Review Article

金纳米颗粒在三阴性乳腺癌治疗中的应用

卷 30, 期 3, 2023

发表于: 04 January, 2022

页: [316 - 334] 页: 19

弟呕挨: 10.2174/0929867328666210902141257

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

背景:三阴性乳腺癌(Triple-negative breast cancer, TNBC)是最具侵袭性的乳腺癌类型,转移增强,生存期较差。虽然化疗、放疗、光热疗法(PTT)、光动力疗法(PDT)和基因传递被用于治疗TNBC,但各种副作用限制了这些疗法对TNBC的治疗。在这篇综述文章中,我们重点介绍了金纳米颗粒(AuNPs)的作用机制,以提高靶向给药治疗TNBC细胞的疗效。 方法:以“金纳米颗粒与三阴性乳腺癌”和“金纳米颗粒与癌症”为搜索标准,从PubMed、Scopus、Web of Science和谷歌Scholar收集研究数据。虽然我们回顾了许多旧论文,但被引用最多的论文是最近十年的。 结果:多项研究表明,AuNPs可以提高生物利用度、位点特异性给药、化疗、放疗、PTT和PDT的疗效以及调节基因表达。通过抑制细胞增殖、进展和转移,AuNPs在调节TNBC治疗中的作用已在体外和体内研究中得到证实。由于aunp的这些机制作用是开发具有增强治疗TNBC疗效的药物的最理想的方法,因此将AuNPs应用于TNBC治疗可能是一种有前途的方法。 结论:本文综述了AuNPs的作用机制及其在增强TNBC治疗中的应用。需要更多的注意力来研究aunp在开发它们作为单一或协同抗TNBC的抗癌剂中的作用。

关键词: 金纳米颗粒,三阴性乳腺癌,药物输送,化疗,放疗,光疗。

[1]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(S3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[5]
Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res., 2007, 13(15 Pt 1), 4429-4434.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[6]
Morris, G.J.; Naidu, S.; Topham, A.K.; Guiles, F.; Xu, Y.; McCue, P.; Schwartz, G.F.; Park, P.K.; Rosenberg, A.L.; Brill, K.; Mitchell, E.P. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: A single-institution compilation compared with the national cancer institute’s surveillance, epidemiology, and end results database. Cancer, 2007, 110(4), 876-884.
[http://dx.doi.org/10.1002/cncr.22836] [PMID: 17620276]
[7]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[8]
Sorlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; Demeter, J.; Perou, C.M.; Lønning, P.E.; Brown, P.O.; Børresen-Dale, A.L.; Botstein, D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8418-8423.
[http://dx.doi.org/10.1073/pnas.0932692100] [PMID: 12829800]
[9]
Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; Hicks, D.G.; Lester, S.; Love, R.; Mangu, P.B.; McShane, L.; Miller, K.; Osborne, C.K.; Paik, S.; Perlmutter, J.; Rhodes, A.; Sasano, H.; Schwartz, J.N.; Sweep, F.C.; Taube, S.; Torlakovic, E.E.; Valenstein, P.; Viale, G.; Visscher, D.; Wheeler, T.; Williams, R.B.; Wittliff, J.L.; Wolff, A.C. American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol., 2010, 28(16), 2784-2795.
[http://dx.doi.org/10.1200/JCO.2009.25.6529] [PMID: 20404251]
[10]
Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 2015, 24(Suppl. 2), S26-S35.
[http://dx.doi.org/10.1016/j.breast.2015.07.008] [PMID: 26253814]
[11]
Winters, S.; Martin, C.; Murphy, D.; Shokar, N.K. Breast cancer epidemiology, Prevention, and screening. Prog. Mol. Biol. Transl. Sci., 2017, 151, 1-32.
[http://dx.doi.org/10.1016/bs.pmbts.2017.07.002] [PMID: 29096890]
[12]
Chang-Qing, Y.; Jie, L.; Shi-Qi, Z.; Kun, Z.; Zi-Qian, G.; Ran, X.; Hui-Meng, L.; Ren-Bin, Z.; Gang, Z.; Da-Chuan, Y.; Chen-Yan, Z. Recent treatment progress of triple negative breast cancer. Prog. Biophys. Mol. Biol., 2020, 151, 40-53.
[http://dx.doi.org/10.1016/j.pbiomolbio.2019.11.007] [PMID: 31761352]
[13]
Chantada-Vázquez, M.D.P.; Castro López, A.; García-Vence, M.; Acea-Nebril, B.; Bravo, S.B.; Núñez, C. Protein corona gold nanoparticles fingerprinting reveals a profile of blood coagulation proteins in the serum of HER2-overexpressing breast cancer patients. Int. J. Mol. Sci., 2020, 21(22), 8449.
[http://dx.doi.org/10.3390/ijms21228449] [PMID: 33182810]
[14]
Engebraaten, O.; Vollan, H.K.M.; Børresen-Dale, A.L. Triple-negative breast cancer and the need for new therapeutic targets. Am. J. Pathol., 2013, 183(4), 1064-1074.
[http://dx.doi.org/10.1016/j.ajpath.2013.05.033] [PMID: 23920327]
[15]
Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res. Treat., 2018, 169(3), 397-406.
[http://dx.doi.org/10.1007/s10549-018-4697-y] [PMID: 29417298]
[16]
Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet., 2016, 293(2), 247-269.
[http://dx.doi.org/10.1007/s00404-015-3859-y] [PMID: 26341644]
[17]
Jia, H.; Truica, C.I.; Wang, B.; Wang, Y.; Ren, X.; Harvey, H.A.; Song, J.; Yang, J.M. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resist. Updat., 2017, 32, 1-15.
[http://dx.doi.org/10.1016/j.drup.2017.07.002] [PMID: 29145974]
[18]
Gupta, G.K.; Collier, A.L.; Lee, D.; Hoefer, R.A.; Zheleva, V.; Siewertsz van Reesema, L.L.; Tang-Tan, A.M.; Guye, M.L.; Chang, D.Z.; Winston, J.S.; Samli, B.; Jansen, R.J.; Petricoin, E.F.; Goetz, M.P.; Bear, H.D.; Tang, A.H. Perspectives on triple-negative breast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies. Cancers (Basel), 2020, 12(9), 2392.
[http://dx.doi.org/10.3390/cancers12092392] [PMID: 32846967]
[19]
Lebert, J.M.; Lester, R.; Powell, E.; Seal, M.; McCarthy, J. Advances in the systemic treatment of triple-negative breast cancer. Curr. Oncol., 2018, 25(Suppl. 1), S142-S150.
[http://dx.doi.org/10.3747/co.25.3954] [PMID: 29910657]
[20]
von Minckwitz, G.; Schneeweiss, A.; Loibl, S.; Salat, C.; Denkert, C.; Rezai, M.; Blohmer, J.U.; Jackisch, C.; Paepke, S.; Gerber, B.; Zahm, D.M.; Kümmel, S.; Eidtmann, H.; Klare, P.; Huober, J.; Costa, S.; Tesch, H.; Hanusch, C.; Hilfrich, J.; Khandan, F.; Fasching, P.A.; Sinn, B.V.; Engels, K.; Mehta, K.; Nekljudova, V.; Untch, M. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol., 2014, 15(7), 747-756.
[http://dx.doi.org/10.1016/S1470-2045(14)70160-3] [PMID: 24794243]
[21]
Chaudhary, L.N.; Wilkinson, K.H.; Kong, A. Triple-negative breast cancer: Who should receive neoadjuvant chemotherapy? Surg. Oncol. Clin. N. Am., 2018, 27(1), 141-153.
[http://dx.doi.org/10.1016/j.soc.2017.08.004] [PMID: 29132557]
[22]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[23]
Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold nanoparticles for nucleic acid delivery. Mol. Ther., 2014, 22(6), 1075-1083.
[http://dx.doi.org/10.1038/mt.2014.30] [PMID: 24599278]
[24]
He, C.; Chow, J.C. Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study. AIMS Bioeng., 2016, 3(3), 352-361.
[http://dx.doi.org/10.3934/bioeng.2016.3.352]
[25]
Janic, B.; Brown, S.L.; Neff, R.; Liu, F.; Mao, G.; Chen, Y.; Jackson, L.; Chetty, I.J.; Movsas, B.; Wen, N. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol. Ther., 2021, 22(2), 124-135.
[http://dx.doi.org/10.1080/15384047.2020.1861923] [PMID: 33459132]
[26]
Chatterjee, D.K.; Diagaradjane, P.; Krishnan, S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv., 2011, 2(8), 1001-1014.
[http://dx.doi.org/10.4155/tde.11.72] [PMID: 22506095]
[27]
Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[28]
Jenkins, S.V.; Nima, Z.A.; Vang, K.B.; Kannarpady, G.; Nedosekin, D.A.; Zharov, V.P.; Griffin, R.J.; Biris, A.S.; Dings, R.P.M. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precis. Oncol., 2017, 1(1), 27.
[http://dx.doi.org/10.1038/s41698-017-0030-1] [PMID: 29872709]
[29]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 2017, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[30]
Mody, V.V.; Nounou, M.I.; Bikram, M. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv. Drug Deliv. Rev., 2009, 61(10), 795-807.
[http://dx.doi.org/10.1016/j.addr.2009.04.020] [PMID: 19427886]
[31]
Ramalingam, V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv. Colloid Interface Sci., 2019, 271, 101989.
[http://dx.doi.org/10.1016/j.cis.2019.101989] [PMID: 31330396]
[32]
Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol., 2020, 8, 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[33]
Antonii, F. Panacea Aurea-Auro Potabile; Ex Bibliopolio Frobeniano: Hamburg, 1618, p. 250.
[34]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Nat. (Engl. Ed.), 2011, 3(2), 34-55.
[http://dx.doi.org/10.32607/20758251-2011-3-2-34-55] [PMID: 22649683]
[35]
Sun, H.; Jia, J.; Jiang, C.; Zhai, S. Gold nanoparticle-induced cell death and potential applications in nanomedicine. Int. J. Mol. Sci., 2018, 19(3), 754.
[http://dx.doi.org/10.3390/ijms19030754] [PMID: 29518914]
[36]
Bhattacharya, R.; Patra, C.R.; Verma, R.; Kumar, S.; Greipp, P.R.; Mukherjee, P. Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv. Mater., 2010, 19(5), 711-716.
[http://dx.doi.org/10.1002/adma.200602098]
[37]
Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev., 2012, 41(7), 2849-2866.
[http://dx.doi.org/10.1039/C1CS15280G] [PMID: 22182959]
[38]
Shrestha, B.; Wang, L.; Zhang, H.; Hung, C.Y.; Tang, L. Gold nanoparticles mediated drug-gene combinational therapy for breast cancer treatment. Int. J. Nanomedicine, 2020, 15, 8109-8119.
[http://dx.doi.org/10.2147/IJN.S258625] [PMID: 33116521]
[39]
Gamaleia, N.F.; Shton, I.O. Gold mining for PDT: Great expectations from tiny nanoparticles. Photodiagn. Photodyn. Ther., 2015, 12(2), 221-231.
[http://dx.doi.org/10.1016/j.pdpdt.2015.03.002] [PMID: 25818545]
[40]
Nicol, J.R.; Dixon, D.; Coulter, J.A. Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics. Nanomedicine (Lond.), 2015, 10(8), 1315-1326.
[http://dx.doi.org/10.2217/nnm.14.219] [PMID: 25955125]
[41]
Morshed, R.A.; Muroski, M.E.; Dai, Q.; Wegscheid, M.L.; Auffinger, B.; Yu, D.; Han, Y.; Zhang, L.; Wu, M.; Cheng, Y.; Lesniak, M.S. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol. Pharm., 2016, 13(6), 1843-1854.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00004] [PMID: 27169484]
[42]
Schaeublin, N.M.; Braydich-Stolle, L.K.; Schrand, A.M.; Miller, J.M.; Hutchison, J.; Schlager, J.J.; Hussain, S.M. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale, 2011, 3(2), 410-420.
[http://dx.doi.org/10.1039/c0nr00478b] [PMID: 21229159]
[43]
Das, S.; Halder, A.; Mandal, S.; Mazumder, M.A.J.; Bera, T.; Mukherjee, A.; Roy, P. Andrographolide engineered gold nanoparticle to overcome drug resistant visceral leishmaniasis. Artif. Cells Nanomed. Biotechnol, 2018, 46(sup1), 751-762.
[http://dx.doi.org/10.1080/21691401.2018.1435549] [PMID: 29421940]
[44]
Wang, J.; Feng, Y.; Tian, X.; Li, C.; Liu, L. Disassembling and degradation of amyloid protein aggregates based on gold nanoparticle-modified g-C3N4. Colloids Surf. B Biointerfaces, 2020, 192, 111051. Epub ahead of print
[http://dx.doi.org/10.1016/j.colsurfb.2020.111051] [PMID: 32344165]
[45]
Liu, L.; Li, M.; Xu, M.; Wang, Z.; Zeng, Z.; Li, Y.; Zhang, Y.; You, R.; Li, C.H.; Guan, Y.Q. Actively targeted gold nanoparticle composites improve behavior and cognitive impairment in Parkinson’s disease mice. Mater. Sci. Eng. C, 2020, 114, 111028.
[http://dx.doi.org/10.1016/j.msec.2020.111028] [PMID: 32994016]
[46]
Staroverov, S.; Kozlov, S.; Fomin, A.; Gabalov, K.; Volkov, A.; Domnitsky, I.; Dykman, L.; Guliy, O. Synthesis of a silymarin-gold nanoparticle conjugate and analysis of its liver-protecting activity. Curr. Pharm. Biotechnol., 2021, 22(15), 2001-2007.
[http://dx.doi.org/10.2174/1389201022666210101163734] [PMID: 33388017]
[47]
Manna, K.; Mishra, S.; Saha, M.; Mahapatra, S.; Saha, C.; Yenge, G.; Gaikwad, N.; Pal, R.; Oulkar, D.; Banerjee, K.; Das Saha, K. Amelioration of diabetic nephropathy using pomegranate peel extract-stabilized gold nanoparticles: Assessment of NF-κB and Nrf2 signaling system. Int. J. Nanomedicine, 2019, 14, 1753-1777.
[http://dx.doi.org/10.2147/IJN.S176013] [PMID: 30880978]
[48]
Nosratabadi, R.; Rastin, M.; Sankian, M.; Haghmorad, D.; Mahmoudi, M. Hyperforin-loaded gold nanoparticle alleviates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Nanomedicine (Lond.), 2016, 12(7), 1961-1971.
[http://dx.doi.org/10.1016/j.nano.2016.04.001] [PMID: 27107531]
[49]
Libutti, S.K.; Paciotti, G.F.; Byrnes, A.A.; Alexander, H.R., Jr; Gannon, W.E.; Walker, M.; Seidel, G.D.; Yuldasheva, N.; Tamarkin, L. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res., 2010, 16(24), 6139-6149.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0978] [PMID: 20876255]
[50]
Northwesten UniverstyNU-0129 in Treating Patients With Recurrent Glioblastoma or Gliosarcoma Undergoing Surgery. , 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03020017
[51]
Rastinehad, A.R.; Anastos, H.; Wajswol, E.; Winoker, J.S.; Sfakianos, J.P.; Doppalapudi, S.K.; Carrick, M.R.; Knauer, C.J.; Taouli, B.; Lewis, S.C.; Tewari, A.K.; Schwartz, J.A.; Canfield, S.E.; George, A.K.; West, J.L.; Halas, N.J. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA, 2019, 116(37), 18590-18596.
[http://dx.doi.org/10.1073/pnas.1906929116] [PMID: 31451630]
[52]
Liedtke, C.; Hess, K.R.; Karn, T.; Rody, A.; Kiesel, L.; Hortobagyi, G.N.; Pusztai, L.; Gonzalez-Angulo, A.M. The prognostic impact of age in patients with triple-negative breast cancer. Breast Cancer Res. Treat., 2013, 138(2), 591-599.
[http://dx.doi.org/10.1007/s10549-013-2461-x] [PMID: 23460246]
[53]
Caccuri, F.; Sommariva, M.; Marsico, S.; Giordano, F.; Zani, A.; Giacomini, A.; Fraefel, C.; Balsari, A.; Caruso, A. Inhibition of DNA repair mechanisms and induction of apoptosis in triple negative breast cancer cells expressing the human herpesvirus 6 U94. Cancers (Basel), 2019, 11(7), 1006.
[http://dx.doi.org/10.3390/cancers11071006] [PMID: 31323788]
[54]
Rajesh, E.; Sankari, L.S.; Malathi, L.; Krupaa, J.R. Naturally occurring products in cancer therapy. J. Pharm. Bioallied Sci., 2015, 7(Suppl. 1), S181-S183.
[http://dx.doi.org/10.4103/0975-7406.155895] [PMID: 26015704]
[55]
Webb, M.J.; Kukard, C. A Review of natural therapies potentially relevant in triple negative breast cancer aimed at targeting cancer cell vulnerabilities. Integr. Cancer Ther., 2020, 19, 1534735420975861.
[http://dx.doi.org/10.1177/1534735420975861] [PMID: 33243021]
[56]
Barkat, M.A. Harshita; Ahmad, J.; Khan, M.A.; Beg, S.; Ahmad, F.J. Insights into the targeting potential of thymoquinone for therapeutic intervention against triple-negative breast cancer. Curr. Drug Targets, 2018, 19(1), 70-80.
[http://dx.doi.org/10.2174/1389450118666170612095959] [PMID: 28606050]
[57]
Akter, Z.; Ahmed, F.R.; Tania, M.; Khan, M.A. Targeting inflammatory mediators: An anticancer mechanism of thymoquinone action. Curr. Med. Chem., 2021, 28(1), 80-92.
[http://dx.doi.org/10.2174/0929867326666191011143642] [PMID: 31604405]
[58]
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6(23), 19580-19591.
[http://dx.doi.org/10.18632/oncotarget.3973] [PMID: 26023736]
[59]
Afrose, S.S.; Junaid, M.; Akter, Y.; Tania, M.; Zheng, M.; Khan, M.A. Targeting kinases with thymoquinone: A molecular approach to cancer therapeutics. Drug Discov. Today, 2020, 25(12), 2294-2306.
[http://dx.doi.org/10.1016/j.drudis.2020.07.019] [PMID: 32721537]
[60]
Kabil, N.; Bayraktar, R.; Kahraman, N.; Mokhlis, H.A.; Calin, G.A.; Lopez-Berestein, G.; Ozpolat, B. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Res. Treat., 2018, 171(3), 593-605.
[http://dx.doi.org/10.1007/s10549-018-4847-2] [PMID: 29971628]
[61]
Khan, M.A.; Tania, M.; Fu, J. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov. Today, 2019, 24(12), 2315-2322.
[http://dx.doi.org/10.1016/j.drudis.2019.09.007] [PMID: 31541714]
[62]
El-Far, A.H.; Al Jaouni, S.K.; Li, W.; Mousa, S.A. Protective roles of thymoquinone nanoformulations: Potential nanonutraceuticals in human diseases. Nutrients, 2018, 10(10), 1369.
[http://dx.doi.org/10.3390/nu10101369] [PMID: 30257423]
[63]
Goodman, C.M.; McCusker, C.D.; Yilmaz, T.; Rotello, V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem., 2004, 15(4), 897-900.
[http://dx.doi.org/10.1021/bc049951i] [PMID: 15264879]
[64]
Tamm, I.; Schriever, F.; Dörken, B. Apoptosis: Implications of basic research for clinical oncology. Lancet Oncol., 2001, 2(1), 33-42.
[http://dx.doi.org/10.1016/S1470-2045(00)00193-5] [PMID: 11905616]
[65]
Kamalabadi-Farahani, M.H.; Najafabadi, M.R.; Jabbarpour, Z. Apoptotic resistance of metastatic tumor cells in triple negative breast cancer: Roles of death receptor-5. Asian Pac. J. Cancer Prev., 2019, 20(6), 1743-1748.
[http://dx.doi.org/10.31557/APJCP.2019.20.6.1743] [PMID: 31244295]
[66]
Surapaneni, S.K.; Bashir, S.; Tikoo, K. Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. Sci. Rep., 2018, 8(1), 12295.
[http://dx.doi.org/10.1038/s41598-018-30541-3] [PMID: 30115982]
[67]
Nirmala, J.G.; Lopus, M. Tryptone-stabilized gold nanoparticles induce unipolar clustering of supernumerary centrosomes and G1 arrest in triple-negative breast cancer cells. Sci. Rep., 2019, 9(1), 19126.
[http://dx.doi.org/10.1038/s41598-019-55555-3] [PMID: 31836782]
[68]
Nirmala, J.G.; Beck, A.; Mehta, S.; Lopus, M. Perturbation of tubulin structure by stellate gold nanoparticles retards MDA-MB-231 breast cancer cell viability. Eur. J. Biochem., 2019, 24(7), 999-1007.
[http://dx.doi.org/10.1007/s00775-019-01694-x] [PMID: 31388822]
[69]
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 2005, 21(23), 10644-10654.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[70]
Sarkar, S.; Konar, S.; Prasad, P.N.; Rajput, S.; Kumar, B.N.P.; Rao, R.R.; Pathak, A.; Fisher, P.B.; Mandal, M. Micellear gold nanoparticles as delivery vehicles for dual tyrosine kinase inhibitor ZD6474 for metastatic breast cancer treatment. Langmuir, 2017, 33(31), 7649-7659.
[http://dx.doi.org/10.1021/acs.langmuir.7b01072] [PMID: 28701038]
[71]
Chen, Y.J.; Lee, Y.C.; Huang, C.H.; Chang, L.S. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicol. Appl. Pharmacol., 2016, 310, 98-107.
[http://dx.doi.org/10.1016/j.taap.2016.09.007] [PMID: 27634460]
[72]
Bromma, K.; Bannister, A.; Kowalewski, A.; Cicon, L.; Chithrani, D.B. Elucidating the fate of nanoparticles among key cell components of the tumor microenvironment for promoting cancer nanotechnology. Cancer Nanotechnol., 2020, 11(1), 8.
[http://dx.doi.org/10.1186/s12645-020-00064-6] [PMID: 32849921]
[73]
Khoobchandani, M.; Katti, K.K.; Karikachery, A.R.; Thipe, V.C.; Srisrimal, D.; Dhurvas Mohandoss, D.K.; Darshakumar, R.D.; Joshi, C.M.; Katti, K.V. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine - pre-clinical and pilot human clinical investigations. Int. J. Nanomedicine, 2020, 15, 181-197.
[http://dx.doi.org/10.2147/IJN.S219042] [PMID: 32021173]
[74]
Banerjee, A.; Johnson, K.T.; Banerjee, I.A.; Banerjee, D.K. Nanoformulation enhances anti-angiogenic efficacy of tunicamycin. Transl. Cancer Res., 2013, 2(4), 240-255.
[PMID: 33209651]
[75]
Shahbazi, R.; Asik, E.; Kahraman, N.; Turk, M.; Ozpolat, B.; Ulubayram, K. Modified gold-based siRNA nanotherapeutics for targeted therapy of triple-negative breast cancer. Nanomedicine (Lond.), 2017, 12(16), 1961-1973.
[http://dx.doi.org/10.2217/nnm-2017-0081] [PMID: 28745127]
[76]
Saadat, N.; Liu, F.; Haynes, B.; Nangia-Makker, P.; Bao, X.; Li, J.; Polin, L.A.; Gupta, S.; Mao, G.; Shekhar, M.P. Nano-delivery of RAD6/translesion synthesis inhibitor SMI#9 for triple-negative breast cancer therapy. Mol. Cancer Ther., 2018, 17(12), 2586-2597.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0364] [PMID: 30242094]
[77]
Haynes, B.; Zhang, Y.; Liu, F.; Li, J.; Petit, S.; Kothayer, H.; Bao, X.; Westwell, A.D.; Mao, G.; Shekhar, M.P.V. Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization. Nanomedicine (Lond.), 2016, 12(3), 745-757.
[http://dx.doi.org/10.1016/j.nano.2015.10.010] [PMID: 26563438]
[78]
Ramchandani, D.; Lee, S.K.; Yomtoubian, S.; Han, M.S.; Tung, C.H.; Mittal, V. Nanoparticle delivery of miR-708 mimetic impairs breast cancer metastasis. Mol. Cancer Ther., 2019, 18(3), 579-591.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0702] [PMID: 30679387]
[79]
Dang, M.N.; Gomez Casas, C.; Day, E.S. Photoresponsive miR-34a/nanoshell conjugates enable light-triggered gene regulation to impair the function of triple-negative breast cancer cells. Nano Lett., 2021, 21(1), 68-76.
[http://dx.doi.org/10.1021/acs.nanolett.0c03152] [PMID: 33306406]
[80]
Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front Chem., 2019, 7, 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[81]
Ong, Z.Y.; Chen, S.; Nabavi, E.; Regoutz, A.; Payne, D.J.; Elson, D.S.; Dexter, D.T.; Dunlop, I.E.; Porter, A.E. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl. Mater. Interfaces, 2017, 9(45), 39259-39270.
[http://dx.doi.org/10.1021/acsami.7b14851] [PMID: 29058874]
[82]
Zhang, M.; Kim, H.S.; Jin, T.; Moon, W.K. Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer. J. Photochem. Photobiol. B, 2017, 170, 58-64.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.03.025] [PMID: 28390259]
[83]
Wang, S.; Tian, Y.; Tian, W.; Sun, J.; Zhao, S.; Liu, Y.; Wang, C.; Tang, Y.; Ma, X.; Teng, Z.; Lu, G. Selectively sensitizing malignant cells to photothermal therapy using a CD44-targeting heat shock protein 72 depletion nanosystem. ACS Nano, 2016, 10(9), 8578-8590.
[http://dx.doi.org/10.1021/acsnano.6b03874] [PMID: 27576159]
[84]
Jadia, R.; Kydd, J.; Rai, P. Remotely phototriggered, transferrin-targeted polymeric nanoparticles for the treatment of breast cancer. Photochem. Photobiol., 2018, 94(4), 765-774.
[http://dx.doi.org/10.1111/php.12903] [PMID: 29427385]
[85]
McGowan, M. New Nano Drug Candidate Kills Aggressive Breast Cancer Cells. University of Arkansas Research Frontiers, 2020. Available from: https://researchfrontiers. uark.edu/new-nano-drug-candidate-kills-aggressive-breast-cancer-cells/ (Accessed on July 21, 2020).
[86]
Choi, J.; Kim, H.; Choi, Y. Theranostic nanoparticles for enzyme-activatable fluorescence imaging and photodynamic/chemo dual therapy of triple-negative breast cancer. Quant. Imaging Med. Surg., 2015, 5(5), 656-664.
[http://dx.doi.org/10.3978/j.issn.2223-4292.2015.08.09] [PMID: 26682135]
[87]
García Calavia, P.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci., 2018, 17(11), 1534-1552.
[http://dx.doi.org/10.1039/C8PP00271A] [PMID: 30118115]
[88]
Castilho, M.L.; Jesus, V.P.S.; Vieira, P.F.A.; Hewitt, K.C.; Raniero, L. Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer. Photodiagn. Photodyn. Ther., 2021, 33, 102186.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102186] [PMID: 33497816]
[89]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: Combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[90]
Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells, 2019, 8(9), 957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[91]
Santiago, T.; DeVaux, R.S.; Kurzatkowska, K.; Espinal, R.; Herschkowitz, J.I.; Hepel, M. Surface-enhanced Raman scattering investigation of targeted delivery and controlled release of gemcitabine. Int. J. Nanomedicine, 2017, 12, 7763-7776.
[http://dx.doi.org/10.2147/IJN.S149306] [PMID: 29123391]
[92]
Beals, N.; Thiagarajan, P.S.; Soehnlen, E.; Das, A.; Reizes, O.; Lathia, J.D.; Basu, S. Five-part pentameric nanocomplex shows improved efficacy of doxorubicin in CD44+ Cancer Cells. ACS Omega, 2017, 2(11), 7702-7713.
[http://dx.doi.org/10.1021/acsomega.7b01168] [PMID: 30023561]
[93]
Mu, C.; Wu, X.; Zhou, X.; Wolfram, J.; Shen, J.; Zhang, D.; Mai, J.; Xia, X.; Holder, A.M.; Ferrari, M.; Liu, X.; Shen, H. Chemotherapy sensitizes therapy-resistant cells to mild hyperthermia by suppressing heat shock protein 27 expression in triple-negative breast cancer. Clin. Cancer Res., 2018, 24(19), 4900-4912.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3872] [PMID: 29921732]
[94]
Conde, J.; Oliva, N.; Artzi, N. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proc. Natl. Acad. Sci. USA, 2015, 112(11), E1278-E1287.
[http://dx.doi.org/10.1073/pnas.1421229112] [PMID: 25733851]
[95]
Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 2005, 104(6), 1129-1137.
[http://dx.doi.org/10.1002/cncr.21324] [PMID: 16080176]
[96]
Rosa, S.; Connolly, C.; Schettino, G.; Butterworth, K.T.; Prise, K.M. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol., 2017, 8(1), 2.
[http://dx.doi.org/10.1186/s12645-017-0026-0] [PMID: 28217176]
[97]
Seiwert, T.Y.; Salama, J.K.; Vokes, E.E. The concurrent chemoradiation paradigm-general principles. Nat. Clin. Pract. Oncol., 2007, 4(2), 86-100.
[http://dx.doi.org/10.1038/ncponc0714] [PMID: 17259930]
[98]
Kong, T.; Zeng, J.; Wang, X.; Yang, X.; Yang, J.; McQuarrie, S.; McEwan, A.; Roa, W.; Chen, J.; Xing, J.Z. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small, 2008, 4(9), 1537-1543.
[http://dx.doi.org/10.1002/smll.200700794] [PMID: 18712753]
[99]
Tsiamas, P.; Liu, B.; Cifter, F.; Ngwa, W.F.; Berbeco, R.I.; Kappas, C.; Theodorou, K.; Marcus, K.; Makrigiorgos, M.G.; Sajo, E.; Zygmanski, P. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys. Med. Biol., 2013, 58(3), 451-464.
[http://dx.doi.org/10.1088/0031-9155/58/3/451] [PMID: 23302438]
[100]
Her, S.; Cui, L.; Bristow, R.G.; Allen, C. Dual Action Enhancement of gold nanoparticle radiosensitization by pentamidine in triple negative breast cancer. Radiat. Res., 2016, 185(5), 549-562.
[http://dx.doi.org/10.1667/RR14315.1] [PMID: 27135970]
[101]
Bannister, A.H.; Bromma, K.; Sung, W.; Monica, M.; Cicon, L.; Howard, P.; Chow, R.L.; Schuemann, J.; Chithrani, D.B. Modulation of nanoparticle uptake, intracellular distribution, and retention with docetaxel to enhance radiotherapy. Br. J. Radiol., 2020, 93(1106), 20190742.
[http://dx.doi.org/10.1259/bjr.20190742] [PMID: 31778316]
[102]
Wang, C.; Jiang, Y.; Li, X.; Hu, L. Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (MDA-MB-231). Breast Cancer, 2015, 22(4), 413-420.
[http://dx.doi.org/10.1007/s12282-013-0496-9] [PMID: 24114595]
[103]
Rieck, K.; Bromma, K.; Sung, W.; Bannister, A.; Schuemann, J.; Chithrani, D.B. Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population. Br. J. Radiol., 2019, 92(1100), 20190283.
[http://dx.doi.org/10.1259/bjr.20190283] [PMID: 31219711]
[104]
Ivošev, V.; Sánchez, G.J.; Stefancikova, L.; Haidar, D.A.; González Vargas, C.R.; Yang, X.; Bazzi, R.; Porcel, E.; Roux, S.; Lacombe, S. Uptake and excretion dynamics of gold nanoparticles in cancer cells and fibroblasts. Nanotechnology, 2020, 31(13), 135102.
[http://dx.doi.org/10.1088/1361-6528/ab5d82] [PMID: 31783387]
[105]
Connor, D.M.; Broome, A.M. Gold Nanoparticles for the delivery of cancer therapeutics. Adv. Cancer Res., 2018, 139, 163-184.
[http://dx.doi.org/10.1016/bs.acr.2018.05.001] [PMID: 29941104]
[106]
Facchi, D.P.; da Cruz, J.A.; Bonafé, E.G.; Pereira, A.G.B.; Fajardo, A.R.; Venter, S.A.S.; Monteiro, J.P.; Muniz, E.C.; Martins, A.F. Polysaccharide-based materials associated with or coordinated to gold nanoparticles: Synthesis and medical application. Curr. Med. Chem., 2017, 24(25), 2701-2735.
[http://dx.doi.org/10.2174/0929867324666170309123351] [PMID: 28294043]
[107]
Patra, J.K.; Baek, K.H. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials. Int. J. Nanomedicine, 2016, 11, 4691-4705.
[http://dx.doi.org/10.2147/IJN.S108920] [PMID: 27695326]
[108]
Vetten, M.A.; Tlotleng, N.; Tanner Rascher, D.; Skepu, A.; Keter, F.K.; Boodhia, K.; Koekemoer, L.A.; Andraos, C.; Tshikhudo, R.; Gulumian, M. Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines. Part. Fibre Toxicol., 2013, 10, 50.
[http://dx.doi.org/10.1186/1743-8977-10-50] [PMID: 24103467]
[109]
Zhang, Y.; Cong, L.; He, J.; Wang, Y.; Zou, Y.; Yang, Z.; Hu, Y.; Zhang, S.; He, X. Photothermal treatment with EGFRmAb-AuNPs induces apoptosis in hypopharyngeal carcinoma cells via PI3K/AKT/mTOR and DNA damage response pathways. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(6), 567-578.
[http://dx.doi.org/10.1093/abbs/gmy046] [PMID: 29718150]
[110]
Peng, J.; Liang, X. Progress in research on gold nanoparticles in cancer management. Medicine (Baltimore), 2019, 98(18), e15311. Epub ahead of print
[http://dx.doi.org/10.1097/MD.0000000000015311] [PMID: 31045767]
[111]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[112]
Ginzburg, A.L.; Truong, L.; Tanguay, R.L.; Hutchison, J.E. Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants. ACS Nano, 2018, 12(6), 5312-5322.
[http://dx.doi.org/10.1021/acsnano.8b00036] [PMID: 29697962]
[113]
Li, X.; Hu, Z.; Ma, J.; Wang, X.; Zhang, Y.; Wang, W.; Yuan, Z. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf. B Biointerfaces, 2018, 167, 260-266.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.005] [PMID: 29677597]
[114]
Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338(6109), 903-910.
[http://dx.doi.org/10.1126/science.1226338] [PMID: 23161990]
[115]
Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy