Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Gold Nanoparticles in Triple-Negative Breast Cancer Therapeutics

Author(s): Zakia Akter, Fabiha Zaheen Khan and Md. Asaduzzaman Khan*

Volume 30, Issue 3, 2023

Published on: 04 January, 2022

Page: [316 - 334] Pages: 19

DOI: 10.2174/0929867328666210902141257

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer with enhanced metastasis and poor survival. Though chemotherapy, radiotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene delivery are used to treat TNBC, various side effects limit these therapeutics against TNBC. In this review article, we have focused on the mechanism of action of gold nanoparticles (AuNPs) to enhance the efficacy of therapeutics with targeted delivery on TNBC cells.

Methods: Research data were accumulated from PubMed, Scopus, Web of Science, and Google Scholar using searching criteria “gold nanoparticles and triple-negative breast cancer” and “gold nanoparticles and cancer”. Though we reviewed many old papers, the most cited papers were from the last ten years.

Results: Various studies indicate that AuNPs can enhance bioavailability, site-specific drug delivery, and efficacy of chemotherapy, radiotherapy, PTT, and PDT as well as modulate gene expression. The role of AuNPs in the modulation of TNBC therapeutics through the inhibition of cell proliferation, progression, and metastasis has been proved in vitro and in vivo studies. As these mechanistic actions of AuNPs are most desirable to develop drugs with enhanced therapeutic efficacy against TNBC, it might be a promising approach to apply AuNPs for TNBC therapeutics.

Conclusion: This article reviewed the mechanism of action of AuNPs and their application in the enhancement of therapeutics against TNBC. Much more attention is required for studying the role of AuNPs in developing them either as a single or synergistic anticancer agent against TNBC.

Keywords: Gold nanoparticles, triple-negative breast cancer, drug delivery, chemotherapy, radiotherapy, phototherapy.

[1]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(S3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[5]
Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res., 2007, 13(15 Pt 1), 4429-4434.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[6]
Morris, G.J.; Naidu, S.; Topham, A.K.; Guiles, F.; Xu, Y.; McCue, P.; Schwartz, G.F.; Park, P.K.; Rosenberg, A.L.; Brill, K.; Mitchell, E.P. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: A single-institution compilation compared with the national cancer institute’s surveillance, epidemiology, and end results database. Cancer, 2007, 110(4), 876-884.
[http://dx.doi.org/10.1002/cncr.22836] [PMID: 17620276]
[7]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[8]
Sorlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; Demeter, J.; Perou, C.M.; Lønning, P.E.; Brown, P.O.; Børresen-Dale, A.L.; Botstein, D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8418-8423.
[http://dx.doi.org/10.1073/pnas.0932692100] [PMID: 12829800]
[9]
Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; Hicks, D.G.; Lester, S.; Love, R.; Mangu, P.B.; McShane, L.; Miller, K.; Osborne, C.K.; Paik, S.; Perlmutter, J.; Rhodes, A.; Sasano, H.; Schwartz, J.N.; Sweep, F.C.; Taube, S.; Torlakovic, E.E.; Valenstein, P.; Viale, G.; Visscher, D.; Wheeler, T.; Williams, R.B.; Wittliff, J.L.; Wolff, A.C. American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol., 2010, 28(16), 2784-2795.
[http://dx.doi.org/10.1200/JCO.2009.25.6529] [PMID: 20404251]
[10]
Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 2015, 24(Suppl. 2), S26-S35.
[http://dx.doi.org/10.1016/j.breast.2015.07.008] [PMID: 26253814]
[11]
Winters, S.; Martin, C.; Murphy, D.; Shokar, N.K. Breast cancer epidemiology, Prevention, and screening. Prog. Mol. Biol. Transl. Sci., 2017, 151, 1-32.
[http://dx.doi.org/10.1016/bs.pmbts.2017.07.002] [PMID: 29096890]
[12]
Chang-Qing, Y.; Jie, L.; Shi-Qi, Z.; Kun, Z.; Zi-Qian, G.; Ran, X.; Hui-Meng, L.; Ren-Bin, Z.; Gang, Z.; Da-Chuan, Y.; Chen-Yan, Z. Recent treatment progress of triple negative breast cancer. Prog. Biophys. Mol. Biol., 2020, 151, 40-53.
[http://dx.doi.org/10.1016/j.pbiomolbio.2019.11.007] [PMID: 31761352]
[13]
Chantada-Vázquez, M.D.P.; Castro López, A.; García-Vence, M.; Acea-Nebril, B.; Bravo, S.B.; Núñez, C. Protein corona gold nanoparticles fingerprinting reveals a profile of blood coagulation proteins in the serum of HER2-overexpressing breast cancer patients. Int. J. Mol. Sci., 2020, 21(22), 8449.
[http://dx.doi.org/10.3390/ijms21228449] [PMID: 33182810]
[14]
Engebraaten, O.; Vollan, H.K.M.; Børresen-Dale, A.L. Triple-negative breast cancer and the need for new therapeutic targets. Am. J. Pathol., 2013, 183(4), 1064-1074.
[http://dx.doi.org/10.1016/j.ajpath.2013.05.033] [PMID: 23920327]
[15]
Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res. Treat., 2018, 169(3), 397-406.
[http://dx.doi.org/10.1007/s10549-018-4697-y] [PMID: 29417298]
[16]
Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet., 2016, 293(2), 247-269.
[http://dx.doi.org/10.1007/s00404-015-3859-y] [PMID: 26341644]
[17]
Jia, H.; Truica, C.I.; Wang, B.; Wang, Y.; Ren, X.; Harvey, H.A.; Song, J.; Yang, J.M. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resist. Updat., 2017, 32, 1-15.
[http://dx.doi.org/10.1016/j.drup.2017.07.002] [PMID: 29145974]
[18]
Gupta, G.K.; Collier, A.L.; Lee, D.; Hoefer, R.A.; Zheleva, V.; Siewertsz van Reesema, L.L.; Tang-Tan, A.M.; Guye, M.L.; Chang, D.Z.; Winston, J.S.; Samli, B.; Jansen, R.J.; Petricoin, E.F.; Goetz, M.P.; Bear, H.D.; Tang, A.H. Perspectives on triple-negative breast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies. Cancers (Basel), 2020, 12(9), 2392.
[http://dx.doi.org/10.3390/cancers12092392] [PMID: 32846967]
[19]
Lebert, J.M.; Lester, R.; Powell, E.; Seal, M.; McCarthy, J. Advances in the systemic treatment of triple-negative breast cancer. Curr. Oncol., 2018, 25(Suppl. 1), S142-S150.
[http://dx.doi.org/10.3747/co.25.3954] [PMID: 29910657]
[20]
von Minckwitz, G.; Schneeweiss, A.; Loibl, S.; Salat, C.; Denkert, C.; Rezai, M.; Blohmer, J.U.; Jackisch, C.; Paepke, S.; Gerber, B.; Zahm, D.M.; Kümmel, S.; Eidtmann, H.; Klare, P.; Huober, J.; Costa, S.; Tesch, H.; Hanusch, C.; Hilfrich, J.; Khandan, F.; Fasching, P.A.; Sinn, B.V.; Engels, K.; Mehta, K.; Nekljudova, V.; Untch, M. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol., 2014, 15(7), 747-756.
[http://dx.doi.org/10.1016/S1470-2045(14)70160-3] [PMID: 24794243]
[21]
Chaudhary, L.N.; Wilkinson, K.H.; Kong, A. Triple-negative breast cancer: Who should receive neoadjuvant chemotherapy? Surg. Oncol. Clin. N. Am., 2018, 27(1), 141-153.
[http://dx.doi.org/10.1016/j.soc.2017.08.004] [PMID: 29132557]
[22]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[23]
Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold nanoparticles for nucleic acid delivery. Mol. Ther., 2014, 22(6), 1075-1083.
[http://dx.doi.org/10.1038/mt.2014.30] [PMID: 24599278]
[24]
He, C.; Chow, J.C. Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study. AIMS Bioeng., 2016, 3(3), 352-361.
[http://dx.doi.org/10.3934/bioeng.2016.3.352]
[25]
Janic, B.; Brown, S.L.; Neff, R.; Liu, F.; Mao, G.; Chen, Y.; Jackson, L.; Chetty, I.J.; Movsas, B.; Wen, N. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol. Ther., 2021, 22(2), 124-135.
[http://dx.doi.org/10.1080/15384047.2020.1861923] [PMID: 33459132]
[26]
Chatterjee, D.K.; Diagaradjane, P.; Krishnan, S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv., 2011, 2(8), 1001-1014.
[http://dx.doi.org/10.4155/tde.11.72] [PMID: 22506095]
[27]
Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[28]
Jenkins, S.V.; Nima, Z.A.; Vang, K.B.; Kannarpady, G.; Nedosekin, D.A.; Zharov, V.P.; Griffin, R.J.; Biris, A.S.; Dings, R.P.M. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precis. Oncol., 2017, 1(1), 27.
[http://dx.doi.org/10.1038/s41698-017-0030-1] [PMID: 29872709]
[29]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 2017, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[30]
Mody, V.V.; Nounou, M.I.; Bikram, M. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv. Drug Deliv. Rev., 2009, 61(10), 795-807.
[http://dx.doi.org/10.1016/j.addr.2009.04.020] [PMID: 19427886]
[31]
Ramalingam, V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv. Colloid Interface Sci., 2019, 271, 101989.
[http://dx.doi.org/10.1016/j.cis.2019.101989] [PMID: 31330396]
[32]
Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol., 2020, 8, 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[33]
Antonii, F. Panacea Aurea-Auro Potabile; Ex Bibliopolio Frobeniano: Hamburg, 1618, p. 250.
[34]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Nat. (Engl. Ed.), 2011, 3(2), 34-55.
[http://dx.doi.org/10.32607/20758251-2011-3-2-34-55] [PMID: 22649683]
[35]
Sun, H.; Jia, J.; Jiang, C.; Zhai, S. Gold nanoparticle-induced cell death and potential applications in nanomedicine. Int. J. Mol. Sci., 2018, 19(3), 754.
[http://dx.doi.org/10.3390/ijms19030754] [PMID: 29518914]
[36]
Bhattacharya, R.; Patra, C.R.; Verma, R.; Kumar, S.; Greipp, P.R.; Mukherjee, P. Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv. Mater., 2010, 19(5), 711-716.
[http://dx.doi.org/10.1002/adma.200602098]
[37]
Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev., 2012, 41(7), 2849-2866.
[http://dx.doi.org/10.1039/C1CS15280G] [PMID: 22182959]
[38]
Shrestha, B.; Wang, L.; Zhang, H.; Hung, C.Y.; Tang, L. Gold nanoparticles mediated drug-gene combinational therapy for breast cancer treatment. Int. J. Nanomedicine, 2020, 15, 8109-8119.
[http://dx.doi.org/10.2147/IJN.S258625] [PMID: 33116521]
[39]
Gamaleia, N.F.; Shton, I.O. Gold mining for PDT: Great expectations from tiny nanoparticles. Photodiagn. Photodyn. Ther., 2015, 12(2), 221-231.
[http://dx.doi.org/10.1016/j.pdpdt.2015.03.002] [PMID: 25818545]
[40]
Nicol, J.R.; Dixon, D.; Coulter, J.A. Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics. Nanomedicine (Lond.), 2015, 10(8), 1315-1326.
[http://dx.doi.org/10.2217/nnm.14.219] [PMID: 25955125]
[41]
Morshed, R.A.; Muroski, M.E.; Dai, Q.; Wegscheid, M.L.; Auffinger, B.; Yu, D.; Han, Y.; Zhang, L.; Wu, M.; Cheng, Y.; Lesniak, M.S. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol. Pharm., 2016, 13(6), 1843-1854.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00004] [PMID: 27169484]
[42]
Schaeublin, N.M.; Braydich-Stolle, L.K.; Schrand, A.M.; Miller, J.M.; Hutchison, J.; Schlager, J.J.; Hussain, S.M. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale, 2011, 3(2), 410-420.
[http://dx.doi.org/10.1039/c0nr00478b] [PMID: 21229159]
[43]
Das, S.; Halder, A.; Mandal, S.; Mazumder, M.A.J.; Bera, T.; Mukherjee, A.; Roy, P. Andrographolide engineered gold nanoparticle to overcome drug resistant visceral leishmaniasis. Artif. Cells Nanomed. Biotechnol, 2018, 46(sup1), 751-762.
[http://dx.doi.org/10.1080/21691401.2018.1435549] [PMID: 29421940]
[44]
Wang, J.; Feng, Y.; Tian, X.; Li, C.; Liu, L. Disassembling and degradation of amyloid protein aggregates based on gold nanoparticle-modified g-C3N4. Colloids Surf. B Biointerfaces, 2020, 192, 111051. Epub ahead of print
[http://dx.doi.org/10.1016/j.colsurfb.2020.111051] [PMID: 32344165]
[45]
Liu, L.; Li, M.; Xu, M.; Wang, Z.; Zeng, Z.; Li, Y.; Zhang, Y.; You, R.; Li, C.H.; Guan, Y.Q. Actively targeted gold nanoparticle composites improve behavior and cognitive impairment in Parkinson’s disease mice. Mater. Sci. Eng. C, 2020, 114, 111028.
[http://dx.doi.org/10.1016/j.msec.2020.111028] [PMID: 32994016]
[46]
Staroverov, S.; Kozlov, S.; Fomin, A.; Gabalov, K.; Volkov, A.; Domnitsky, I.; Dykman, L.; Guliy, O. Synthesis of a silymarin-gold nanoparticle conjugate and analysis of its liver-protecting activity. Curr. Pharm. Biotechnol., 2021, 22(15), 2001-2007.
[http://dx.doi.org/10.2174/1389201022666210101163734] [PMID: 33388017]
[47]
Manna, K.; Mishra, S.; Saha, M.; Mahapatra, S.; Saha, C.; Yenge, G.; Gaikwad, N.; Pal, R.; Oulkar, D.; Banerjee, K.; Das Saha, K. Amelioration of diabetic nephropathy using pomegranate peel extract-stabilized gold nanoparticles: Assessment of NF-κB and Nrf2 signaling system. Int. J. Nanomedicine, 2019, 14, 1753-1777.
[http://dx.doi.org/10.2147/IJN.S176013] [PMID: 30880978]
[48]
Nosratabadi, R.; Rastin, M.; Sankian, M.; Haghmorad, D.; Mahmoudi, M. Hyperforin-loaded gold nanoparticle alleviates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Nanomedicine (Lond.), 2016, 12(7), 1961-1971.
[http://dx.doi.org/10.1016/j.nano.2016.04.001] [PMID: 27107531]
[49]
Libutti, S.K.; Paciotti, G.F.; Byrnes, A.A.; Alexander, H.R., Jr; Gannon, W.E.; Walker, M.; Seidel, G.D.; Yuldasheva, N.; Tamarkin, L. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res., 2010, 16(24), 6139-6149.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0978] [PMID: 20876255]
[50]
Northwesten UniverstyNU-0129 in Treating Patients With Recurrent Glioblastoma or Gliosarcoma Undergoing Surgery. , 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03020017
[51]
Rastinehad, A.R.; Anastos, H.; Wajswol, E.; Winoker, J.S.; Sfakianos, J.P.; Doppalapudi, S.K.; Carrick, M.R.; Knauer, C.J.; Taouli, B.; Lewis, S.C.; Tewari, A.K.; Schwartz, J.A.; Canfield, S.E.; George, A.K.; West, J.L.; Halas, N.J. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA, 2019, 116(37), 18590-18596.
[http://dx.doi.org/10.1073/pnas.1906929116] [PMID: 31451630]
[52]
Liedtke, C.; Hess, K.R.; Karn, T.; Rody, A.; Kiesel, L.; Hortobagyi, G.N.; Pusztai, L.; Gonzalez-Angulo, A.M. The prognostic impact of age in patients with triple-negative breast cancer. Breast Cancer Res. Treat., 2013, 138(2), 591-599.
[http://dx.doi.org/10.1007/s10549-013-2461-x] [PMID: 23460246]
[53]
Caccuri, F.; Sommariva, M.; Marsico, S.; Giordano, F.; Zani, A.; Giacomini, A.; Fraefel, C.; Balsari, A.; Caruso, A. Inhibition of DNA repair mechanisms and induction of apoptosis in triple negative breast cancer cells expressing the human herpesvirus 6 U94. Cancers (Basel), 2019, 11(7), 1006.
[http://dx.doi.org/10.3390/cancers11071006] [PMID: 31323788]
[54]
Rajesh, E.; Sankari, L.S.; Malathi, L.; Krupaa, J.R. Naturally occurring products in cancer therapy. J. Pharm. Bioallied Sci., 2015, 7(Suppl. 1), S181-S183.
[http://dx.doi.org/10.4103/0975-7406.155895] [PMID: 26015704]
[55]
Webb, M.J.; Kukard, C. A Review of natural therapies potentially relevant in triple negative breast cancer aimed at targeting cancer cell vulnerabilities. Integr. Cancer Ther., 2020, 19, 1534735420975861.
[http://dx.doi.org/10.1177/1534735420975861] [PMID: 33243021]
[56]
Barkat, M.A. Harshita; Ahmad, J.; Khan, M.A.; Beg, S.; Ahmad, F.J. Insights into the targeting potential of thymoquinone for therapeutic intervention against triple-negative breast cancer. Curr. Drug Targets, 2018, 19(1), 70-80.
[http://dx.doi.org/10.2174/1389450118666170612095959] [PMID: 28606050]
[57]
Akter, Z.; Ahmed, F.R.; Tania, M.; Khan, M.A. Targeting inflammatory mediators: An anticancer mechanism of thymoquinone action. Curr. Med. Chem., 2021, 28(1), 80-92.
[http://dx.doi.org/10.2174/0929867326666191011143642] [PMID: 31604405]
[58]
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6(23), 19580-19591.
[http://dx.doi.org/10.18632/oncotarget.3973] [PMID: 26023736]
[59]
Afrose, S.S.; Junaid, M.; Akter, Y.; Tania, M.; Zheng, M.; Khan, M.A. Targeting kinases with thymoquinone: A molecular approach to cancer therapeutics. Drug Discov. Today, 2020, 25(12), 2294-2306.
[http://dx.doi.org/10.1016/j.drudis.2020.07.019] [PMID: 32721537]
[60]
Kabil, N.; Bayraktar, R.; Kahraman, N.; Mokhlis, H.A.; Calin, G.A.; Lopez-Berestein, G.; Ozpolat, B. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Res. Treat., 2018, 171(3), 593-605.
[http://dx.doi.org/10.1007/s10549-018-4847-2] [PMID: 29971628]
[61]
Khan, M.A.; Tania, M.; Fu, J. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov. Today, 2019, 24(12), 2315-2322.
[http://dx.doi.org/10.1016/j.drudis.2019.09.007] [PMID: 31541714]
[62]
El-Far, A.H.; Al Jaouni, S.K.; Li, W.; Mousa, S.A. Protective roles of thymoquinone nanoformulations: Potential nanonutraceuticals in human diseases. Nutrients, 2018, 10(10), 1369.
[http://dx.doi.org/10.3390/nu10101369] [PMID: 30257423]
[63]
Goodman, C.M.; McCusker, C.D.; Yilmaz, T.; Rotello, V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem., 2004, 15(4), 897-900.
[http://dx.doi.org/10.1021/bc049951i] [PMID: 15264879]
[64]
Tamm, I.; Schriever, F.; Dörken, B. Apoptosis: Implications of basic research for clinical oncology. Lancet Oncol., 2001, 2(1), 33-42.
[http://dx.doi.org/10.1016/S1470-2045(00)00193-5] [PMID: 11905616]
[65]
Kamalabadi-Farahani, M.H.; Najafabadi, M.R.; Jabbarpour, Z. Apoptotic resistance of metastatic tumor cells in triple negative breast cancer: Roles of death receptor-5. Asian Pac. J. Cancer Prev., 2019, 20(6), 1743-1748.
[http://dx.doi.org/10.31557/APJCP.2019.20.6.1743] [PMID: 31244295]
[66]
Surapaneni, S.K.; Bashir, S.; Tikoo, K. Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. Sci. Rep., 2018, 8(1), 12295.
[http://dx.doi.org/10.1038/s41598-018-30541-3] [PMID: 30115982]
[67]
Nirmala, J.G.; Lopus, M. Tryptone-stabilized gold nanoparticles induce unipolar clustering of supernumerary centrosomes and G1 arrest in triple-negative breast cancer cells. Sci. Rep., 2019, 9(1), 19126.
[http://dx.doi.org/10.1038/s41598-019-55555-3] [PMID: 31836782]
[68]
Nirmala, J.G.; Beck, A.; Mehta, S.; Lopus, M. Perturbation of tubulin structure by stellate gold nanoparticles retards MDA-MB-231 breast cancer cell viability. Eur. J. Biochem., 2019, 24(7), 999-1007.
[http://dx.doi.org/10.1007/s00775-019-01694-x] [PMID: 31388822]
[69]
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 2005, 21(23), 10644-10654.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[70]
Sarkar, S.; Konar, S.; Prasad, P.N.; Rajput, S.; Kumar, B.N.P.; Rao, R.R.; Pathak, A.; Fisher, P.B.; Mandal, M. Micellear gold nanoparticles as delivery vehicles for dual tyrosine kinase inhibitor ZD6474 for metastatic breast cancer treatment. Langmuir, 2017, 33(31), 7649-7659.
[http://dx.doi.org/10.1021/acs.langmuir.7b01072] [PMID: 28701038]
[71]
Chen, Y.J.; Lee, Y.C.; Huang, C.H.; Chang, L.S. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicol. Appl. Pharmacol., 2016, 310, 98-107.
[http://dx.doi.org/10.1016/j.taap.2016.09.007] [PMID: 27634460]
[72]
Bromma, K.; Bannister, A.; Kowalewski, A.; Cicon, L.; Chithrani, D.B. Elucidating the fate of nanoparticles among key cell components of the tumor microenvironment for promoting cancer nanotechnology. Cancer Nanotechnol., 2020, 11(1), 8.
[http://dx.doi.org/10.1186/s12645-020-00064-6] [PMID: 32849921]
[73]
Khoobchandani, M.; Katti, K.K.; Karikachery, A.R.; Thipe, V.C.; Srisrimal, D.; Dhurvas Mohandoss, D.K.; Darshakumar, R.D.; Joshi, C.M.; Katti, K.V. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine - pre-clinical and pilot human clinical investigations. Int. J. Nanomedicine, 2020, 15, 181-197.
[http://dx.doi.org/10.2147/IJN.S219042] [PMID: 32021173]
[74]
Banerjee, A.; Johnson, K.T.; Banerjee, I.A.; Banerjee, D.K. Nanoformulation enhances anti-angiogenic efficacy of tunicamycin. Transl. Cancer Res., 2013, 2(4), 240-255.
[PMID: 33209651]
[75]
Shahbazi, R.; Asik, E.; Kahraman, N.; Turk, M.; Ozpolat, B.; Ulubayram, K. Modified gold-based siRNA nanotherapeutics for targeted therapy of triple-negative breast cancer. Nanomedicine (Lond.), 2017, 12(16), 1961-1973.
[http://dx.doi.org/10.2217/nnm-2017-0081] [PMID: 28745127]
[76]
Saadat, N.; Liu, F.; Haynes, B.; Nangia-Makker, P.; Bao, X.; Li, J.; Polin, L.A.; Gupta, S.; Mao, G.; Shekhar, M.P. Nano-delivery of RAD6/translesion synthesis inhibitor SMI#9 for triple-negative breast cancer therapy. Mol. Cancer Ther., 2018, 17(12), 2586-2597.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0364] [PMID: 30242094]
[77]
Haynes, B.; Zhang, Y.; Liu, F.; Li, J.; Petit, S.; Kothayer, H.; Bao, X.; Westwell, A.D.; Mao, G.; Shekhar, M.P.V. Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization. Nanomedicine (Lond.), 2016, 12(3), 745-757.
[http://dx.doi.org/10.1016/j.nano.2015.10.010] [PMID: 26563438]
[78]
Ramchandani, D.; Lee, S.K.; Yomtoubian, S.; Han, M.S.; Tung, C.H.; Mittal, V. Nanoparticle delivery of miR-708 mimetic impairs breast cancer metastasis. Mol. Cancer Ther., 2019, 18(3), 579-591.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0702] [PMID: 30679387]
[79]
Dang, M.N.; Gomez Casas, C.; Day, E.S. Photoresponsive miR-34a/nanoshell conjugates enable light-triggered gene regulation to impair the function of triple-negative breast cancer cells. Nano Lett., 2021, 21(1), 68-76.
[http://dx.doi.org/10.1021/acs.nanolett.0c03152] [PMID: 33306406]
[80]
Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front Chem., 2019, 7, 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[81]
Ong, Z.Y.; Chen, S.; Nabavi, E.; Regoutz, A.; Payne, D.J.; Elson, D.S.; Dexter, D.T.; Dunlop, I.E.; Porter, A.E. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl. Mater. Interfaces, 2017, 9(45), 39259-39270.
[http://dx.doi.org/10.1021/acsami.7b14851] [PMID: 29058874]
[82]
Zhang, M.; Kim, H.S.; Jin, T.; Moon, W.K. Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer. J. Photochem. Photobiol. B, 2017, 170, 58-64.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.03.025] [PMID: 28390259]
[83]
Wang, S.; Tian, Y.; Tian, W.; Sun, J.; Zhao, S.; Liu, Y.; Wang, C.; Tang, Y.; Ma, X.; Teng, Z.; Lu, G. Selectively sensitizing malignant cells to photothermal therapy using a CD44-targeting heat shock protein 72 depletion nanosystem. ACS Nano, 2016, 10(9), 8578-8590.
[http://dx.doi.org/10.1021/acsnano.6b03874] [PMID: 27576159]
[84]
Jadia, R.; Kydd, J.; Rai, P. Remotely phototriggered, transferrin-targeted polymeric nanoparticles for the treatment of breast cancer. Photochem. Photobiol., 2018, 94(4), 765-774.
[http://dx.doi.org/10.1111/php.12903] [PMID: 29427385]
[85]
McGowan, M. New Nano Drug Candidate Kills Aggressive Breast Cancer Cells. University of Arkansas Research Frontiers, 2020. Available from: https://researchfrontiers. uark.edu/new-nano-drug-candidate-kills-aggressive-breast-cancer-cells/ (Accessed on July 21, 2020).
[86]
Choi, J.; Kim, H.; Choi, Y. Theranostic nanoparticles for enzyme-activatable fluorescence imaging and photodynamic/chemo dual therapy of triple-negative breast cancer. Quant. Imaging Med. Surg., 2015, 5(5), 656-664.
[http://dx.doi.org/10.3978/j.issn.2223-4292.2015.08.09] [PMID: 26682135]
[87]
García Calavia, P.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci., 2018, 17(11), 1534-1552.
[http://dx.doi.org/10.1039/C8PP00271A] [PMID: 30118115]
[88]
Castilho, M.L.; Jesus, V.P.S.; Vieira, P.F.A.; Hewitt, K.C.; Raniero, L. Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer. Photodiagn. Photodyn. Ther., 2021, 33, 102186.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102186] [PMID: 33497816]
[89]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: Combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[90]
Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells, 2019, 8(9), 957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[91]
Santiago, T.; DeVaux, R.S.; Kurzatkowska, K.; Espinal, R.; Herschkowitz, J.I.; Hepel, M. Surface-enhanced Raman scattering investigation of targeted delivery and controlled release of gemcitabine. Int. J. Nanomedicine, 2017, 12, 7763-7776.
[http://dx.doi.org/10.2147/IJN.S149306] [PMID: 29123391]
[92]
Beals, N.; Thiagarajan, P.S.; Soehnlen, E.; Das, A.; Reizes, O.; Lathia, J.D.; Basu, S. Five-part pentameric nanocomplex shows improved efficacy of doxorubicin in CD44+ Cancer Cells. ACS Omega, 2017, 2(11), 7702-7713.
[http://dx.doi.org/10.1021/acsomega.7b01168] [PMID: 30023561]
[93]
Mu, C.; Wu, X.; Zhou, X.; Wolfram, J.; Shen, J.; Zhang, D.; Mai, J.; Xia, X.; Holder, A.M.; Ferrari, M.; Liu, X.; Shen, H. Chemotherapy sensitizes therapy-resistant cells to mild hyperthermia by suppressing heat shock protein 27 expression in triple-negative breast cancer. Clin. Cancer Res., 2018, 24(19), 4900-4912.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3872] [PMID: 29921732]
[94]
Conde, J.; Oliva, N.; Artzi, N. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proc. Natl. Acad. Sci. USA, 2015, 112(11), E1278-E1287.
[http://dx.doi.org/10.1073/pnas.1421229112] [PMID: 25733851]
[95]
Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 2005, 104(6), 1129-1137.
[http://dx.doi.org/10.1002/cncr.21324] [PMID: 16080176]
[96]
Rosa, S.; Connolly, C.; Schettino, G.; Butterworth, K.T.; Prise, K.M. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol., 2017, 8(1), 2.
[http://dx.doi.org/10.1186/s12645-017-0026-0] [PMID: 28217176]
[97]
Seiwert, T.Y.; Salama, J.K.; Vokes, E.E. The concurrent chemoradiation paradigm-general principles. Nat. Clin. Pract. Oncol., 2007, 4(2), 86-100.
[http://dx.doi.org/10.1038/ncponc0714] [PMID: 17259930]
[98]
Kong, T.; Zeng, J.; Wang, X.; Yang, X.; Yang, J.; McQuarrie, S.; McEwan, A.; Roa, W.; Chen, J.; Xing, J.Z. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small, 2008, 4(9), 1537-1543.
[http://dx.doi.org/10.1002/smll.200700794] [PMID: 18712753]
[99]
Tsiamas, P.; Liu, B.; Cifter, F.; Ngwa, W.F.; Berbeco, R.I.; Kappas, C.; Theodorou, K.; Marcus, K.; Makrigiorgos, M.G.; Sajo, E.; Zygmanski, P. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys. Med. Biol., 2013, 58(3), 451-464.
[http://dx.doi.org/10.1088/0031-9155/58/3/451] [PMID: 23302438]
[100]
Her, S.; Cui, L.; Bristow, R.G.; Allen, C. Dual Action Enhancement of gold nanoparticle radiosensitization by pentamidine in triple negative breast cancer. Radiat. Res., 2016, 185(5), 549-562.
[http://dx.doi.org/10.1667/RR14315.1] [PMID: 27135970]
[101]
Bannister, A.H.; Bromma, K.; Sung, W.; Monica, M.; Cicon, L.; Howard, P.; Chow, R.L.; Schuemann, J.; Chithrani, D.B. Modulation of nanoparticle uptake, intracellular distribution, and retention with docetaxel to enhance radiotherapy. Br. J. Radiol., 2020, 93(1106), 20190742.
[http://dx.doi.org/10.1259/bjr.20190742] [PMID: 31778316]
[102]
Wang, C.; Jiang, Y.; Li, X.; Hu, L. Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (MDA-MB-231). Breast Cancer, 2015, 22(4), 413-420.
[http://dx.doi.org/10.1007/s12282-013-0496-9] [PMID: 24114595]
[103]
Rieck, K.; Bromma, K.; Sung, W.; Bannister, A.; Schuemann, J.; Chithrani, D.B. Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population. Br. J. Radiol., 2019, 92(1100), 20190283.
[http://dx.doi.org/10.1259/bjr.20190283] [PMID: 31219711]
[104]
Ivošev, V.; Sánchez, G.J.; Stefancikova, L.; Haidar, D.A.; González Vargas, C.R.; Yang, X.; Bazzi, R.; Porcel, E.; Roux, S.; Lacombe, S. Uptake and excretion dynamics of gold nanoparticles in cancer cells and fibroblasts. Nanotechnology, 2020, 31(13), 135102.
[http://dx.doi.org/10.1088/1361-6528/ab5d82] [PMID: 31783387]
[105]
Connor, D.M.; Broome, A.M. Gold Nanoparticles for the delivery of cancer therapeutics. Adv. Cancer Res., 2018, 139, 163-184.
[http://dx.doi.org/10.1016/bs.acr.2018.05.001] [PMID: 29941104]
[106]
Facchi, D.P.; da Cruz, J.A.; Bonafé, E.G.; Pereira, A.G.B.; Fajardo, A.R.; Venter, S.A.S.; Monteiro, J.P.; Muniz, E.C.; Martins, A.F. Polysaccharide-based materials associated with or coordinated to gold nanoparticles: Synthesis and medical application. Curr. Med. Chem., 2017, 24(25), 2701-2735.
[http://dx.doi.org/10.2174/0929867324666170309123351] [PMID: 28294043]
[107]
Patra, J.K.; Baek, K.H. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials. Int. J. Nanomedicine, 2016, 11, 4691-4705.
[http://dx.doi.org/10.2147/IJN.S108920] [PMID: 27695326]
[108]
Vetten, M.A.; Tlotleng, N.; Tanner Rascher, D.; Skepu, A.; Keter, F.K.; Boodhia, K.; Koekemoer, L.A.; Andraos, C.; Tshikhudo, R.; Gulumian, M. Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines. Part. Fibre Toxicol., 2013, 10, 50.
[http://dx.doi.org/10.1186/1743-8977-10-50] [PMID: 24103467]
[109]
Zhang, Y.; Cong, L.; He, J.; Wang, Y.; Zou, Y.; Yang, Z.; Hu, Y.; Zhang, S.; He, X. Photothermal treatment with EGFRmAb-AuNPs induces apoptosis in hypopharyngeal carcinoma cells via PI3K/AKT/mTOR and DNA damage response pathways. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(6), 567-578.
[http://dx.doi.org/10.1093/abbs/gmy046] [PMID: 29718150]
[110]
Peng, J.; Liang, X. Progress in research on gold nanoparticles in cancer management. Medicine (Baltimore), 2019, 98(18), e15311. Epub ahead of print
[http://dx.doi.org/10.1097/MD.0000000000015311] [PMID: 31045767]
[111]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[112]
Ginzburg, A.L.; Truong, L.; Tanguay, R.L.; Hutchison, J.E. Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants. ACS Nano, 2018, 12(6), 5312-5322.
[http://dx.doi.org/10.1021/acsnano.8b00036] [PMID: 29697962]
[113]
Li, X.; Hu, Z.; Ma, J.; Wang, X.; Zhang, Y.; Wang, W.; Yuan, Z. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf. B Biointerfaces, 2018, 167, 260-266.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.005] [PMID: 29677597]
[114]
Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338(6109), 903-910.
[http://dx.doi.org/10.1126/science.1226338] [PMID: 23161990]
[115]
Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy