Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Boronate-Based Fluorescent Probes as a Prominent Tool for H2O2 Sensing and Recognition

Author(s): Ling Wang, Xuben Hou, Hao Fang and Xinying Yang*

Volume 29, Issue 14, 2022

Published on: 10 January, 2022

Page: [2476 - 2489] Pages: 14

DOI: 10.2174/0929867328666210902101642

Price: $65

conference banner
Abstract

Given the crucial association of hydrogen peroxide with a wide range of human diseases, this compound has currently earned the reputation of being a popular biomolecular target. Although various analytical methods have attracted our attention, fluorescent probes have been used as prominent tools to determine H2O2 to reflect the physiological and pathological conditions of biological systems. The sensitive responsive part of these probes is the boronate ester and boronic acid groups, which are important reporters for H2O2 recognition. In this review, we summarize boronate ester/boronic acid group-based fluorescent probes for H2O2 reported from 2012 to 2020, and we have generally classified the fluorophores into six categories to exhaustively elaborate the design strategy and comprehensive systematic performance. We hope that this review will inspire the exploration of new fluorescent probes based on boronate ester/boronic acid groups for the detection of H2O2 and other relevant analytes.

Keywords: Fluorescent probe, boronate ester/boronic acid, hydrogen peroxide, biomolecular, physiology, pathology, fluorophores.

[1]
Gomez-Jaimes, G.; Barba, V. Boronate esters: Synthesis, characterization and molecular base receptor analysis. J. Mol. Struct., 2014, 1075, 594-598.
[http://dx.doi.org/10.1016/j.molstruc.2014.06.078]
[2]
Trippier, P.C.; McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm, 2010, 1(3), 183-198.
[http://dx.doi.org/10.1039/c0md00119h]
[3]
Lippert, A.R.; Van de Bittner, G.C.; Chang, C.J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res., 2011, 44(9), 793-804.
[http://dx.doi.org/10.1021/ar200126t] [PMID: 21834525]
[4]
Yu, F.; Song, P.; Li, P.; Wang, B.; Han, K. A fluorescent probe directly detect peroxynitrite based on boronate oxidation and its applications for fluorescence imaging in living cells. Analyst (Lond.), 2012, 137(16), 3740-3749.
[http://dx.doi.org/10.1039/c2an35246j] [PMID: 22741158]
[5]
Sarkar, Y.; Das, S.; Datta, R.; Chattopadhyay, S.; Ray, A.; Parui, P.P. Exploitation of a new Schiff-base ligand for boric acid fluorescent sensing in aqueous medium with bio-imaging studies in a living plant system. RSC Advances, 2015, 5(64), 51875-51882.
[http://dx.doi.org/10.1039/C5RA08086J]
[6]
Wang, H.; Wang, X.; Liang, M.; Chen, G.; Kong, R.M.; Xia, L.; Qu, F. A boric acid-functionalized lanthanide metal-organic framework as a fluorescence “turn-on” probe for selective monitoring of Hg2+ and CH3Hg. Anal. Chem., 2020, 92(4), 3366-3372.
[http://dx.doi.org/10.1021/acs.analchem.9b05410] [PMID: 31995981]
[7]
Hudnall, T.W.; Gabbaï, F.P. Ammonium boranes for the selective complexation of cyanide or fluoride ions in water. J. Am. Chem. Soc., 2007, 129(39), 11978-11986.
[http://dx.doi.org/10.1021/ja073793z] [PMID: 17845043]
[8]
Tong, A.J.; Yamauchi, A.; Hayashita, T.; Zhang, Z.Y.; Smith, B.D.; Teramae, N. Boronic acid fluorophore/beta-cyclodextrin complex sensors for selective sugar recognition in water. Anal. Chem., 2001, 73(7), 1530-1536.
[http://dx.doi.org/10.1021/ac001363k] [PMID: 11321305]
[9]
Devi, J.S.A.; Aswathy, B.; Asha, S.; George, S. Lactose tailored boronic acid conjugated fluorescent gold nanoclusters for turn-on sensing of dopamine. J. Anal. Chem., 2017, 72(4), 445-459.
[http://dx.doi.org/10.1134/S1061934817040037]
[10]
Du, Q.; Wu, P.; Dramou, P.; Chen, R.; He, H. One-step fabrication of a boric acid-functionalized lanthanide metal-organic framework as a ratiometric fluorescence sensor for the selective recognition of dopamine. New J. Chem., 2019, 43(3), 1291-1298.
[http://dx.doi.org/10.1039/C8NJ05318A]
[11]
Sóvári, D.; Keserű, G.M.; Ábrányi-Balogh, P. Application of boroisoquinoline fluorophores as chemodosimeters for fluoride ion and Pd (0). Materials (Basel), 2020, 13(1), E199.
[http://dx.doi.org/10.3390/ma13010199] [PMID: 31906592]
[12]
Seraj, S.; Rouhani, S.; Faridbod, F. Fructose recognition using new “Off–On” fluorescent chemical probes based on boronate-tagged 1,8-naphthalimide. New J. Chem., 2018, 42(24), 19872-19880.
[http://dx.doi.org/10.1039/C8NJ05092A]
[13]
Li, Z.; Yu, C.; Chen, Y.; Liu, C.; Jia, P.; Zhu, H.; Zhang, X.; Sheng, W.; Zhu, B. A novel ratiometric fluorescent probe for highly sensitive and selective detection of peroxynitrite and its application for tracing endogenous peroxynitrite in live cells. Anal. Methods, 2019, 11(44), 5699-5703.
[http://dx.doi.org/10.1039/C9AY02069A]
[14]
Han, J.; Chu, C.; Cao, G.; Mao, W.; Wang, S.; Zhao, Z.; Gao, M.; Ye, H.; Xu, X. A simple boronic acid-based fluorescent probe for selective detection of hydrogen peroxide in solutions and living cells. Bioorg. Chem., 2018, 81, 362-366.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.036] [PMID: 30196205]
[15]
Woolley, J.F.; Stanicka, J.; Cotter, T.G. Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem. Sci., 2013, 38(11), 556-565.
[http://dx.doi.org/10.1016/j.tibs.2013.08.009] [PMID: 24120034]
[16]
Huang, M.F.; Lin, W.L.; Ma, Y.C. A study of reactive oxygen species in mainstream of cigarette. Indoor Air, 2005, 15(2), 135-140.
[http://dx.doi.org/10.1111/j.1600-0668.2005.00330.x] [PMID: 15737156]
[17]
Starkov, A.A., The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci., 2008, 1147, 37-52.
[18]
Yang, S.; Lian, G. ROS and diseases: role in metabolism and energy supply. Mol. Cell. Biochem., 2020, 467(1-2), 13-13.
[http://dx.doi.org/10.1007/s11010-020-03697-8] [PMID: 32067139]
[19]
Zielonka, J.; Sikora, A.; Joseph, J. Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide. J. Biol. Chem., 2010, 285.
[20]
Ćwik, P.; Wawrzyniak, U.E.; Jańczyk, M.; Wróblewski, W. Electrochemical studies of self-assembled monolayers composed of various phenylboronic acid derivatives. Talanta, 2014, 119, 5-10.
[http://dx.doi.org/10.1016/j.talanta.2013.10.059] [PMID: 24401378]
[21]
Li, C.; Wang, S.; Huang, Y.; Wen, Q.; Wang, L.; Kan, Y. Photoluminescence properties of a novel cyclometalated iridium(III) complex with coumarin-boronate and its recognition of hydrogen peroxide. Dalton Trans., 2014, 43(14), 5595-5602.
[http://dx.doi.org/10.1039/c3dt53498g] [PMID: 24549180]
[22]
Kang, S.W.; Lee, S.; Lee, E.K. ROS and energy metabolism in cancer cells: alliance for fast growth. Arch. Pharm. Res., 2015, 38(3), 338-345.
[http://dx.doi.org/10.1007/s12272-015-0550-6] [PMID: 25599615]
[23]
Zhang, P.; Ding, Y.; Liu, W.; Niu, G.; Zhang, H.; Ge, J.; Wu, J.; Li, Y.; Wang, P. Red emissive fluorescent probe for the rapid detection of selenocysteine. Sens. Actuators B Chem., 2018, 264, 234-239.
[http://dx.doi.org/10.1016/j.snb.2018.02.185]
[24]
Li, W.; Liu, Z.; Fang, B.; Jin, M.; Tian, Y. Two-photon fluorescent Zn2+ probe for ratiometric imaging and biosensing of Zn2+ in living cells and larval zebrafish. Biosens. Bioelectron., 2020, 148, 111666.
[http://dx.doi.org/10.1016/j.bios.2019.111666] [PMID: 31698301]
[25]
Guo, H.; Aleyasin, H.; Dickinson, B.C.; Haskew-Layton, R.E.; Ratan, R.R. Recent advances in hydrogen peroxide imaging for biological applications. Cell Biosci., 2014, 4(1), 64.
[http://dx.doi.org/10.1186/2045-3701-4-64] [PMID: 25400906]
[26]
Han, Z.; Liang, X.; Ren, X.; Shang, L.; Yin, Z. A 3,7-Dihydroxyphenoxazine-based fluorescent probe for selective detection of intracellular hydrogen peroxide. Chem. Asian J., 2016, 11(6), 818-822.
[http://dx.doi.org/10.1002/asia.201501304] [PMID: 26807851]
[27]
Choudhury, R.; Ricketts, A.T.; Molina, D.G.; Paudel, P. A boronic acid based intramolecular charge transfer probe for colorimetric detection of hydrogen peroxide. Tetrahedron Lett., 2019, 60(46), 151258.
[http://dx.doi.org/10.1016/j.tetlet.2019.151258]
[28]
Carroll, V.; Michel, B.W.; Blecha, J.; VanBrocklin, H.; Keshari, K.; Wilson, D.; Chang, C.J. A boronate-caged [¹F]FLT probe for hydrogen peroxide detection using positron emission tomography. J. Am. Chem. Soc., 2014, 136(42), 14742-14745.
[http://dx.doi.org/10.1021/ja509198w] [PMID: 25310369]
[29]
Sun, W.; Wu, J.; Li, J.; Fang, H.; Du, L.; Li, M. Boronate can be the fluorogenic switch for the detection of hydrogen peroxide. Curr. Med. Chem., 2012, 19(21), 3622-3634.
[http://dx.doi.org/10.2174/092986712801323270] [PMID: 22612709]
[30]
Wu, L.; Sedgwick, A.C.; Sun, X.; Bull, S.D.; He, X-P.; James, T.D. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc. Chem. Res., 2019, 52(9), 2582-2597.
[http://dx.doi.org/10.1021/acs.accounts.9b00302] [PMID: 31460742]
[31]
Lo, L.C.; Chu, C.Y. Development of highly selective and sensitive probes for hydrogen peroxide. Chem. Commun., 2003, (21), 2728-2729.
[http://dx.doi.org/10.1039/b309393j]
[32]
Shen, Y.; Zhang, X.; Zhang, Y.; Wu, Y.; Zhang, C.; Chen, Y.; Jin, J.; Li, H. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for hydrogen peroxide with a large emission shift and bio-imaging in living cells. Sens. Actuators B Chem., 2018, 255, 42-48.
[http://dx.doi.org/10.1016/j.snb.2017.08.020]
[33]
Liu, C.; Shen, Y.; Yin, P.; Li, L.; Liu, M.; Zhang, Y.; Li, H.; Yao, S. Sensitive detection of acetylcholine based on a novel boronate intramolecular charge transfer fluorescence probe. Anal. Biochem., 2014, 465, 172-178.
[http://dx.doi.org/10.1016/j.ab.2014.08.003] [PMID: 25132563]
[34]
Xiao, H.; Li, P.; Hu, X.; Shi, X.; Zhang, W.; Tang, B. Simultaneous fluorescence imaging of hydrogen peroxide in mitochondria and endoplasmic reticulum during apoptosis. Chem. Sci. (Camb.), 2016, 7(9), 6153-6159.
[http://dx.doi.org/10.1039/C6SC01793B] [PMID: 30034754]
[35]
Lee, J.; Yoon, S.A.; Chun, J.; Kang, C.; Lee, M.H. A red-emitting styrylnaphthalimide-based fluorescent probe providing a ratiometric signal change for the precise and quantitative detection of H2O2. Anal. Chim. Acta, 2019, 1080, 153-161.
[http://dx.doi.org/10.1016/j.aca.2019.07.008] [PMID: 31409465]
[36]
Dhoun, S.; Kaur, S.; Kaur, P.; Singh, K. A cyanostilbene-boronate based AIEE probe for hydrogen peroxide-Application in chemical processing. Sens. Actuators B Chem., 2017, 245, 95-103.
[http://dx.doi.org/10.1016/j.snb.2017.01.143]
[37]
Lampard, E.V.; Sedgwick, A.C.; Sun, X.; Filer, K.L.; Hewins, S.C.; Kim, G.; Yoon, J.; Bull, S.D.; James, T.D. Boronate-based fluorescence probes for the detection of hydrogen peroxide. ChemistryOpen, 2018, 7(3), 262-265.
[http://dx.doi.org/10.1002/open.201700189] [PMID: 29531890]
[38]
Wang, T.; Yang, X.; Men, J.; Zhou, J.; Zhang, H. A near-infrared fluorescent probe based on boric acid hydrolysis for hydrogen peroxide detection and imaging in HeLa cells. Luminescence, 2020, 35(2), 208-214.
[39]
Zhang, X.; Zhang, L.; Liu, Y.; Bao, B.; Zang, Y.; Li, J.; Lu, W. A near-infrared fluorescent probe for rapid detection of hydrogen peroxide in living cells. Tetrahedron, 2015, 71(29), 4842-4845.
[http://dx.doi.org/10.1016/j.tet.2015.05.025]
[40]
Li, H.; Yao, Q.; Fan, J.; Du, J.; Wang, J.; Peng, X. A two-photon NIR-to-NIR fluorescent probe for imaging hydrogen peroxide in living cells. Biosens. Bioelectron., 2017, 94, 536-543.
[http://dx.doi.org/10.1016/j.bios.2017.03.039] [PMID: 28347967]
[41]
Zhou, Z.; Li, Y.; Su, W.; Gu, B.; Xu, H.; Wu, C.; Yin, P.; Li, H.; Zhang, Y. A dual-signal colorimetric and near-infrared fluorescence probe for the detection of exogenous and endogenous hydrogen peroxide in living cells. Sens. Actuators B Chem., 2019, 280, 120-128.
[http://dx.doi.org/10.1016/j.snb.2018.09.126]
[42]
Sun, X.; Xu, S-Y.; Flower, S.E.; Fossey, J.S.; Qian, X.; James, T.D. “Integrated” and “insulated” boronate-based fluorescent probes for the detection of hydrogen peroxide. Chem. Commun. (Camb.), 2013, 49(75), 8311-8313.
[http://dx.doi.org/10.1039/c3cc43265c] [PMID: 23765276]
[43]
Wang, C.; Wang, Y.; Wang, G.; Huang, C.; Jia, N. A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells. Anal. Chim. Acta, 2020, 1097, 230-237.
[http://dx.doi.org/10.1016/j.aca.2019.11.024] [PMID: 31910964]
[44]
Murfin, L.C.; Weber, M.; Park, S.J.; Kim, W.T.; Lopez-Alled, C.M.; McMullin, C.L.; Pradaux-Caggiano, F.; Lyall, C.L.; Kociok-Köhn, G.; Wenk, J.; Bull, S.D.; Yoon, J.; Kim, H.M.; James, T.D.; Lewis, S.E. Azulene-derived fluorescent probe for bioimaging: Detection of reactive oxygen and nitrogen species by two-photon microscopy. J. Am. Chem. Soc., 2019, 141(49), 19389-19396.
[http://dx.doi.org/10.1021/jacs.9b09813] [PMID: 31773957]
[45]
Fu, Y.; Yao, J.; Xu, W.; Fan, T.; Jiao, Z.; He, Q.; Zhu, D.; Cao, H.; Cheng, J. Schiff base substituent-triggered efficient deboration reaction and its application in highly sensitive hydrogen peroxide vapor detection. Anal. Chem., 2016, 88(10), 5507-5512.
[http://dx.doi.org/10.1021/acs.analchem.6b01057] [PMID: 27094518]
[46]
Purdey, M.S.; McLennan, H.J.; Sutton-McDowall, M.L.; Drumm, D.W.; Zhang, X.; Capon, P.K.; Heng, S.; Thompson, J.G.; Abell, A.D. Biological hydrogen peroxide detection with aryl boronate and benzil BODIPY-based fluorescent probes. Sens. Actuators B Chem., 2018, 262, 750-757.
[http://dx.doi.org/10.1016/j.snb.2018.01.198]
[47]
Chen, Y.; Shi, X.; Lu, Z.; Wang, X.; Wang, Z. A fluorescent probe for hydrogen peroxide in vivo based on the modulation of intramolecular charge transfer. Anal. Chem., 2017, 89(10), 5278-5284.
[http://dx.doi.org/10.1021/acs.analchem.6b04810] [PMID: 28415838]
[48]
Liu, J.; Liang, J.; Wu, C.; Zhao, Y. A doubly-quenched fluorescent probe for low-background detection of mitochondrial H2O2. Anal. Chem., 2019, 91(10), 6902-6909.
[http://dx.doi.org/10.1021/acs.analchem.9b01294] [PMID: 31021600]
[49]
Sakakibara, K.; Takahashi, Y.; Nishiyabu, R.; Kubo, Y. A Zn2+-coordinated boronate dipyrrin as a chemodosimeter toward hydrogen peroxide. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(15), 3684-3691.
[http://dx.doi.org/10.1039/C7TC00405B]
[50]
Sk, M.; Banesh, S.; Trivedi, V.; Biswas, S. Selective and sensitive sensing of hydrogen peroxide by a boronic acid functionalized metal-organic framework and its application in live-cell imaging. Inorg. Chem., 2018, 57(23), 14574-14581.
[http://dx.doi.org/10.1021/acs.inorgchem.8b02240] [PMID: 30407802]
[51]
Cui, Y.; Chen, F.; Yin, X.B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens. Bioelectron., 2019, 135, 208-215.
[http://dx.doi.org/10.1016/j.bios.2019.04.008] [PMID: 31026775]
[52]
Takeshima, K.; Mizuno, K.; Nakahashi, H.; Aoki, H.; Kanekiyo, Y. Ratiometric sensing of hydrogen peroxide utilizing conformational change in fluorescent boronic acid polymers. J. Anal. Methods Chem., 2017, 2017, 7829438.
[http://dx.doi.org/10.1155/2017/7829438] [PMID: 29093982]
[53]
Williams, G.T.; Sedgwick, A.C.; Sen, S.; Gwynne, L.; Gardiner, J.E.; Brewster, J.T., II; Hiscock, J.R.; James, T.D.; Jenkins, A.T.A.; Sessler, J.L. Boronate ester cross-linked PVA hydrogels for the capture and H2O2-mediated release of active fluorophores. Chem. Commun. (Camb.), 2020, 56(41), 5516-5519.
[http://dx.doi.org/10.1039/D0CC01904F] [PMID: 32296797]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy