Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review

Author(s): Leila Gholami, Jalil Rouhani Ivari, Niloofar Khandan Nasab, Reza Kazemi Oskuee, Thozhukat Sathyapalan* and Amirhossein Sahebkar*

Volume 30, Issue 3, 2023

Published on: 04 January, 2022

Page: [335 - 355] Pages: 21

DOI: 10.2174/0929867328666210810160901

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.

Keywords: Lung cancer, treatment, nanocarriers, drug delivery, nanomedicine, nanomaterials.

[1]
Ostrowski, M. Marjański, T.; Rzyman, W. Low-dose computed tomography screening reduces lung cancer mortality. Adv. Med. Sci., 2018, 63(2), 230-236.
[http://dx.doi.org/10.1016/j.advms.2017.12.002] [PMID: 29425790]
[2]
Sung, J.H.; Sim, C.S.; Ock, M.; Oh, I.; Jeong, K.S.; Yoo, C. Comparison of a 10-year cumulative age-standardized incidence rate of lung cancer among metropolitan cities in Korea (during the 2000-2009 period): review of occupational and environmental hazards associated with lung cancer. Int. J. Environ. Res. Public Health, 2018, 15(6), 1259.
[http://dx.doi.org/10.3390/ijerph15061259] [PMID: 29899316]
[3]
Zhang, J.; Zhao, T.; Xu, C.; Huang, J.; Yu, H. Genetic susceptibility of lung cancer in Chinese population: An overview of systematic reviews and meta-analyses. J. Evid. Based Med., 2017, 10(3), 207-211.
[http://dx.doi.org/10.1111/jebm.12269] [PMID: 28857506]
[4]
Kanwal, M.; Ding, X.J.; Cao, Y. Familial risk for lung cancer. Oncol. Lett., 2017, 13(2), 535-542.
[http://dx.doi.org/10.3892/ol.2016.5518] [PMID: 28356926]
[5]
Smolle, E.; Pichler, M. Non-smoking-associated lung cancer: A distinct entity in terms of tumor biology, patient characteristics and impact of hereditary cancer predisposition. Cancers (Basel), 2019, 11(2), 204.
[http://dx.doi.org/10.3390/cancers11020204] [PMID: 30744199]
[6]
Sanguedolce, F.; Loizzi, D.; Sollitto, F.; Di Bisceglie, M.; Lucarelli, G.; Carrieri, G.; Bufo, P.; Cormio, L. Bladder metastases from lung cancer: clinical and pathological implications: A systematic review. Oncology, 2017, 92(3), 125-134.
[http://dx.doi.org/10.1159/000454731] [PMID: 28056456]
[7]
Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J., 2016, 48(3), 889-902.
[http://dx.doi.org/10.1183/13993003.00359-2016] [PMID: 27174888]
[8]
Warren, G.W.; Cummings, K.M. Tobacco and lung cancer: risks, trends, and outcomes in patients with cancer. Am. Soc. Clin. Oncol. Educ. Book, 2013, 359-364.
[http://dx.doi.org/10.14694/EdBook_AM.2013.33.359] [PMID: 23714547]
[9]
Arghir, O.C.; Halichidis, S.; Cambrea, S.C. Environmental risk factors for lung cancer in never-smokers. J. Environ. Prot. Ecol., 2014, 15(1), 348-352.
[10]
Ruano-Ravina, A.; Lorenzo-González, M.; Provencio, M. P2.10-05 indoor radon and lung cancer risk. A pooling study on the second risk factor for lung cancer. J. Thorac. Oncol., 2019, 14(10), S786.
[http://dx.doi.org/10.1016/j.jtho.2019.08.1689]
[11]
Azhari; Bremmy; Winni, Y.; Suhardjo, S. Effects of radon gas exposure on lung cell immunity at low doses and high doses: A review. J. Int. Dent. Med. Res., 2019, 12(3), 1211-1221.
[12]
Mani, D.; Haigentz, M., Jr; Aboulafia, D.M. Lung cancer in HIV Infection. Clin. Lung Cancer, 2012, 13(1), 6-13.
[http://dx.doi.org/10.1016/j.cllc.2011.05.005] [PMID: 21802373]
[13]
Kumar, S.; Ranjit, S. Recent advances in cancer outcomes in HIV-positive smokers. F1000Res, 2018, 7(F1000 Faculty Rev), 718.
[http://dx.doi.org/10.12688/f1000research.12068.1] [PMID: 29946425]
[14]
Wang, Y.H.; Shen, X.D. Human immunodeficiency virus infection and mortality risk among lung cancer patients: A systematic review and meta-analysis. Medicine (Baltimore), 2018, 97(15), e0361.
[http://dx.doi.org/10.1097/MD.0000000000010361] [PMID: 29642182]
[15]
Jia, Y.; Li, F.; Liu, Y.F.; Zhao, J.P.; Leng, M.M.; Chen, L. Depression and cancer risk: A systematic review and meta-analysis. Public Health, 2017, 149(149), 138-148.
[http://dx.doi.org/10.1016/j.puhe.2017.04.026] [PMID: 28641155]
[16]
Wang, Y-H.; Li, J-Q.; Shi, J-F.; Que, J.Y.; Liu, J.J.; Lappin, J.M.; Leung, J.; Ravindran, A.V.; Chen, W.Q.; Qiao, Y.L.; Shi, J.; Lu, L.; Bao, Y.P. Depression and anxiety in relation to cancer incidence and mortality: A systematic review and meta-analysis of cohort studies. Mol. Psychiatry, 2020, 25(7), 1487-1499.
[http://dx.doi.org/10.1038/s41380-019-0595-x] [PMID: 31745237]
[17]
Wang, T.H.; Hsia, S.M.; Shih, Y.H.; Shieh, T.M. Association of smoking, alcohol use, and betel quid chewing with epigenetic aberrations in cancers. Int. J. Mol. Sci., 2017, 18(6), 1210.
[http://dx.doi.org/10.3390/ijms18061210] [PMID: 28587272]
[18]
Takahashi, K.; Porcel, J.M.; Lee, P.; Leung, C.C. Year in review 2014: Lung cancer, pleural diseases, respiratory infections and tuberculosis, bronchoscopic intervention and imaging. Respirology, 2015, 20(4), 674-683.
[http://dx.doi.org/10.1111/resp.12502] [PMID: 25736820]
[19]
El-Telbany, A.; Ma, P.C. Cancer genes in lung cancer: racial disparities: Are there any? Genes Cancer, 2012, 3(7-8), 467-480.
[http://dx.doi.org/10.1177/1947601912465177] [PMID: 23264847]
[20]
Lazarus, D.R.; Ost, D.E. How and when to use genetic markers for nonsmall cell lung cancer. Curr. Opin. Pulm. Med., 2013, 19(4), 331-339.
[http://dx.doi.org/10.1097/MCP.0b013e328362075c] [PMID: 23715289]
[21]
Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; Kwiatkowski, D.J.; Ladanyi, M.; Nowak, J.A.; Sholl, L.; Temple-Smolkin, R.; Solomon, B.; Souter, L.H.; Thunnissen, E.; Tsao, M.S.; Ventura, C.B.; Wynes, M.W.; Yatabe, Y. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the college of American pathologists, the international association for the study of lung cancer, and the association for molecular pathology. JMD, 2018, 20(2), 129-159.
[http://dx.doi.org/10.5858/arpa.2017-0388-CP] [PMID: 29398453]
[22]
Kim, E.Y.; Lee, S.H.; Kim, A.; Kim, T.; Chang, Y.S. Tumor clonal status predicts clinical outcomes of lung adenocarcinoma with EGFR-TKI sensitizing mutation. J. Cancer, 2019, 10(22), 5549-5556.
[http://dx.doi.org/10.7150/jca.32897] [PMID: 31632498]
[23]
Garrido, P.; Conde, E.; de Castro, J.; Gómez-Román, J.J.; Felip, E.; Pijuan, L.; Isla, D.; Sanz, J.; Paz-Ares, L.; López-Ríos, F. Updated guidelines for predictive biomarker testing in advanced non-small-cell lung cancer: A National Consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin. Transl. Oncol., 2020, 22(7), 989-1003.
[http://dx.doi.org/10.1007/s12094-019-02218-4] [PMID: 31598903]
[24]
Ooi, A.T.; Gomperts, B.N. Molecular pathways: targeting cellular energy metabolism in cancer via inhibition of SLC2A1 and LDHA. Clin. Cancer Res., 2015, 21(11), 2440-2444.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1209]
[25]
Hirano, H.; Maeda, H.; Yamaguchi, T.; Yokota, S.; Mori, M.; Sakoda, S. Survivin expression in lung cancer: Association with smoking, histological types and pathological stages. Oncol. Lett., 2015, 10(3), 1456-1462.
[http://dx.doi.org/10.3892/ol.2015.3374] [PMID: 26622690]
[26]
Choy, B.; LaLonde, A.; Que, J.; Wu, T.; Zhou, Z. MCM4 and MCM7, potential novel proliferation markers, significantly correlated with Ki-67, Bmi1, and cyclin E expression in esophageal adenocarcinoma, squamous cell carcinoma, and precancerous lesions. Hum. Pathol., 2016, 57, 126-135.
[http://dx.doi.org/10.1016/j.humpath.2016.07.013] [PMID: 27476776]
[27]
Khalil, A.A.; Sivakumar, S.; Lucas, F.A.S.; McDowell, T.; Lang, W.; Tabata, K.; Fujimoto, J.; Yatabe, Y.; Spira, A.; Scheet, P.; Nemer, G.; Kadara, H. TBX2 subfamily suppression in lung cancer pathogenesis: A high-potential marker for early detection. Oncotarget, 2017, 8(40), 68230-68241.
[http://dx.doi.org/10.18632/oncotarget.19938] [PMID: 28978111]
[28]
Wang, L.; Zhang, J.; Wan, L.; Zhou, X.; Wang, Z.; Wei, W. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol. Ther., 2015, 151, 141-151.
[http://dx.doi.org/10.1016/j.pharmthera.2015.04.002] [PMID: 25850036]
[29]
Alevizakos, M.; Kaltsas, S.; Syrigos, K.N. The VEGF pathway in lung cancer. Cancer Chemother. Pharmacol., 2013, 72(6), 1169-1181.
[http://dx.doi.org/10.1007/s00280-013-2298-3] [PMID: 24085262]
[30]
Xu, Y.; Gao, P.; Lv, X.; Zhang, L.; Zhang, J. The role of the ataxia telangiectasia mutated gene in lung cancer: recent advances in research. Ther. Adv. Respir. Dis., 2017, 11(9), 375-380.
[http://dx.doi.org/10.1177/1753465817725716] [PMID: 28825373]
[31]
Wu, G.; Jiang, B.; Liu, X.; Shen, Y.; Yang, S. Association of GSTs gene polymorphisms with treatment outcome of advanced non-small cell lung cancer patients with cisplatin-based chemotherapy. Int. J. Clin. Exp. Pathol., 2015, 8(10), 13346-13352.
[PMID: 26722539]
[32]
Jamsai, D.; Watkins, D.N.; O’Connor, A.E.; Merriner, D.J.; Gursoy, S.; Bird, A.D.; Kumar, B.; Miller, A.; Cole, T.J.; Jenkins, B.J.; O’Bryan, M.K. In vivo evidence that RBM5 is a tumour suppressor in the lung. Sci. Rep., 2017, 7(1), 16323.
[http://dx.doi.org/10.1038/s41598-017-15874-9] [PMID: 29176597]
[33]
Sanchez-Cespedes, M. The role of LKB1 in lung cancer. Fam. Cancer, 2011, 10(3), 447-453.
[http://dx.doi.org/10.1007/s10689-011-9443-0] [PMID: 21516316]
[34]
Westcott, P.M.K.; To, M.D. The genetics and biology of KRAS in lung cancer. Chin. J. Cancer, 2013, 32(2), 63-70.
[http://dx.doi.org/10.5732/cjc.012.10098] [PMID: 22776234]
[35]
Tan, Z.; Yang, C.; Zhang, X.; Zheng, P.; Shen, W. Expression of glucose transporter 1 and prognosis in non-small cell lung cancer: A pooled analysis of 1665 patients. Oncotarget, 2017, 8(37), 60954-60961.
[http://dx.doi.org/10.18632/oncotarget.17604] [PMID: 28977837]
[36]
Bronte, G.; Ulivi, P.; Verlicchi, A.; Cravero, P.; Delmonte, A.; Crinò, L. Targeting RET-rearranged non-small-cell lung cancer: future prospects. Lung Cancer (Auckl.), 2019, 10, 27-36.
[http://dx.doi.org/10.2147/LCTT.S192830] [PMID: 30962732]
[37]
Planchard, D.; Kim, T.M.; Mazieres, J.; Quoix, E.; Riely, G.; Barlesi, F.; Souquet, P.J.; Smit, E.F.; Groen, H.J.; Kelly, R.J.; Cho, B.C.; Socinski, M.A.; Pandite, L.; Nase, C.; Ma, B.; D’Amelio, A., Jr; Mookerjee, B.; Curtis, C.M., Jr; Johnson, B.E. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: A single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol., 2016, 17(5), 642-650.
[http://dx.doi.org/10.1016/S1470-2045(16)00077-2] [PMID: 27080216]
[38]
Lawrence, R.E.; Salgia, R. MET molecular mechanisms and therapies in lung cancer. Cell Adhes. Migr., 2010, 4(1), 146-152.
[http://dx.doi.org/10.4161/cam.4.1.10973] [PMID: 20139696]
[39]
Yu, Y.X.; Wang, Y.; Liu, H. Overexpression of PTEN suppresses non-small-cell lung carcinoma metastasis through inhibition of integrin αVβ6 signaling. Am. J. Transl. Res., 2017, 9(7), 3304-3314.
[PMID: 28804548]
[40]
Liang, H.; Wang, M. MET oncogene in non-small cell lung cancer: mechanism of MET dysregulation and agents targeting the HGF/c-met axis. OncoTargets Ther., 2020, 13, 2491-2510.
[http://dx.doi.org/10.2147/OTT.S231257] [PMID: 32273721]
[41]
Rosell, R.; Chaib, I.; Santarpia, M. Targeting MET amplification in EGFR-mutant non-small-cell lung cancer. Lancet Respir. Med., 2020, 8(11), 1068-1070.
[http://dx.doi.org/10.1016/S2213-2600(20)30171-5] [PMID: 32479793]
[42]
Zhang, M.; Li, G.; Wang, Y.; Wang, Y.; Zhao, S.; Haihong, P.; Zhao, H.; Wang, Y. PD-L1 expression in lung cancer and its correlation with driver mutations: A meta-analysis. Sci. Rep., 2017, 7(1), 10255.
[http://dx.doi.org/10.1038/s41598-017-10925-7] [PMID: 28860576]
[43]
Lin, P.Y.; Yu, S.L.; Yang, P.C. MicroRNA in lung cancer. Br. J. Cancer, 2010, 103(8), 1144-1148.
[http://dx.doi.org/10.1038/sj.bjc.6605901] [PMID: 20859290]
[44]
Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory mechanism of microRNA expression in cancer. Int. J. Mol. Sci., 2020, 21(5), 1723.
[http://dx.doi.org/10.3390/ijms21051723] [PMID: 32138313]
[45]
Yang, X.; Zhang, Q.; Zhang, M.; Su, W.; Wang, Z.; Li, Y.; Zhang, J.; Beer, D.G.; Yang, S.; Chen, G. Serum microRNA signature is capable of early diagnosis for non-small cell lung cancer. Int. J. Biol. Sci., 2019, 15(8), 1712-1722.
[http://dx.doi.org/10.7150/ijbs.33986] [PMID: 31360113]
[46]
Aiso, T.; Ohtsuka, K.; Ueda, M.; Karita, S.; Yokoyama, T.; Takata, S.; Matsuki, N.; Kondo, H.; Takizawa, H.; Okada, A.A.; Watanabe, T.; Ohnishi, H. Serum levels of candidate microRNA diagnostic markers differ among the stages of non-small-cell lung cancer. Oncol. Lett., 2018, 16(5), 6643-6651.
[http://dx.doi.org/10.3892/ol.2018.9464] [PMID: 30405804]
[47]
Wang, J.; Chen, J.; Sen, S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol., 2016, 231(1), 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[48]
Takamizawa, J.; Konishi, H.; Yanagisawa, K.; Tomida, S.; Osada, H.; Endoh, H.; Harano, T.; Yatabe, Y.; Nagino, M.; Nimura, Y.; Mitsudomi, T.; Takahashi, T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res., 2004, 64(11), 3753-3756.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0637] [PMID: 15172979]
[49]
Inamura, K.; Ishikawa, Y. MicroRNA in lung cancer: novel biomarkers and potential tools for treatment. J. Clin. Med., 2016, 5(3), 36.
[http://dx.doi.org/10.3390/jcm5030036] [PMID: 27005669]
[50]
Zhang, H.; Mao, F.; Shen, T.; Luo, Q.; Ding, Z.; Qian, L.; Huang, J. Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer. Oncol. Lett., 2017, 13(2), 669-676.
[http://dx.doi.org/10.3892/ol.2016.5462] [PMID: 28356944]
[51]
Kim, Y.H.; Lee, W.K.; Lee, E.B.; Son, J.W.; Kim, D.S.; Park, J.Y. Combined effect of metastasis-related microRNA, miR-34 and miR-124 family, methylation on prognosis of non–small-cell lung cancer. Clin. Lung Cancer, 2017, 18(1), e13-e20.
[http://dx.doi.org/10.1016/j.cllc.2016.06.005] [PMID: 27444357]
[52]
Yuwen, D.L.; Sheng, B.B.; Liu, J.; Wenyu, W.; Shu, Y.Q. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(11), 2650-2658.
[53]
Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol., 2014, 9, 287-314.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[54]
Gao, Z.J.; Yuan, W.D.; Yuan, J.Q.; Yuan, K.; Wang, Y. miR-486-5p functions as an oncogene by targeting PTEN in non-small cell lung cancer. Pathol. Res. Pract., 2018, 214(5), 700-705.
[http://dx.doi.org/10.1016/j.prp.2018.03.013] [PMID: 29567332]
[55]
Yang, W.; Bai, J.; Liu, D.; Wang, S.; Zhao, N.; Che, R.; Zhang, H. MiR-93-5p up-regulation is involved in non-small cell lung cancer cells proliferation and migration and poor prognosis. Gene, 2018, 647, 13-20.
[http://dx.doi.org/10.1016/j.gene.2018.01.024] [PMID: 29309884]
[56]
Gao, X.; Zhao, H.; Diao, C.; Wang, X.; Xie, Y.; Liu, Y.; Han, J.; Zhang, M. miR-455-3p serves as prognostic factor and regulates the proliferation and migration of non-small cell lung cancer through targeting HOXB5. Biochem. Biophys. Res. Commun., 2018, 495(1), 1074-1080.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.123] [PMID: 29170127]
[57]
Sun, B.; Liu, H.F.; Ding, Y.; Li, Z. Evaluating the diagnostic and prognostic value of serum miR-770 in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3061-3066.
[http://dx.doi.org/10.26355/eurrev_201805_15064]
[58]
Ma, Z.; Cai, H.; Zhang, Y.; Chang, L.; Cui, Y. MiR-129-5p inhibits non-small cell lung cancer cell stemness and chemoresistance through targeting DLK1. Biochem. Biophys. Res. Commun., 2017, 490(2), 309-316.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.041] [PMID: 28619508]
[59]
Xu, J.; Wu, W.; Wang, J.; Huang, C.; Wen, W.; Zhao, F.; Xu, X.; Pan, X.; Wang, W.; Zhu, Q.; Chen, L. miR-367 promotes the proliferation and invasion of non-small cell lung cancer via targeting FBXW7. Oncol. Rep., 2017, 37(2), 1052-1058.
[http://dx.doi.org/10.3892/or.2016.5314] [PMID: 28000899]
[60]
Parashar, B.; Arora, S.; Wernicke, A.G. Radiation therapy for early stage lung cancer. Semin. Intervent. Radiol., 2013, 30(2), 185-190.
[http://dx.doi.org/10.1055/s-0033-1342960] [PMID: 24436535]
[61]
Lackey, A.; Donington, J.S. Surgical management of lung cancer. Semin. Intervent. Radiol., 2013, 30(2), 133-140.
[http://dx.doi.org/10.1055/s-0033-1342954] [PMID: 24436529]
[62]
Liu, Y.; Shan, L.; Shen, J.; Liu, L.; Wang, J.; He, J.; He, Q.; Jiang, L.; Guo, M.; Chen, X.; Zeng, H.; Xia, X.; Peng, G.; Liang, W.; He, J. Choice of surgical procedure - lobectomy, segmentectomy, or wedge resection - for patients with stage T1-2N0M0 small cell lung cancer: A population-based study. Thorac. Cancer, 2019, 10(4), 593-600.
[http://dx.doi.org/10.1111/1759-7714.12943] [PMID: 30854808]
[63]
Lemjabbar-Alaoui, H.; Hassan, O.U.I.; Yang, Y.W.; Buchanan, P. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta, 2015, 1856(2), 189-210.
[http://dx.doi.org/10.1016/j.bbcan.2015.08.002] [PMID: 26297204]
[64]
Lu, B.; Sun, L.; Yan, X.; Ai, Z.; Xu, J. Intratumoral chemotherapy with paclitaxel liposome combined with systemic chemotherapy: A new method of neoadjuvant chemotherapy for stage III unresectable non-small cell lung cancer. Med. Oncol., 2015, 32(1), 345.
[http://dx.doi.org/10.1007/s12032-014-0345-5] [PMID: 25429832]
[65]
Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol. Ther., 2010, 128(2), 324-335.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.007] [PMID: 20705093]
[66]
Sivarajakumar, R.; Mallukaraj, D.; Kadavakollu, M. Nanoparticles for the treatment of lung cancers. J. Young Pharm., 2018, 10(3), 276.
[http://dx.doi.org/10.5530/jyp.2018.10.62]
[67]
Naddafi, F. Monoclonal antibodies in non-small-cell lung cancer: Light at the end of the tunnel. Trends Med., 2019, 19, 1000190.
[http://dx.doi.org/10.15761/TiM.1000190]
[68]
Lee, S.H. Chemotherapy for lung cancer in the era of personalized medicine. Tuberc. Respir. Dis. (Seoul), 2019, 82(3), 179-189.
[http://dx.doi.org/10.4046/trd.2018.0068] [PMID: 30841023]
[69]
Socinski, M.A.; Evans, T.; Gettinger, S.; Hensing, T.A.; VanDam Sequist, L.; Ireland, B.; Stinchcombe, T.E. Treatment of stage IV non-small cell lung cancer: diagnosis and management of lung cancer. In: American College of Chest Physicians evidence-based clinical practice guidelines, 3rd ed; Chest; , 2013; 143, pp. (5 Suppl)e341S-e368S.
[http://dx.doi.org/10.1378/chest.12-2361] [PMID: 23649446]
[70]
Chan, B.A.; Hughes, B.G.M. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res., 2015, 4(1), 36-54.
[http://dx.doi.org/10.3978/j.issn.2218-6751.2014.05.01] [PMID: 25806345]
[71]
Lee, H-Y.; Mohammed, K.A.; Nasreen, N. Nanoparticle-based targeted gene therapy for lung cancer. Am. J. Cancer Res., 2016, 6(5), 1118-1134.
[PMID: 27294004]
[72]
Pirker, R.; Filipits, M. Monoclonal antibodies against EGFR in non-small cell lung cancer. Crit. Rev. Oncol. Hematol., 2011, 80(1), 1-9.
[http://dx.doi.org/10.1016/j.critrevonc.2010.10.008] [PMID: 21109448]
[73]
Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol., 2005, 23(5), 1011-1027.
[http://dx.doi.org/10.1200/JCO.2005.06.081] [PMID: 15585754]
[74]
Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; Melichar, B.; Tehfe, M.; Topuzov, E.; Zalcberg, J.R.; Chau, I.; Campbell, W.; Sivanandan, C.; Pikiel, J.; Koshiji, M.; Hsu, Y.; Liepa, A.M.; Gao, L.; Schwartz, J.D.; Tabernero, J. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet, 2014, 383(9911), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(13)61719-5] [PMID: 24094768]
[75]
Garon, E.B.; Ciuleanu, T-E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; Czyzewicz, G.; Orlov, S.V.; Lewanski, C.R.; Thomas, M.; Bidoli, P.; Dakhil, S.; Gans, S.; Kim, J.H.; Grigorescu, A.; Karaseva, N.; Reck, M.; Cappuzzo, F.; Alexandris, E.; Sashegyi, A.; Yurasov, S.; Pérol, M. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial. Lancet, 2014, 384(9944), 665-673.
[http://dx.doi.org/10.1016/S0140-6736(14)60845-X] [PMID: 24933332]
[76]
Topalian, S.L.; Weiner, G.J.; Pardoll, D.M. Cancer immunotherapy comes of age. J. Clin. Oncol., 2011, 29(36), 4828-4836.
[http://dx.doi.org/10.1200/JCO.2011.38.0899] [PMID: 22042955]
[77]
Ruiz, R.; Hunis, B.; Raez, L.E. Immunotherapeutic agents in non-small-cell lung cancer finally coming to the front lines. Curr. Oncol. Rep., 2014, 16(9), 400.
[http://dx.doi.org/10.1007/s11912-014-0400-6] [PMID: 25030654]
[78]
Lara-Guerra, H.; Roth, J.A. Gene therapy for lung cancer. Crit. Rev. Oncog., 2016, 21(1-2), 115-124.
[http://dx.doi.org/10.1615/CritRevOncog.2016016084] [PMID: 27481008]
[79]
Amreddy, N.; Babu, A.; Muralidharan, R.; Munshi, A.; Ramesh, R. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. Top. Curr. Chem. (Cham), 2017, 375(2), 35.
[http://dx.doi.org/10.1007/s41061-017-0128-5] [PMID: 28290155]
[80]
Salvioni, L.; Rizzuto, M.A.; Bertolini, J.A.; Pandolfi, L.; Colombo, M.; Prosperi, D. Thirty years of cancer nanomedicine: success, frustration, and hope. Cancers (Basel), 2019, 11(12), 1855.
[http://dx.doi.org/10.3390/cancers11121855] [PMID: 31769416]
[81]
Pugazhendhi, A.; Edison, T.N.J.I.; Karuppusamy, I.; Kathirvel, B. Inorganic nanoparticles: A potential cancer therapy for human welfare. Int. J. Pharm., 2018, 539(1-2), 104-111.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.034] [PMID: 29366941]
[82]
Sukumar, U.K.; Bhushan, B.; Dubey, P. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int. Nano Lett., 2013, 3, 45.
[http://dx.doi.org/10.1186/2228-5326-3-45]
[83]
Wang, Y.; Yang, P.; Zhao, X.; Gao, D.; Sun, N.; Tian, Z.; Ma, T.; Yang, Z. Multifunctional cargo-free nanomedicine for cancer therapy. Int. J. Mol. Sci., 2018, 19(10), 2963.
[http://dx.doi.org/10.3390/ijms19102963] [PMID: 30274177]
[84]
Dai, W.; Wang, X.; Song, G.; Liu, T.; He, B.; Zhang, H.; Wang, X.; Zhang, Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv. Drug Deliv. Rev., 2017, 115, 23-45.
[http://dx.doi.org/10.1016/j.addr.2017.03.001] [PMID: 28285944]
[85]
Arranja, A.G.; Pathak, V.; Lammers, T.; Shi, Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol. Res., 2017, 115(115), 87-95.
[http://dx.doi.org/10.1016/j.phrs.2016.11.014] [PMID: 27865762]
[86]
Jahan, S.T.; Sadat, S.M.A.; Walliser, M.; Haddadi, A. Targeted therapeutic nanoparticles: An immense promise to fight against cancer. J. Drug Deliv., 2017, 2017, 9090325.
[http://dx.doi.org/10.1155/2017/9090325] [PMID: 29464123]
[87]
Zamani, P.; Momtazi-Borojeni, A.A.; Nik, M.E.; Oskuee, R.K.; Sahebkar, A. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy. J. Cell. Physiol., 2018, 233(7), 5189-5199.
[http://dx.doi.org/10.1002/jcp.26361] [PMID: 29215747]
[88]
Muthu, M.S.; Wilson, B. Multifunctional radionanomedicine: A novel nanoplatform for cancer imaging and therapy. Nanomedicine (Lond.), 2010, 5(2), 169-171.
[http://dx.doi.org/10.2217/nnm.09.107] [PMID: 20148628]
[89]
Jeon, J. Review of therapeutic applications of radiolabeled functional nanomaterials. Int. J. Mol. Sci., 2019, 20(9), 2323.
[http://dx.doi.org/10.3390/ijms20092323] [PMID: 31083402]
[90]
Man, F.; Lammers, T.T.M.; de Rosales, R. Imaging nanomedicine-based drug delivery: A review of clinical studies. Mol. Imaging Biol., 2018, 20(5), 683-695.
[http://dx.doi.org/10.1007/s11307-018-1255-2] [PMID: 30084044]
[91]
Gonda, A.; Zhao, N.; Shah, J.V.; Calvelli, H.R.; Kantamneni, H.; Francis, N.L.; Ganapathy, V. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine. Med One, 2019, 4, e190021.
[http://dx.doi.org/10.20900/mo.20190021] [PMID: 31592196]
[92]
Lamichhane, N.; Udayakumar, T.S.; D’Souza, W.D.; Simone, C.B., II; Raghavan, S.R.; Polf, J.; Mahmood, J. Liposomes: clinical applications and potential for image-guided drug delivery. Molecules, 2018, 23(2), 288.
[http://dx.doi.org/10.3390/molecules23020288] [PMID: 29385755]
[93]
Yu, G.; Ning, Q.; Mo, Z.; Tang, S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1476-1487.
[http://dx.doi.org/10.1080/21691401.2019.1601104] [PMID: 31070063]
[94]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[95]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[96]
Zhou, J.; Zhao, W.Y.; Ma, X.; Ju, R.J.; Li, X.Y.; Li, N.; Sun, M.G.; Shi, J.F.; Zhang, C.X.; Lu, W.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials, 2013, 34(14), 3626-3638.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.078] [PMID: 23422592]
[97]
Zhou, X.; Tao, H.; Shi, K.H. Development of a nanoliposomal formulation of erlotinib for lung cancer and in vitro/in vivo antitumoral evaluation. Drug Des. Devel. Ther., 2017, 12, 1-8.
[http://dx.doi.org/10.2147/DDDT.S146925] [PMID: 29296076]
[98]
Jinturkar, K.A.; Anish, C.; Kumar, M.K.; Bagchi, T.; Panda, A.K.; Misra, A.R. Liposomal formulations of Etoposide and Docetaxel for p53 mediated enhanced cytotoxicity in lung cancer cell lines. Biomaterials, 2012, 33(8), 2492-2507.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.067] [PMID: 22200537]
[99]
Wei, Y.; Liang, J.; Zheng, X.; Pi, C.; Liu, H.; Yang, H.; Zou, Y.; Ye, Y.; Zhao, L. Lung-targeting drug delivery system of baicalin-loaded nanoliposomes: development, biodistribution in rabbits, and pharmacodynamics in nude mice bearing orthotopic human lung cancer. Int. J. Nanomedicine, 2016, 12, 251-261.
[http://dx.doi.org/10.2147/IJN.S119895] [PMID: 28096670]
[100]
Yang, J.; Wu, W.; Wen, J.; Ye, H.; Luo, H.; Bai, P.; Tang, M.; Wang, F.; Zheng, L.; Yang, S.; Li, W.; Peng, A.; Yang, L.; Wan, L.; Chen, L. Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells. Biomaterials, 2017, 141, 188-198.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.002] [PMID: 28689115]
[101]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[102]
Kraut, E.H.; Fishman, M.N.; Lorusso, P.M.; Gordon, M.S.; Rubin, E.H.; Fetterly Haas, G. A.J.; Cullinan, P.; Dul, J.L.; Steinberg, L. Final results of a phase I study of liposome encapsulated SN-38 (LE-SN38): safety, pharmacogenomics, pharmacokinetics, and tumor response. J. Clin. Oncol., 2005, 23(16)(Suppl.), 2017.
[http://dx.doi.org/10.1200/jco.2005.23.16_suppl.2017]
[103]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[104]
Whiteman, K.R.; Subr, V.; Ulbrich, K.; Torchilin, V.P. Poly(Hpma)-coated liposomes demonstrate prolonged circulation in mice. J. Liposome Res., 2001, 11(2-3), 153-164.
[http://dx.doi.org/10.1081/LPR-100108459] [PMID: 19530930]
[105]
Petersen, G.H.; Alzghari, S.K.; Chee, W.; Sankari, S.S.; La-Beck, N.M. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J. Control. Release, 2016, 232, 255-264.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.028] [PMID: 27108612]
[106]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[107]
Biswas, S.; Deshpande, P.P.; Perche, F.; Dodwadkar, N.S.; Sane, S.D.; Torchilin, V.P. Octa-arginine-modified pegylated liposomal doxorubicin: An effective treatment strategy for non-small cell lung cancer. Cancer Lett., 2013, 335(1), 191-200.
[http://dx.doi.org/10.1016/j.canlet.2013.02.020] [PMID: 23419527]
[108]
Cheng, L.; Huang, F-Z.; Cheng, L-F.; Zhu, Y.Q.; Hu, Q.; Li, L.; Wei, L.; Chen, D.W. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int. J. Nanomedicine, 2014, 9, 921-935.
[http://dx.doi.org/10.2147/IJN.S53310] [PMID: 24611009]
[109]
Zhang, T.; Chen, Y.; Ge, Y.; Hu, Y.; Li, M.; Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B, 2018, 8(3), 440-448.
[http://dx.doi.org/10.1016/j.apsb.2018.03.004] [PMID: 29881683]
[110]
Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M.K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv., 2018, 25(1), 256-266.
[http://dx.doi.org/10.1080/10717544.2018.1425777] [PMID: 29334814]
[111]
Fu, S.; Zhao, Y.; Sun, J.; Yang, T.; Zhi, D.; Zhang, E.; Zhong, F.; Zhen, Y.; Zhang, S.; Zhang, S. Integrin αvβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids Surf. B Biointerfaces, 2021, 201, 111623.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111623] [PMID: 33636597]
[112]
Stathopoulos, G.P.; Antoniou, D.; Dimitroulis, J.; Stathopoulos, J.; Marosis, K.; Michalopoulou, P. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother. Pharmacol., 2011, 68(4), 945-950.
[http://dx.doi.org/10.1007/s00280-011-1572-5] [PMID: 21301848]
[113]
Stathopoulos, G.P.; Stathopoulos, J.; Dimitroulis, J. Two consecutive days of treatment with liposomal cisplatin in non-small cell lung cancer. Oncol. Lett., 2012, 4(5), 1013-1016.
[http://dx.doi.org/10.3892/ol.2012.836] [PMID: 23162642]
[114]
Song, X.L.; Ju, R.J.; Xiao, Y.; Wang, X.; Liu, S.; Fu, M.; Liu, J.J.; Gu, L.Y.; Li, X.T.; Cheng, L. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int. J. Nanomedicine, 2017, 12, 7433-7451.
[http://dx.doi.org/10.2147/IJN.S141787] [PMID: 29066893]
[115]
Lin, C.; Wong, B.C.K.; Chen, H.; Bian, Z.; Zhang, G.; Zhang, X.; Kashif Riaz, M.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci. Rep., 2017, 7(1), 1097.
[http://dx.doi.org/10.1038/s41598-017-00957-4] [PMID: 28428618]
[116]
Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Retinoic acids in the treatment of most lethal solid cancers. J. Clin. Med., 2020, 9(2), 360.
[http://dx.doi.org/10.3390/jcm9020360] [PMID: 32012980]
[117]
Suzuki, S.; Kawakami, S.; Chansri, N.; Yamashita, F.; Hashida, M. Inhibition of pulmonary metastasis in mice by all-trans retinoic acid incorporated in cationic liposomes. J. Control. Release, 2006, 116(1), 58-63.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.025] [PMID: 17067713]
[118]
Kawakami, S.; Suzuki, S.; Yamashita, F.; Hashida, M. Induction of apoptosis in A549 human lung cancer cells by all-trans retinoic acid incorporated in DOTAP/cholesterol liposomes. J. Control. Release, 2006, 110(3), 514-521.
[http://dx.doi.org/10.1016/j.jconrel.2005.10.030] [PMID: 16360957]
[119]
Charoensit, P.; Kawakami, S.; Higuchi, Y.; Yamashita, F.; Hashida, M. Enhanced growth inhibition of metastatic lung tumors by intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes in mice. Cancer Gene Ther., 2010, 17(7), 512-522.
[http://dx.doi.org/10.1038/cgt.2010.12] [PMID: 20414324]
[120]
Berlin Grace, V.M.; Viswanathan, S. Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J. Drug Deliv. Sci. Technol., 2017, 39, 223-236.
[http://dx.doi.org/10.1016/j.jddst.2017.04.005]
[121]
Cho, H.; Lai, T.C.; Tomoda, K.; Kwon, G.S. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech, 2015, 16(1), 10-20.
[http://dx.doi.org/10.1208/s12249-014-0251-3] [PMID: 25501872]
[122]
Zhou, Q.; Zhang, L.; Yang, T.; Wu, H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int. J. Nanomedicine, 2018, 13, 2921-2942.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[123]
Kim, D.W.; Kim, S.Y.; Kim, H.K.; Kim, S.W.; Shin, S.W.; Kim, J.S.; Park, K.; Lee, M.Y.; Heo, D.S. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol., 2007, 18(12), 2009-2014.
[http://dx.doi.org/10.1093/annonc/mdm374] [PMID: 17785767]
[124]
Guthi, J.S.; Yang, S.G.; Huang, G.; Li, S.; Khemtong, C.; Kessinger, C.W.; Peyton, M.; Minna, J.D.; Brown, K.C.; Gao, J. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol. Pharm., 2010, 7(1), 32-40.
[http://dx.doi.org/10.1021/mp9001393] [PMID: 19708690]
[125]
Zhang, L.; Liu, Z.; Kong, C.; Liu, C.; Yang, K.; Chen, H.; Huang, J.; Qian, F. Improving drug delivery of micellar paclitaxel against non-small cell lung cancer by coloading itraconazole as a micelle stabilizer and a tumor vascular manipulator. Small, 2018, 14(51), e1802112.
[http://dx.doi.org/10.1002/smll.201802112] [PMID: 30444572]
[126]
Muddineti, O.S.; Shah, A.; Rompicharla, S.V.K.; Ghosh, B.; Biswas, S. Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int. J. Biol. Macromol., 2018, 118(Pt A), 857-863.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.114]
[127]
Subbiah, V.; Grilley-Olson, J.E.; Combest, A.J.; Sharma, N.; Tran, R.H.; Bobe, I.; Osada, A.; Takahashi, K.; Balkissoon, J.; Camp, A.; Masada, A.; Reitsma, D.J.; Bazhenova, L.A. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine in patients with advanced solid tumors. Clin. Cancer Res., 2018, 24(1), 43-51.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1114] [PMID: 29030354]
[128]
Wei, T.; Liu, J.; Ma, H.; Cheng, Q.; Huang, Y.; Zhao, J.; Huo, S.; Xue, X.; Liang, Z.; Liang, X.J. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett., 2013, 13(6), 2528-2534.
[http://dx.doi.org/10.1021/nl400586t] [PMID: 23634882]
[129]
Shi, H.; van Steenbergen, M.J.; Lou, B.; Liu, Y.; Hennink, W.E.; Kok, R.J. Folate decorated polymeric micelles for targeted delivery of the kinase inhibitor dactolisib to cancer cells. Int. J. Pharm., 2020, 582, 119305.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119305] [PMID: 32278056]
[130]
Zhou, Y.; Wen, H.; Gu, L.; Fu, J.; Guo, J.; Du, L.; Zhou, X.; Yu, X.; Huang, Y.; Wang, H. Aminoglucose-functionalized, redox-responsive polymer nanomicelles for overcoming chemoresistance in lung cancer cells. J. Nanobiotechnology, 2017, 15(1), 87.
[http://dx.doi.org/10.1186/s12951-017-0316-z] [PMID: 29179722]
[131]
Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; Elkhodairy, K.A.; Fang, J.Y.; Elzoghby, A.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release, 2018, 269, 374-392.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036] [PMID: 29180168]
[132]
Rezazadeh, M.; Davatsaz, Z.; Emami, J.; Hasanzadeh, F.; Jahanian-Najafabadi, A. Preparation and characterization of spray-dried inhalable powders containing polymeric micelles for pulmonary delivery of paclitaxel in lung cancer. J. Pharm. Pharm. Sci., 2018, 21(1s), 200s-214s.
[http://dx.doi.org/10.18433/jpps30048] [PMID: 30321135]
[133]
He, W.; Xiao, W.; Zhang, X.; Sun, Y.; Chen, Y.; Chen, Q.; Fang, X.; Du, S.; Sha, X. Pulmonary-affinity paclitaxel polymer micelles in response to biological functions of ambroxol enhance therapeutic effect on lung cancer. Int. J. Nanomedicine, 2020, 15, 779-793.
[http://dx.doi.org/10.2147/IJN.S229576] [PMID: 32099365]
[134]
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: Applications in different routes of drug administration. J. Pharm. Sci., 2008, 97(1), 123-143.
[http://dx.doi.org/10.1002/jps.21079] [PMID: 17721949]
[135]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[136]
Tomalia, D.A.; Reyna, L.A.; Svenson, S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans., 2007, 35(Pt 1), 61-67.
[http://dx.doi.org/10.1042/BST0350061] [PMID: 17233602]
[137]
Bhadra, D.; Bhadra, S.; Jain, S.; Jain, N.K. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm., 2003, 257(1-2), 111-124.
[http://dx.doi.org/10.1016/S0378-5173(03)00132-7] [PMID: 12711167]
[138]
Christensen, J.B. Dendrimers-based nanoparticles for cancer therapy and bioimaging.Nanooncology; Gonçalves, G; Tobias, G., Ed.; Springer: Cham, 2018, pp. 281-304.
[http://dx.doi.org/10.1007/978-3-319-89878-0_8]
[139]
Franiak-Pietryga, I.; Ziemba, B.; Messmer, B.; Skowronska-Krawczyk, D. Dendrimers as drug nanocarriers: the future of gene therapy and targeted therapies in cancer; IntechOpen, 2018, pp. 7-27.
[http://dx.doi.org/10.5772/intechopen.75774]
[140]
Liu, J.; Liu, J.; Chu, L.; Wang, Y.; Duan, Y.; Feng, L.; Yang, C.; Wang, L.; Kong, D. Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer. Int. J. Nanomedicine, 2010, 6, 59-69.
[http://dx.doi.org/10.2147/IJN.S14601] [PMID: 21289982]
[141]
Kaminskas, L.M.; McLeod, V.M.; Ryan, G.M.; Kelly, B.D.; Haynes, J.M.; Williamson, M.; Thienthong, N.; Owen, D.J.; Porter, C.J. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J. Control. Release, 2014, 183, 18-26.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.012] [PMID: 24637466]
[142]
Leong, N.J.; Mehta, D.; McLeod, V.M.; Kelly, B.D.; Pathak, R.; Owen, D.J.; Porter, C.J.H.; Kaminskas, L.M. Doxorubicin conjugation and drug linker chemistry alter the intravenous and pulmonary pharmacokinetics of a PEGylated generation 4 polylysine dendrimer in rats. J. Pharm. Sci., 2018, 107(9), 2509-2513.
[http://dx.doi.org/10.1016/j.xphs.2018.05.013] [PMID: 29852134]
[143]
Zhang, W-W.; Wang, Y-C.; Kan, X-M.; Wang, X.M.; Geng, D.M. Preparation and evaluation of peptide-dendrimer-paclitaxel conjugates for treatment of heterogeneous stage 1 nonsmall cell lung cancer in 293T and L132 cell lines. Trop. J. Pharm. Res., 2017, 16(4), 737-742.
[http://dx.doi.org/10.4314/tjpr.v16i4.1]
[144]
Amreddy, N.; Babu, A.; Panneerselvam, J.; Srivastava, A.; Muralidharan, R.; Chen, A.; Zhao, Y.D.; Munshi, A.; Ramesh, R. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine, 2018, 14(2), 373-384.
[http://dx.doi.org/10.1016/j.nano.2017.11.010] [PMID: 29155362]
[145]
Yoon, A.R.; Kasala, D.; Li, Y.; Hong, J.; Lee, W.; Jung, S.J.; Yun, C.O. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J. Control. Release, 2016, 231, 2-16.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.046] [PMID: 26951927]
[146]
Babu, A.; Muralidharan, R.; Amreddy, N.; Mehta, M.; Munshi, A.; Ramesh, R. Nanoparticles for siRNA-Based gene silencing in tumor therapy. IEEE Trans. Nanobiosci., 2016, 15(8), 849-863.
[http://dx.doi.org/10.1109/TNB.2016.2621730] [PMID: 28092499]
[147]
Wu, Y.; Crawford, M.; Yu, B.; Mao, Y.; Nana-Sinkam, S.P.; Lee, L.J. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol. Pharm., 2011, 8(4), 1381-1389.
[http://dx.doi.org/10.1021/mp2002076] [PMID: 21648427]
[148]
Askarian, S.; Abnous, K.; Taghavi, S.; Oskuee, R.K.; Ramezani, M. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids Surf. B Biointerfaces, 2015, 136, 355-364.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.023] [PMID: 26433348]
[149]
Wu, Y.; Crawford, M.; Mao, Y.; Lee, R.J.; Davis, I.C.; Elton, T.S.; Lee, L.J.; Nana-Sinkam, S.P. Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol. Ther. Nucleic Acids, 2013, 2(4), e84.
[http://dx.doi.org/10.1038/mtna.2013.14] [PMID: 23591808]
[150]
Ayatollahi, S.; Salmasi, Z.; Hashemi, M.; Askarian, S.; Oskuee, R.K.; Abnous, K.; Ramezani, M. Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. Int. J. Biochem. Cell Biol., 2017, 92, 210-217.
[http://dx.doi.org/10.1016/j.biocel.2017.10.005] [PMID: 29031805]
[151]
Ramesh, R.; Saeki, T.; Templeton, N.S.; Ji, L.; Stephens, L.C.; Ito, I.; Wilson, D.R.; Wu, Z.; Branch, C.D.; Minna, J.D.; Roth, J.A. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol. Ther., 2001, 3(3), 337-350.
[http://dx.doi.org/10.1006/mthe.2001.0266] [PMID: 11273776]
[152]
Cortez, M.A.; Valdecanas, D.; Zhang, X.; Zhan, Y.; Bhardwaj, V.; Calin, G.A.; Komaki, R.; Giri, D.K.; Quini, C.C.; Wolfe, T.; Peltier, H.J.; Bader, A.G.; Heymach, J.V.; Meyn, R.E.; Welsh, J.W. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol. Ther., 2014, 22(8), 1494-1503.
[http://dx.doi.org/10.1038/mt.2014.79] [PMID: 24791940]
[153]
Tian, H.; Liu, S.; Zhang, J.; Zhang, S.; Cheng, L.; Li, C.; Zhang, X.; Dail, L.; Fan, P.; Dai, L.; Yan, N.; Wang, R.; Wei, Y.; Deng, H. Enhancement of cisplatin sensitivity in lung cancer xenografts by liposome-mediated delivery of the plasmid expressing small hairpin RNA targeting Survivin. J. Biomed. Nanotechnol., 2012, 8(4), 633-641.
[http://dx.doi.org/10.1166/jbn.2012.1419] [PMID: 22852473]
[154]
Lee, H-Y.; Mohammed, K.A.; Kaye, F.; Sharma, P.; Moudgil, B.M.; Clapp, W.L.; Nasreen, N. Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer. Int. J. Nanomedicine, 2013, 8, 4481-4494.
[http://dx.doi.org/10.2147/IJN.S41782] [PMID: 24293999]
[155]
Zhang, Y.; Schwerbrock, N.M.J.; Rogers, A.B.; Kim, W.Y.; Huang, L. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol. Ther., 2013, 21(8), 1559-1569.
[http://dx.doi.org/10.1038/mt.2013.120] [PMID: 23774791]
[156]
Li, J.; Yang, Y.; Huang, L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J. Control. Release, 2012, 158(1), 108-114.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.020] [PMID: 22056915]
[157]
Yang, Y.; Li, J.; Liu, F.; Huang, L. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol. Ther., 2012, 20(3), 609-615.
[http://dx.doi.org/10.1038/mt.2011.270] [PMID: 22186791]
[158]
Conde, J.; Tian, F.; Hernández, Y.; Bao, C.; Cui, D.; Janssen, K.P.; Ibarra, M.R.; Baptista, P.V.; Stoeger, T.; de la Fuente, J.M. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials, 2013, 34(31), 7744-7753.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.041] [PMID: 23850099]
[159]
Lu, C.; Stewart, D.J.; Lee, J.J.; Ji, L.; Ramesh, R.; Jayachandran, G.; Nunez, M.I.; Wistuba, I.I.; Erasmus, J.J.; Hicks, M.E.; Grimm, E.A.; Reuben, J.M.; Baladandayuthapani, V.; Templeton, N.S.; McMannis, J.D.; Roth, J.A. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One, 2012, 7(4), e34833.
[http://dx.doi.org/10.1371/journal.pone.0034833] [PMID: 22558101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy