G, et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Res Ther 2009; 11(1): R11.
[http://dx.doi.org/10.1186/ar2601] [PMID: 19171047]
[93]
Nakamae A, Engebretsen L, Bahr R, Krosshaug T, Ochi M. Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings. Knee Surg Sports Traumatol Arthrosc 2006; 14(12): 1252-8.
[http://dx.doi.org/10.1007/s00167-006-0087-9] [PMID: 16786336]
[94]
Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage 2006; 14(10): 1081-5.
[http://dx.doi.org/10.1016/j.joca.2006.05.011] [PMID: 16806996]
[95]
da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet 2017; 390(10090): e21-33.
[http://dx.doi.org/10.1016/S0140-6736(17)31744-0] [PMID: 28699595]
[96]
Griffin MR. High-dose non-steroidal anti-inflammatories: painful choices. Lancet 2013; 382(9894): 746-8.
[http://dx.doi.org/10.1016/S0140-6736(13)61128-9] [PMID: 23726391]
[97]
Zacher J, Altman R, Bellamy N, et al. Topical diclofenac and its role in pain and inflammation: an evidence-based review. Curr Med Res Opin 2008; 24(4): 925-50.
[http://dx.doi.org/10.1185/030079908X273066] [PMID: 18279583]
[98]
Deveza LA, Hunter DJ, Van Spil WE. Too much opioid, too much harm. Osteoarthritis Cartilage 2018; 26(3): 293-5.
[http://dx.doi.org/10.1016/j.joca.2017.12.003] [PMID: 29277676]
[99]
Cook CS, Smith PA. Clinical update: Why PRP should be your first choice for injection therapy in treating osteoarthritis of the knee. Curr Rev Musculoskelet Med 2018; 11(4): 583-92.
[http://dx.doi.org/10.1007/s12178-018-9524-x] [PMID: 30350299]
[100]
Xing RL, Zhao LR, Wang PM. Bisphosphonates therapy for osteoarthritis: a meta-analysis of randomized controlled trials. Springerplus 2016; 5(1): 1704.
[http://dx.doi.org/10.1186/s40064-016-3359-y] [PMID: 27757376]
[101]
Frediani B, Giusti A, Bianchi G, et al. Clodronate in the management of different musculoskeletal conditions. Minerva Med 2018; 109(4): 300-25.
[http://dx.doi.org/10.23736/S0026-4806.18.05688-4] [PMID: 29947493]
[102]
Rosa RG, Collavino K, Lakhani A, et al. Clodronate exerts an anabolic effect on articular chondrocytes mediated through the purinergic receptor pathway. Osteoarthritis Cartilage 2014; 22(9): 1327-36.
[http://dx.doi.org/10.1016/j.joca.2014.07.009] [PMID: 25042551]
[103]
Karsdal MA, Bay-Jensen AC, Lories RJ, et al. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis 2014; 73(2): 336-48.
[http://dx.doi.org/10.1136/annrheumdis-2013-204111] [PMID: 24285494]
[104]
Davis AJ, Smith TO, Hing CB, Sofat N. Are bisphosphonates effective in the treatment of osteoarthritis pain? A meta-analysis and systematic review. PLoS One 2013; 8(9): e72714.
[http://dx.doi.org/10.1371/journal.pone.0072714] [PMID: 24023766]
[105]
Bingham CO III, Buckland-Wright JC, Garnero P, et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum 2006; 54(11): 3494-507.
[http://dx.doi.org/10.1002/art.22160] [PMID: 17075851]
[106]
Shima K, Nemoto W, Tsuchiya M, et al. The bisphosphonates clodronate and etidronate exert analgesic effects by acting on glutamate- and/or ATP-related pain transmission pathways. Biol Pharm Bull 2016; 39(5): 770-7.
[http://dx.doi.org/10.1248/bpb.b15-00882] [PMID: 27150146]
[107]
Kato Y, Hiasa M, Ichikawa R, et al. Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain. Proc Natl Acad Sci USA 2017; 114(31): E6297-305.
[http://dx.doi.org/10.1073/pnas.1704847114] [PMID: 28720702]
[108]
Bonabello A, Galmozzi MR, Canaparo R, Serpe L, Zara GP. Long-term analgesic effect of clodronate in rodents. Bone 2003; 33(4): 567-74.
[http://dx.doi.org/10.1016/S8756-3282(03)00229-1] [PMID: 14555260]
[109]
Varenna M, Zucchi F, Failoni S, Becciolini A, Berruto M. Intravenous neridronate in the treatment of acute painful knee osteoarthritis: a randomized controlled study. Rheumatology (Oxford) 2015; 54(10): 1826-32.
[http://dx.doi.org/10.1093/rheumatology/kev123] [PMID: 25998450]
[110]
Cai G, Aitken D, Laslett LL, et al. Effect of intravenous zoledronic acid on tibiofemoral cartilage volume among patients with knee osteoarthritis with bone marrow lesions: A randomized clinical trial. JAMA 2020; 323(15): 1456-66.
[http://dx.doi.org/10.1001/jama.2020.2938] [PMID: 32315057]
[111]
Saviola G, Santoro L. [Clodronate in erosive osteoarthrosis of the hand: efficacy for pain and function recovery]. G Ital Med Lav Ergon 2000; 22(4): 328-31. Clodronate in erosive osteoarthrosis of the hand: efficacy for pain and function recovery.
[PMID: 11284157]
[112]
Saviola G, Abdi-Ali L, Campostrini L, et al. Clodronate and hydroxychloroquine in erosive osteoarthritis: a 24-month open randomized pilot study. Mod Rheumatol 2012; 22(2): 256-63.
[http://dx.doi.org/10.3109/s10165-011-0506-8] [PMID: 21853386]
[113]
Saviola G, Abdi-Ali L, Povino MR, et al. Intramuscular clodronate in erosive osteoarthritis of the hand is effective on pain and reduces serum COMP: a randomized pilot trial-The ER.O.D.E. study (ERosive Osteoarthritis and Disodium-clodronate Evaluation). Clin Rheumatol 2017; 36(10): 2343-50.
[http://dx.doi.org/10.1007/s10067-017-3681-y] [PMID: 28536825]
[114]
Cocco R, Tofi C, Fioravanti A, et al. Effects of clodronate on synovial fluid levels of some inflammatory mediators, after intra-articular administration to patients with synovitis secondary to knee osteoarthritis. Boll Soc Ital Biol Sper 1999; 75(11-12): 71-6.
[PMID: 11433681]
[115]
Rossini M, Viapiana O, Ramonda R, et al. Intra-articular clodronate for the treatment of knee osteoarthritis: dose ranging study vs hyaluronic acid. Rheumatology (Oxford) 2009; 48(7): 773-8.
[http://dx.doi.org/10.1093/rheumatology/kep084] [PMID: 19406908]
[116]
Frediani B, Toscano C, Falsetti P, et al. Intramuscular clodronate in long-term treatment of symptomatic knee osteoarthritis: A randomized controlled study. Drugs R D 2020; 20(1): 39-45.
[http://dx.doi.org/10.1007/s40268-020-00294-4] [PMID: 32078147]
[117]
Valenti MT, Mottes M, Biotti A, et al. Clodronate as a Therapeutic Strategy against Osteoarthritis. Int J Mol Sci 2017; 18(12): E2696.
[http://dx.doi.org/10.3390/ijms18122696] [PMID: 29236045]
[118]
Saviola G, Abdi-Ali L, Comini L, Dalle-Carbonare LG. Use of clodronate in the management of osteoarthritis: an update. J Biol Regul Homeost Agents 2019; 33(5): 1315-20.
[http://dx.doi.org/10.23812/19-58-A] [PMID: 31591875]
[119]
Trevisan C, Ortolani S, Romano P, et al. Decreased periprosthetic bone loss in patients treated with clodronate: a 1-year randomized controlled study. Calcif Tissue Int 2010; 86(6): 436-46.
[http://dx.doi.org/10.1007/s00223-010-9356-1] [PMID: 20390409]
[120]
Hilding M, Ryd L, Toksvig-Larsen S, Aspenberg P. Clodronate prevents prosthetic migration: a randomized radiostereometric study of 50 total knee patients. Acta Orthop Scand 2000; 71(6): 553-7.
[http://dx.doi.org/10.1080/000164700317362163] [PMID: 11145380]
[121]
Bhandari M, Bajammal S, Guyatt GH, et al. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg Am 2005; 87(2): 293-301.
[http://dx.doi.org/10.2106/00004623-200502000-00009] [PMID: 15687150]
[122]
Lin T, Yan S-G, Cai X-Z, Ying Z-M. Bisphosphonates for periprosthetic bone loss after joint arthroplasty: a meta-analysis of 14 randomized controlled trials. Osteoporos Int 2012; 23(6): 1823-34.
[http://dx.doi.org/10.1007/s00198-011-1797-5] [PMID: 21932113]
[123]
Thillemann TM, Pedersen AB, Mehnert F, Johnsen SP, Søballe K. Postoperative use of bisphosphonates and risk of revision after primary total hip arthroplasty: a nationwide population-based study. Bone 2010; 46(4): 946-51.
[http://dx.doi.org/10.1016/j.bone.2010.01.377] [PMID: 20102756]
[124]
Teng S, Yi C, Krettek C, Jagodzinski M. Bisphosphonate Use and Risk of Implant Revision after Total Hip/Knee Arthroplasty: A Meta-Analysis of Observational Studies. PLoS One 2015; 10(10): e0139927.
[http://dx.doi.org/10.1371/journal.pone.0139927] [PMID: 26444555]
[125]
Lewis G, Janna S. Alendronate in bone cement: fatigue life degraded by liquid, not by powder. Clin Orthop Relat Res 2006; 445(445): 233-8.
[http://dx.doi.org/10.1097/01.blo.0000201162.59819.28] [PMID: 16446596]
[126]
Saviola G, Ferrari P, Niccolò E, et al. Use of clodronate for painful knee prosthesis in osteoarthritis patients: a 6-month pilot study. Minerva Med 2020; 111(6): 551-9.
[http://dx.doi.org/10.23736/S0026-4806.20.06706-3] [PMID: 32573517]
[127]
Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet 2005; 365(9463): 965-73.
[http://dx.doi.org/10.1016/S0140-6736(05)71086-2] [PMID: 15766999]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy