Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Umbilical Cord Mesenchymal Stem/Stromal Cells Potential to Treat Organ Disorders; An Emerging Strategy

Author(s): Milad Ahani-Nahayati, Vahid Niazi, Alireza Moradi, Bahareh Pourjabbar , Reza Roozafzoon, Saeed Heidari Keshel* and Alireza Baradaran-Rafii*

Volume 17, Issue 2, 2022

Published on: 03 December, 2021

Page: [126 - 146] Pages: 21

DOI: 10.2174/1574888X16666210907164046

conference banner
Abstract

Currently, Mesenchymal Stem/Stromal Cells (MSCs) have attracted growing attention in the context of cell-based therapy in regenerative medicine. Following the first successful procurement of human MSCs from Bone Marrow (BM), these cells isolation has been conducted from various origins, in particular, the Umbilical Cord (UC). Umbilical Cord-Derived Mesenchymal Stem/Stromal Cells (UC-MSCs) can be acquired by a non-invasive plan and simply cultured, and thereby signifies their superiority over MSCs derived from other sources for medical purposes. Due to their unique attributes, including self-renewal, multipotency, and accessibility concomitant with their immunosuppressive competence and lower ethical concerns, UC-MSCs therapy is described as encouraging therapeutic options in cell-based therapies. Regardless of their unique aptitude to adjust inflammatory response during tissue recovery and delivering solid milieu for tissue restoration, UC-MSCs can be differentiated into a diverse spectrum of adult cells (e.g., osteoblast, chondrocyte, type II alveolar, hepatocyte, and cardiomyocyte). Interestingly, they demonstrate a prolonged survival and longer telomeres compared with MSCs derived from other sources, suggesting that UC-MSCs are desired source to use in regenerative medicine. In the present review, we deliver a brief review of UC-MSCs isolation, expansion concomitantly with immunosuppressive activities, and try to collect and discuss recent pre-clinical and clinical researches based on the use of UC-MSCs in regenerative medicine, focusing on with special focus on in vivo researches.

Keywords: Umbilical cord mesenchymal stem/stromal cells (UC-MSCs), isolation, immunomodulation, cell-based therapy, regenerative medicine, bone marrow.

Graphical Abstract
[1]
Mimeault M, Hauke R, Batra SK. Stem cells: A revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 2007; 82(3): 252-64.
[http://dx.doi.org/10.1038/sj.clpt.6100301] [PMID: 17671448]
[2]
Knoepfler PS. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells 2009; 27(5): 1050-6.
[http://dx.doi.org/10.1002/stem.37] [PMID: 19415771]
[3]
Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 2(2): 83-92.
[PMID: 4455512]
[4]
Cordeiro-Spinetti E, de Mello W, Trindade L S, Taub D D, Taichman R S, Balduino A. Human bone marrow mesenchymal progenitors: Perspectives on an optimized in vitro manipulation. Front Cell Dev Biol 2014; 2: 7.
[http://dx.doi.org/10.3389/fcell.2014.00007]
[5]
Sheng G. The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev Biol 2015; 15: 44.
[http://dx.doi.org/10.1186/s12861-015-0094-5] [PMID: 26589542]
[6]
Marofi F, Shomali N, Younus LA, et al. Under hypoxic conditions, MSCs affect the expression and methylation level of survival-related genes in ALL independent of apoptosis pathways in vitro. Biotechnol Appl Biochem 2021. Epub ahead of print.
[http://dx.doi.org/10.1002/bab.2154] [PMID: 33786874]
[7]
Bunpetch V, Wu H, Zhang S, Ouyang H. From “bench to bedside”: Current advancement on large-scale production of mesenchymal stem cells. Stem Cells Dev 2017; 26(22): 1662-73.
[http://dx.doi.org/10.1089/scd.2017.0104] [PMID: 28934885]
[8]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]
[9]
Hsieh J-Y, Wang H-W, Chang S-J, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 2013; 8(8): e72604.
[http://dx.doi.org/10.1371/journal.pone.0072604] [PMID: 23991127]
[10]
Qiao C, Xu W, Zhu W, et al. Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 2008; 32(1): 8-15.
[http://dx.doi.org/10.1016/j.cellbi.2007.08.002] [PMID: 17904875]
[11]
Yu Y-B, Song Y, Chen Y, Zhang F, Qi F-Z. Differentiation of umbilical cord mesenchymal stem cells into hepatocytes in comparison with bone marrow mesenchymal stem cells. Mol Med Rep 2018; 18(2): 2009-16.
[http://dx.doi.org/10.3892/mmr.2018.9181] [PMID: 29916543]
[12]
McElreavey KD, Irvine AI, Ennis KT, McLean WH. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochem Soc Trans 1991; 19(1): 29S.
[13]
Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells 2014; 6(2): 195-202.
[http://dx.doi.org/10.4252/wjsc.v6.i2.195] [PMID: 24772246]
[14]
Ben Nasr M, Vergani A, Avruch J, et al. Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetol 2015; 52(5): 917-27.
[http://dx.doi.org/10.1007/s00592-015-0735-y] [PMID: 25808641]
[15]
Le Blanc K, Ringdén O. Mesenchymal stem cells: Properties and role in clinical bone marrow transplantation. Curr Opin Immunol 2006; 18(5): 586-91.
[http://dx.doi.org/10.1016/j.coi.2006.07.004] [PMID: 16879957]
[16]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[17]
O’Connor ML, Xiang D, Shigdar S, et al. Cancer stem cells: A contentious hypothesis now moving forward. Cancer Lett 2014; 344(2): 180-7.
[http://dx.doi.org/10.1016/j.canlet.2013.11.012] [PMID: 24333726]
[18]
Markov A, Thangavelu L, Aravindhan S, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12(1): 192.
[http://dx.doi.org/10.1186/s13287-021-02265-1] [PMID: 33736695]
[19]
Hassanzadeh A, Rahman HS, Markov A, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; Overview of development, challenges, and opportunities. Stem Cell Res Ther 2021; 12(1): 297.
[http://dx.doi.org/10.1186/s13287-021-02378-7] [PMID: 34020704]
[20]
Kögler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200(2): 123-35.
[http://dx.doi.org/10.1084/jem.20040440] [PMID: 15263023]
[21]
Iwasaki H, Kawamoto A, Willwerth C, et al. Therapeutic potential of unrestricted somatic stem cells isolated from placental cord blood for cardiac repair post myocardial infarction. Arterioscler Thromb Vasc Biol 2009; 29(11): 1830-5.
[http://dx.doi.org/10.1161/ATVBAHA.109.192203] [PMID: 19679830]
[22]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[23]
Burk J, Ribitsch I, Gittel C, et al. Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Vet J 2013; 195(1): 98-106.
[24]
Wehrle M, Koch F, Zimmermann S, et al. Examination of hydrogels and mesenchymal stem cell sources for bioprinting of artificial osteogenic tissues. Cell Mol Bioeng 2019; 12(6): 583-97.
[http://dx.doi.org/10.1007/s12195-019-00588-x]
[25]
Urrutia DN, Caviedes P, Mardones R, Minguell JJ, Vega-Letter AM, Jofre CM. Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies. PLoS One 2019; 14(3): e0213032.
[http://dx.doi.org/10.1371/journal.pone.0213032] [PMID: 30856179]
[26]
Marmotti A, Mattia S, Bruzzone M, et al. Minced umbilical cord fragments as a source of cells for orthopaedic tissue engineering: An in vitro study. Stem Cells Int 2012; 2012: 326813.
[http://dx.doi.org/10.1155/2012/326813]
[27]
Ding Z, Burghoff S, Buchheiser A, Kögler G, Schrader J. Survival, integration, and differentiation of unrestricted somatic stem cells in the heart. Cell Transplant 2013; 22(1): 15-27.
[http://dx.doi.org/10.3727/096368912X640466] [PMID: 23594819]
[28]
Yaghoubi Y, Zamani M, Naimi A, et al. Human CD34+ hematopoietic stem cells culture in humanized culture medium for cell therapy. Gene Rep 2020; 20: 100718.
[29]
Zamani M, Yaghoubi Y, Naimi A, et al. Humanized culture medium for clinical-grade generation of erythroid cells from umbilical cord blood CD34+ cells. Adv Pharm Bull 2021; 11(2): 335-42.
[30]
Marofi F, Vahedi G, Hasanzadeh A, et al. Mesenchymal stem cells as the game-changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 2019; 234(2): 1268-88.
[http://dx.doi.org/10.1002/jcp.27152] [PMID: 30191962]
[31]
Swamynathan P, Venugopal P, Kannan S, et al. Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton’s jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res Ther 2014; 5(4): 88.
[http://dx.doi.org/10.1186/scrt477] [PMID: 25069491]
[32]
Grau-Vorster M, Rodríguez L, Torrents-Zapata S, et al. Levels of IL-17F and IL-33 correlate with HLA-DR activation in clinical- grade human bone marrow-derived multipotent mesenchymal stromal cell expansion cultures. Cytotherapy 2019; 21(1): 32-40.
[http://dx.doi.org/10.1016/j.jcyt.2018.09.009] [PMID: 30447901]
[33]
Das R, Roosloot R, Driessen M, Tra W, Burer S, de Bruijn J. A single-step expansion system for large-fold expansion of bone marrow-derived MSCs. Cytotherapy 2018; 20(5): S34.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.083]
[34]
Roberts E, Walsh T, Koch T G, Kallos M S. Scaled-up expansion of equine cord blood mesenchymal stem cells (MSCs) from stirred suspension bioreactors to 100mL computer controlled stirred suspension bioreactors using computational fluid dynamic modeling. 2017. Available from: https://dc.engconfintl.org/cellbasedtherapies_v/56
[35]
Pountos I, Corscadden D, Emery P, Giannoudis P V. Mesenchymal stem cell tissue engineering: Techniques for isolation, expansion and application. Injury 2007; 38(Suppl 4): S23-33.
[36]
Herrmann R, Sturm M, Shaw K, et al. Mesenchymal stromal cell therapy for steroid-refractory acute and chronic graft versus host disease: A phase 1 study. Int J Hematol 2012; 95(2): 182-8.
[http://dx.doi.org/10.1007/s12185-011-0989-2] [PMID: 22183779]
[37]
Müller I, Kordowich S, Holzwarth C, et al. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 2008; 40(1): 25-32.
[http://dx.doi.org/10.1016/j.bcmd.2007.06.021] [PMID: 17869550]
[38]
Bonferoni MC, Rossi S, Sandri G, et al. Bioactive medications for the delivery of platelet derivatives to skin wounds. Curr Drug Deliv 2019; 16(5): 472-83.
[http://dx.doi.org/10.2174/1381612825666190320154406] [PMID: 30894109]
[39]
Astori G, Amati E, Bambi F, et al. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: Present and future. Stem Cell Res Ther 2016; 7(1): 93.
[http://dx.doi.org/10.1186/s13287-016-0352-x]
[40]
Chevallier N, Anagnostou F, Zilber S, et al. Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials 2010; 31(2): 270-8.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.043] [PMID: 19783038]
[41]
Viau S, Chabrand L, Eap S, et al. Pathogen reduction through additive-free short-wave UV light irradiation retains the optimal efficacy of human platelet lysate for the expansion of human bone marrow mesenchymal stem cells. PLoS One 2017; 12(8): e0181406.
[http://dx.doi.org/10.1371/journal.pone.0181406] [PMID: 28763452]
[42]
Wang L, Seshareddy K, Weiss ML, Detamore MS. Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Eng Part A 2009; 15(5): 1009-17.
[http://dx.doi.org/10.1089/ten.tea.2008.0012] [PMID: 18759671]
[43]
Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB. Optimal seeding densities for in vitro chondrogenesis of two- and three-dimensional-isolated and -expanded bone marrow-derived mesenchymal stromal stem cells within a porous collagen scaffold. Tissue Eng Part C Methods 2016; 22(3): 208-20.
[http://dx.doi.org/10.1089/ten.tec.2015.0365] [PMID: 26651081]
[44]
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[45]
Tavakoli S, Ghaderi Jafarbeigloo HR, Shariati A, et al. Mesenchymal stromal cells; A new horizon in regenerative medicine. J Cell Physiol 2020; 235(12): 9185-210.
[http://dx.doi.org/10.1002/jcp.29803] [PMID: 32452052]
[46]
Shariati A, Nemati R, Sadeghipour Y, et al. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. Eur J Cell Biol 2020; 99(6): 151097.
[http://dx.doi.org/10.1016/j.ejcb.2020.151097] [PMID: 32800276]
[47]
Ahani-Nahayati M, Shariati A, Mahmoodi M, et al. Stem cell in neurodegenerative disorders; An emerging strategy. Int J Dev Neurosci 2021; 81(4): 291-311.
[http://dx.doi.org/10.1002/jdn.10101] [PMID: 33650716]
[48]
Marofi F, Choupani J, Solali S, et al. ATF4, DLX3, FRA1, MSX2, C/EBP-ζ, and C/EBP-α shape the molecular basis of therapeutic effects of zoledronic acid in bone disorders. Anticancer Agents Med Chem 2020; 20(18): 2274-84.
[http://dx.doi.org/10.2174/1871520620666200721101904] [PMID: 32698734]
[49]
Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death Dis 2016; 7(1): e2062-2.
[http://dx.doi.org/10.1038/cddis.2015.327] [PMID: 26794657]
[50]
Cheung T S, Galleu A, von Bonin M, Bornhäuser M, Dazzi F. Apoptotic mesenchymal stromal cells induce prostaglandin E2 in monocytes: Implications for the monitoring of mesenchymal stromal cell activity. Haematologica 2019; 104(10): e438.
[51]
Coimbra R, Junger WG, Liu FC, Loomis WH, Hoyt DB. Hypertonic/hyperoncotic fluids reverse prostaglandin E2 (PGE2)-induced T-cell suppression. Shock 1995; 4(1): 45-9.
[http://dx.doi.org/10.1097/00024382-199507000-00007] [PMID: 7552777]
[52]
Gualdoni GS, Jacobo PV, Sobarzo CM, et al. Role of indoleamine 2,3-dioxygenase in testicular immune-privilege. Sci Rep 2019; 9(1): 15919.
[http://dx.doi.org/10.1038/s41598-019-52192-8] [PMID: 31685866]
[53]
Yang M, Lin J, Tang J, et al. Decreased immunomodulatory and secretory capability of aging human umbilical cord mesenchymal stem cells in vitro. Biochem Biophys Res Commun 2020; 525(3): 633-8.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.125] [PMID: 32122651]
[54]
Cutler A J, Limbani V, Girdlestone J, Navarrete C V. Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol 2010; 185(11): 6617-23.
[55]
Zhang H, Tao Y, Liu H, Ren S, Zhang B, Chen H. Immunomodulatory function of whole human umbilical cord derived mesenchymal stem cells. Mol Immunol 2017; 87: 293-9.
[http://dx.doi.org/10.1016/j.molimm.2017.03.003]
[56]
Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18(3): e264-77.
[http://dx.doi.org/10.18295/squmj.2018.18.03.002] [PMID: 30607265]
[57]
Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: A comparative study. Cytotechnology 2015; 67(5): 793-807.
[http://dx.doi.org/10.1007/s10616-014-9718-z] [PMID: 24798808]
[58]
Neri S, Borzì RM. Molecular mechanisms contributing to mesenchymal stromal cell aging. Biomolecules 2020; 10(2): 340.
[http://dx.doi.org/10.3390/biom10020340] [PMID: 32098040]
[59]
Chao Y-H, Wu H-P, Chan C-K, Tsai C, Peng C-T, Wu K-H. Umbilical cord-derived mesenchymal stem cells for hematopoietic stem cell transplantation. J Biomed Biotechnol 2012; 2012: 759503.
[http://dx.doi.org/10.1155/2012/759503]
[60]
Lü L-L, Song Y-P, Wei X-D, Fang B-J, Zhang Y-L, Li Y-F. [Comparative characterization of mesenchymal stem cells from human umbilical cord tissue and bone marrow]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2008; 16(1): 140-6.
[PMID: 18315918]
[61]
Shen C, Yang C, Xu S, Zhao H. Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci 2019; 9(1): 17.
[http://dx.doi.org/10.1186/s13578-019-0281-3] [PMID: 30792848]
[62]
Dabrowski FA, Burdzinska A, Kulesza A, et al. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J Obstet Gynaecol Res 2017; 43(11): 1758-68.
[http://dx.doi.org/10.1111/jog.13432] [PMID: 28707770]
[63]
Sriramulu S, Banerjee A, Di Liddo R, et al. Concise review on clinical applications of conditioned medium derived from human umbilical cord-mesenchymal stem cells (UC-MSCs). Int J Hematol Oncol Stem Cell Res 2018; 12(3): 230-4.
[PMID: 30595826]
[64]
Bharti D, Shivakumar SB, Park JK, et al. Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res 2018; 372(1): 51-65.
[http://dx.doi.org/10.1007/s00441-017-2699-4] [PMID: 29204746]
[65]
Cafforio P, Viggiano L, Mannavola F, et al. pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo. Stem Cell Res Ther 2017; 8(1): 206.
[http://dx.doi.org/10.1186/s13287-017-0655-6] [PMID: 28962646]
[66]
Tanaka E, Ogawa Y, Mukai T, et al. Dose-dependent effect of intravenous administration of human umbilical cord-derived mesenchymal stem cells in neonatal stroke mice. Front Neuro 2018; 9: 133.
[http://dx.doi.org/10.3389/fneur.2018.00133]
[67]
Zhang X, Li J, Ye P, Gao G, Hubbell K, Cui X. Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model. Acta Biomater 2017; 59: 317-26.
[http://dx.doi.org/10.1016/j.actbio.2017.07.001]
[68]
Hill AJ, Zwart I, Tam HH, et al. Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats. Stem Cells Dev 2009; 18(3): 399-409.
[http://dx.doi.org/10.1089/scd.2008.0084] [PMID: 18665766]
[69]
Garzón I, Martín-Piedra MA, Alfonso-Rodríguez C, et al. Generation of a biomimetic human artificial cornea model using Wharton’s jelly mesenchymal stem cells. Invest Ophthalmol Vis Sci 2014; 55(7): 4073-83.
[http://dx.doi.org/10.1167/iovs.14-14304] [PMID: 24906855]
[70]
Yamashita K, Inagaki E, Hatou S, et al. Corneal endothelial regeneration using mesenchymal stem cells derived from human umbilical cord. Stem Cells Dev 2018; 27(16): 1097-108.
[http://dx.doi.org/10.1089/scd.2017.0297] [PMID: 29929442]
[71]
Zhang W, Wang Y, Kong J, Dong M, Duan H, Chen S. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci Rep 2017; 7(1): 408.
[http://dx.doi.org/10.1038/s41598-017-00298-2] [PMID: 28341839]
[72]
Ji S, Lin S, Chen J, et al. Neuroprotection of transplanting human umbilical cord mesenchymal stem cells in a microbead induced ocular hypertension rat model. Curr Eye Res 2018; 43(6): 810-20.
[http://dx.doi.org/10.1080/02713683.2018.1440604] [PMID: 29505314]
[73]
Mangunsong C, Putera B, Haifa R, et al. Safety issues of peribulbar injection of umbilical cord mesenchymal stem cell (UC-MSC) in patients with retinitis pigmentosa. Cytotherapy 2019; 21(5): S83.
[http://dx.doi.org/10.1016/j.jcyt.2019.03.500]
[74]
Lam J, Lee EJ, Clark EC, Mikos AG. Honing cell and tissue culture conditions for bone and cartilage tissue engineering. Cold Spring Harb Perspect Med 2017; 7(12): a025734.
[http://dx.doi.org/10.1101/cshperspect.a025734] [PMID: 28348176]
[75]
Liu Y, Mu R, Wang S, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther 2010; 12(6): R210.
[http://dx.doi.org/10.1186/ar3187] [PMID: 21080925]
[76]
Miranda J P, Camões S P, Gaspar M M, et al. The secretome derived from 3D-cultured umbilical cord tissue MSCs counteracts manifestations typifying rheumatoid arthritis. Frontiers in immunology 2019; 10: 18-28.
[77]
Zheng P, Hu X, Lou Y, Tang K. A rabbit model of osteochondral regeneration using three-dimensional printed polycaprolactone-hydroxyapatite scaffolds coated with umbilical cord blood mesenchymal stem cells and chondrocytes. Med Sci Monit 2019; 25: 7361-9.
[http://dx.doi.org/10.12659/MSM.915441]
[78]
Greish S, Abogresha N, Abdel-Hady Z, Zakaria E, Ghaly M, Hefny M. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J Stem Cells 2012; 4(10): 101-9.
[http://dx.doi.org/10.4252/wjsc.v4.i10.101] [PMID: 23189211]
[79]
Zhang Y, Hao Z, Wang P, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif 2019; 52(2): e12570.
[http://dx.doi.org/10.1111/cpr.12570] [PMID: 30663158]
[80]
Ha CW, Park YB, Chung JY, Park YG. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Transl Med 2015; 4(9): 1044-51.
[http://dx.doi.org/10.5966/sctm.2014-0264] [PMID: 26240434]
[81]
Park YB, Ha CW, Kim JA, et al. Single-stage cell-based cartilage repair in a rabbit model: Cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis Cartilage 2017; 25(4): 570-80.
[http://dx.doi.org/10.1016/j.joca.2016.10.012] [PMID: 27789339]
[82]
Wang L, Wang L, Cong X, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem Cells Dev 2013; 22(24): 3192-202.
[http://dx.doi.org/10.1089/scd.2013.0023] [PMID: 23941289]
[83]
Vassalli G, Moccetti T. Cardiac repair with allogeneic mesenchymal stem cells after myocardial infarction. Swiss Med Wkly 2011; 141(w13209): w13209.
[http://dx.doi.org/10.4414/smw.2011.13209] [PMID: 21607881]
[84]
Gnecchi M, Danieli P, Cervio E. Mesenchymal stem cell therapy for heart disease. Vascul Pharmacol 2012; 57(1): 48-55.
[http://dx.doi.org/10.1007/978-1-62703-200-1_13]
[85]
Yoon YS, Lee N, Scadova H. Myocardial regeneration with bone- marrow-derived stem cells. Biol Cell 2005; 97(4): 253-63.
[http://dx.doi.org/10.1042/BC20040099] [PMID: 15762847]
[86]
Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun 2006; 340(2): 639-47.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.047] [PMID: 16378596]
[87]
Liu CB, Huang H, Sun P, et al. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Transl Med 2016; 5(8): 1004-13.
[http://dx.doi.org/10.5966/sctm.2015-0298] [PMID: 27334487]
[88]
Zhang W, Liu XC, Yang L, et al. Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coron Artery Dis 2013; 24(7): 549-58.
[http://dx.doi.org/10.1097/MCA.0b013e3283640f00] [PMID: 23892469]
[89]
Zhao L, Liu X, Zhang Y, et al. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Exp Cell Res 2016; 344(1): 30-9.
[http://dx.doi.org/10.1016/j.yexcr.2016.03.024] [PMID: 27025401]
[90]
Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res 2017; 121(10): 1192-204.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310712] [PMID: 28974553]
[91]
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018; 2018: 3057624.
[http://dx.doi.org/10.1155/2018/3057624]
[92]
Seo JH, Cho S-R. Neurorestoration induced by mesenchymal stem cells: Potential therapeutic mechanisms for clinical trials. Yonsei Med J 2012; 53(6): 1059-67.
[http://dx.doi.org/10.3349/ymj.2012.53.6.1059] [PMID: 23074102]
[93]
van Velthoven CT, Kavelaars A, Heijnen CJ. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage. Pediatr Res 2012; 71(4 Pt 2): 474-81.
[http://dx.doi.org/10.1038/pr.2011.64] [PMID: 22430383]
[94]
Boomsma RA, Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One 2012; 7(4): e35685.
[http://dx.doi.org/10.1371/journal.pone.0035685] [PMID: 22558198]
[95]
Yang H, Yang H, Xie Z, Wei L, Bi J. Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PLoS One 2013; 8(7): e69129.
[http://dx.doi.org/10.1371/journal.pone.0069129]
[96]
Mukai T, Mori Y, Shimazu T, et al. Intravenous injection of umbilical cord-derived mesenchymal stromal cells attenuates reactive gliosis and hypomyelination in a neonatal intraventricular hemorrhage model. Neuroscience 2017; 355: 175-87.
[http://dx.doi.org/10.1016/j.neuroscience.2017.05.006]
[97]
Dong H, Li G, Shang C, et al. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy. Am J Transl Res 2018; 10(3): 901-6.
[PMID: 29636880]
[98]
Okur SÇ, Erdoğan S, Demir CS, Günel G, Karaöz E. The effect of umbilical cord-derived mesenchymal stem cell transplantation in a patient with cerebral palsy: A case report. Int J Stem Cells 2018; 11(1): 141-7.
[http://dx.doi.org/10.15283/ijsc17077] [PMID: 29699386]
[99]
Boruczkowski D, Zdolińska-Malinowska I. Wharton’s jelly mesenchymal stem cell administration improves quality of life and self-sufficiency in children with cerebral palsy: Results from a retrospective study. Stem Cells Int 2019; 2019: 7402151.
[100]
Niu J-W, Zhang B, Chen H. Safety and efficacy of human umbilical cord-derived mesenchymal stem cells in patients with Alzheimer’s disease: Study protocol for an open-label self-control trial. Clin Trials Degener Dis 2016; 1(1): 1.
[http://dx.doi.org/10.4103/2468-5658.179741]
[101]
Miao X, Wu X, Shi W. Umbilical cord mesenchymal stem cells in neurological disorders: A clinical study. Indian J Biochem Biophys 2015; 52(1): 140-6.
[102]
Kuo TK, Hung SP, Chuang CH, et al. Stem cell therapy for liver disease: Parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 2008; 134(7): 2111-21.
[http://dx.doi.org/10.1053/j.gastro.2008.03.015]
[103]
Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017; 49(6): e346-6.
[http://dx.doi.org/10.1038/emm.2017.63] [PMID: 28620221]
[104]
Yoon H-H, Jung B-Y, Seo Y-K, Song K-Y, Park J-K. In vitro hepatic differentiation of umbilical cord-derived mesenchymal stem cell. Process Biochem 2010; 45(12): 1857-64.
[http://dx.doi.org/10.1016/j.procbio.2010.06.009]
[105]
Sun Y, Wang Y, Zhou L, et al. Spheroid-cultured human umbilical cord-derived mesenchymal stem cells attenuate hepatic ischemia-reperfusion injury in rats. Sci Rep 2018; 8(1): 2518.
[http://dx.doi.org/10.1038/s41598-018-20975-0] [PMID: 29410537]
[106]
Yan W, Li D, Chen T, Tian G, Zhou P, Ju X. Umbilical cord MSCs reverse D-galactose-induced hepatic mitochondrial dysfunctionviaactivation of Nrf2/HO-1 pathway. Biol Pharm Bull 2017; 40(8): 1174-82.
[http://dx.doi.org/10.1248/bpb.b16-00777] [PMID: 28502921]
[107]
Chai N-L, Zhang X-B, Chen S-W, Fan K-X, Linghu E-Q. Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats. World J Gastroenterol 2016; 22(26): 6036-48.
[http://dx.doi.org/10.3748/wjg.v22.i26.6036] [PMID: 27468195]
[108]
Yang L, Wang Y, Wang X, Liu Y. Effect of allogeneic umbilical cord mesenchymal stem cell transplantation in a rat model of hepatic cirrhosis. J Tradit Chin Med 2015; 35(1): 63-8.
[http://dx.doi.org/10.1016/S0254-6272(15)30010-8] [PMID: 25842730]
[109]
Lin H, Zhang Z, Shi M, et al. [Prospective controlled trial of safety of human umbilical cord derived-mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis]. Zhonghua Gan Zang Bing Za Zhi 2012; 20(7): 487-91.
[110]
Shi M, Zhang Z, Xu R, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 2012; 1(10): 725-31.
[http://dx.doi.org/10.5966/sctm.2012-0034] [PMID: 23197664]
[111]
Bo L, Jing D, Junfei Z. Efficacy of human umbilical cord-derived mesenchymal stem cells in treatment of patients with subacute-on-chronic liver failure. J Clin Hepatol 2013; 1: 9.
[112]
Li Y-H, Xu Y, Wu H-M, Yang J, Yang L-H, Yue-Meng W. Umbilical cord-derived mesenchymal stem cell transplantation in hepatitis B virus related acute-on-chronic liver failure treated with plasma exchange and entecavir: A 24-month prospective study. Stem Cell Rev Rep 2016; 12(6): 645-53.
[http://dx.doi.org/10.1007/s12015-016-9683-3] [PMID: 27687792]
[113]
Harrell C R, Sadikot R, Pascual J, et al. Mesenchymal stem cell-based therapy of inflammatory lung diseases: Current understanding and future perspectives. Stem Cells Int 2019; 2019: 4236973.
[http://dx.doi.org/10.1155/2019/4236973] [PMID: 31191672]
[114]
Zhen G, Liu H, Gu N, Zhang H, Xu Y, Zhang Z. Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci 2008; 13(3415): 3415-22.
[http://dx.doi.org/10.2741/2936] [PMID: 18508443]
[115]
Li J, Li D, Liu X, Tang S, Wei F. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. J Inflamm 2012; 9(1): 33.
[http://dx.doi.org/10.1186/1476-9255-9-33] [PMID: 22974286]
[116]
Zhu H, Xiong Y, Xia Y, et al. Therapeutic effects of human umbilical cord-derived mesenchymal stem cells in acute lung injury mice. Sci Rep 2017; 7(1): 39889.
[http://dx.doi.org/10.1038/srep39889] [PMID: 28051154]
[117]
Hou C, Peng D, Gao L, et al. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O2-exposed newborn rat. Biochem Biophys Res Commun 2018; 495(2): 1972-9.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.055] [PMID: 29242152]
[118]
Sha Y, Xie Y, Chen Z, et al. [Interference research of umbilical cord mesenchymal stem cells on the pulmonary fibrosis in silicosis rats]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2019; 37(6): 401-7.
[119]
Li YK, Wang H, Jiang CG, et al. Therapeutic effects and the underlying mechanism of umbilical cord-derived mesenchymal stem cells for bleomycin induced lung injury in rats. Zhonghua Jie He He Hu Xi Za Zhi 2013; 36(11): 808-13.
[PMID: 24507390]
[120]
Bich PLT, Thi HN, Chau HDN, et al. Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: A pilot clinical study. Stem Cell Res Ther 2020; 11(1): 1-14.
[PMID: 31900237]
[121]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13(1): 49.
[http://dx.doi.org/10.1186/s12967-015-0417-0] [PMID: 25638205]
[122]
Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther 2016; 7(1): 37.
[http://dx.doi.org/10.1186/s13287-016-0303-6] [PMID: 26960535]
[123]
Al-Shaibani MB, Wang Xn, Lovat PE, Dickinson AM. Cellular therapy for wounds: Applications of mesenchymal stem cells in wound healing. In: Alexandrescu V, Ed. Wound healing-new insights into ancient challenges. London: InTech 2016; pp. 99-131.
[124]
Li M, Luan F, Zhao Y, et al. Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J 2017; 14(1): 64-73.
[http://dx.doi.org/10.1111/iwj.12551] [PMID: 26635066]
[125]
Honnegowda TM, Kumar P, Udupa E, Kumar S, Kumar U, Rao P. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthet Res 2015; 2(4): 243-9.
[126]
Arutyunyan I, Fatkhudinov T, Kananykhina E, et al. Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: In vitro study. Stem Cell Res Ther 2016; 7(1): 46.
[http://dx.doi.org/10.1186/s13287-016-0305-4] [PMID: 27001300]
[127]
Li M, Zhao Y, Hao H, et al. Umbilical cord-derived mesenchymal stromal cell-conditioned medium exerts in vitro antiaging effects in human fibroblasts. Cytotherapy 2017; 19(3): 371-83.
[http://dx.doi.org/10.1016/j.jcyt.2016.12.001] [PMID: 28081982]
[128]
Shrestha C, Zhao L, Chen K, He H, Mo Z. Enhanced healing of diabetic wounds by subcutaneous administration of human umbilical cord derived stem cells and their conditioned media. Int J Endocrinol 2013; 2013: 592454.
[http://dx.doi.org/10.1155/2013/592454]
[129]
Abo-Elkheir W, Hamza F, Elmofty AM, et al. Role of cord blood and bone marrow mesenchymal stem cells in recent deep burn: A case-control prospective study. Am J Stem Cells 2017; 6(3): 23-35.
[PMID: 29142785]
[130]
Bochon B, Kozubska M, Surygała G, et al. Mesenchymal stem cells-potential applications in kidney diseases. Int J Mol Sci 2019; 20(10): 2462.
[http://dx.doi.org/10.3390/ijms20102462] [PMID: 31109047]
[131]
Cao H, Qian H, Xu W, et al. Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnol Lett 2010; 32(5): 725-32.
[http://dx.doi.org/10.1007/s10529-010-0207-y] [PMID: 20131083]
[132]
Gu Z, Akiyama K, Ma X, et al. Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus 2010; 19(13): 1502-14.
[http://dx.doi.org/10.1177/0961203310373782] [PMID: 20647254]
[133]
Chen Q, Guan X, Zuo X, Wang J, Yin W. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm Sin B 2016; 6(3): 183-8.
[http://dx.doi.org/10.1016/j.apsb.2016.02.004] [PMID: 27175328]
[134]
Tam FWK, Ong ACM. Renal monocyte chemoattractant protein-1: An emerging universal biomarker and therapeutic target for kidney diseases? Nephrol Dial Transplant 2020; 35(2): 198-203.
[PMID: 31089695]
[135]
Zhang Z, Niu L, Tang X, et al. Mesenchymal stem cells prevent podocyte injury in lupus-prone B6.MRL-Faslpr mice via polarizing macrophage into an anti-inflammatory phenotype. Nephrol Dial Transplant 2019; 34(4): 597-605.
[http://dx.doi.org/10.1093/ndt/gfy195] [PMID: 29982691]
[136]
Liu P, Feng Y, Dong D, et al. Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Scientific reports 2016; 6: 20287-7.
[http://dx.doi.org/10.1038/srep20287]
[137]
Todeschi MR, El Backly R, Capelli C, et al. Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev 2015; 24(13): 1570-81.
[http://dx.doi.org/10.1089/scd.2014.0490] [PMID: 25685989]
[138]
Zhang Y, Liu S, Guo W, et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthritis Cartilage 2018; 26(7): 954-65.
[http://dx.doi.org/10.1016/j.joca.2018.01.019] [PMID: 29391278]
[139]
Li T, Ma Q, Ning M, Zhao Y, Hou Y. Cotransplantation of human umbilical cord-derived mesenchymal stem cells and umbilical cord blood-derived CD34+ cells in a rabbit model of myocardial infarction. Mol Cell Biochem 2014; 387(1-2): 91-100.
[http://dx.doi.org/10.1007/s11010-013-1874-5] [PMID: 24166198]
[140]
Zhao L, Sun Y, Lianchong L. Human umbilical cord mesenchymal stem cells via intraventricular injection improve the cardiac function of myocardial infarction rats. Chinese J Tissue Eng Res 2017; 21(25): 4026-31.
[141]
Lim M, Wang W, Liang L, et al. Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res Ther 2018; 9(1): 129.
[http://dx.doi.org/10.1186/s13287-018-0888-z] [PMID: 29751831]
[142]
Fang Z, Yin X, Wang J, et al. Functional characterization of human umbilical cord-derived mesenchymal stem cells for treatment of systolic heart failure. Exp Ther Med 2016; 12(5): 3328-32.
[http://dx.doi.org/10.3892/etm.2016.3748] [PMID: 27882158]
[143]
Fink KD, Rossignol J, Crane AT, et al. Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: Behavioral and neuropathological analysis. Stem Cell Res Ther 2013; 4(5): 130.
[http://dx.doi.org/10.1186/scrt341] [PMID: 24456799]
[144]
Wang W-T, Gu P, Qiu F-C, et al. Intravenous transplantation of allograft hUC-MSC was more effective than subarachnoid transplantation of BM-MSCs in patients with Parkinson’s syndrome and secondary Parkinson’s syndrome. J Biomater Tissue Eng 2016; 6(2): 158-64.
[http://dx.doi.org/10.1166/jbt.2016.1425]
[145]
Meng M, Liu Y, Wang W, et al. Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. Am J Transl Res 2018; 10(1): 212-23.
[PMID: 29423006]
[146]
Li B, Cheng Y, Yu S, et al. Human umbilical cord-derived mesenchymal stem cell therapy ameliorates nonalcoholic fatty liver disease in obese type 2 diabetic mice. Stem Cells Int 2019; 2019: 8628027.
[147]
Bahrami H, Keshel SH, Chari AJ, Biazar E. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects. Artif Cells Nanomed Biotechnol 2016; 44(6): 1556-60.
[http://dx.doi.org/10.3109/21691401.2015.1062390] [PMID: 26140614]
[148]
Biazar E, Keshel SH. Unrestricted somatic stem cells loaded in nanofibrous scaffolds as potential candidate for skin regeneration. Int J Polym Mater 2014; 63(14): 741-52.
[http://dx.doi.org/10.1080/00914037.2013.879447]
[149]
Wei L, Zhang J, Yang Z-L, You H. Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis. Cytotherapy 2017; 19(5): 586-602.
[http://dx.doi.org/10.1016/j.jcyt.2017.02.359] [PMID: 28314668]
[150]
Perico L, Morigi M, Rota C, et al. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun 2017; 8(1): 983.
[http://dx.doi.org/10.1038/s41467-017-00937-2] [PMID: 29042548]

© 2024 Bentham Science Publishers | Privacy Policy