Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Subclinical Hypothyroidism in Patients with Diabetic Retinopathy: Role of Vascular Endothelial Growth Factor

Author(s): Amr A. El-Sehrawy*, Enas M. Elkhamisy, Amani E. Badawi, Heba A. Elshahawy, Eman Elsayed, Nehal T. Mohammed and Mervat M. El-Eshmawy

Volume 22, Issue 5, 2022

Published on: 26 January, 2022

Page: [502 - 509] Pages: 8

DOI: 10.2174/1871530321666210809151258

Price: $65

conference banner
Abstract

Background: This study was conducted by considering the vital role of Vascular Endothelial Growth Factor (VEGF) in the development of Diabetic Retinopathy (DR) on the one hand and the frequent association between Subclinical Hypothyroidism (SCH) and DR on the other hand.

Objective: The present study was proposed to explore the possible role of VEGF in the relation between SCH and DR; thus, we investigated the relationship between SCH and VEGF levels in patients with DR.

Methods: Two hundred patients with DR were recruited in this study [100 patients with Proliferative Diabetic Retinopathy (PDR) and 100 patients with Non-Proliferative Diabetic Retinopathy (NPDR)]. Patients with DR were divided into 2 groups according to thyroid function, patients with SCH or those with euthyroidism. Patients were subjected to careful history taking and underwent clinical and ophthalmological examination. Fasting blood glucose, glycosylated hemoglobin, fasting insulin, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), TSH, FT4, FT3, VEGF, and thyroid volume were assessed.

Results: Among all the studied patients, 21.5% (43/200) had SCH. DR patients with SCH had older age, longer diabetes duration, and higher HbA1c, HOMA-IR, and VEGF than those with euthyroidism. The frequency of PDR in patients with SCH was 72.1% (31/43) and 43.9% (69/157) in those with euthyroidism, whereas the frequency of NPDR in patients with SCH was 27.9 (12/43) and 56.1% (88/157) in those with euthyroidism (P 0.003). In multivariate analysis, PDR, HOMA- IR, and VEGF levels were the significant predictor variables of SCH.

Conclusion: Increased VEGF levels may be implicated in the relationship between SCH and DR.

Keywords: Diabetes mellitus, subclinical hypothyroidism, diabetic retinopathy, vascular endothelial growth factor, insulin resistance, glycemic control.

Graphical Abstract
[1]
Wong, T.Y.; Sabanayagam, C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence. Ophthalmologica, 2020, 243(1), 9-20.
[http://dx.doi.org/10.1159/000502387] [PMID: 31408872]
[2]
Sabanayagam, C.; Banu, R.; Chee, M.L.; Lee, R.; Wang, Y.X.; Tan, G.; Jonas, J.B.; Lamoureux, E.L.; Cheng, C.Y.; Klein, B.E.K.; Mitchell, P.; Klein, R.; Cheung, C.M.G.; Wong, T.Y. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol., 2019, 7(2), 140-149.
[http://dx.doi.org/10.1016/S2213-8587(18)30128-1] [PMID: 30005958]
[3]
Simó-Servat, O.; Hernández, C.; Simó, R. Diabetic retinopathy in the context of patients with diabetes. Ophthalmic Res., 2019, 62(4), 211-217.
[http://dx.doi.org/10.1159/000499541] [PMID: 31129667]
[4]
Sahajpal, N.S.; Goel, R.K.; Chaubey, A.; Aurora, R.; Jain, S.K. Pathological perturbations in diabetic retinopathy: hyperglycemia, AGEs, oxidative stress and inflammatory pathways. Curr. Protein Pept. Sci., 2019, 20(1), 92-110.
[http://dx.doi.org/10.2174/1389203719666180928123449] [PMID: 30264677]
[5]
Zhao, Y.; Singh, R.P. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context, 2018, 7, 212532.
[http://dx.doi.org/10.7573/dic.212532] [PMID: 30181760]
[6]
Canavese, M.; Altruda, F.; Ruzicka, T.; Schauber, J. Vascular endothelial growth factor (VEGF) in the pathogenesis of psoriasis-a possible target for novel therapies? J. Dermatol. Sci., 2010, 58(3), 171-176.
[http://dx.doi.org/10.1016/j.jdermsci.2010.03.023] [PMID: 20430590]
[7]
Ma, Y.; Qu, Y.; Fei, Z. Vascular endothelial growth factor in cerebral ischemia. J. Neurosci. Res., 2011, 89(7), 969-978.
[http://dx.doi.org/10.1002/jnr.22628] [PMID: 21469168]
[8]
Matsune, S. Allergic rhinitis and vascular endothelial growth factor. J. Nippon Med. Sch., 2012, 79(3), 170-175.
[http://dx.doi.org/10.1272/jnms.79.170] [PMID: 22791116]
[9]
Meyer, N.; Akdis, C.A. Vascular endothelial growth factor as a key inducer of angiogenesis in the asthmatic airways. Curr. Allergy Asthma Rep., 2013, 13(1), 1-9.
[http://dx.doi.org/10.1007/s11882-012-0317-9] [PMID: 23076420]
[10]
Flower, V.A.; Barratt, S.L.; Ward, S.; Pauling, J.D. The role of vascular endothelial growth factor in systemic sclerosis. Curr. Rheumatol. Rev., 2019, 15(2), 99-109.
[http://dx.doi.org/10.2174/1573397114666180809121005] [PMID: 30091416]
[11]
Amini, A.; Masoumi Moghaddam, S.; Morris, D.L.; Pourgholami, M.H. The critical role of vascular endothelial growth factor in tumor angiogenesis. Curr. Cancer Drug Targets, 2012, 12(1), 23-43.
[http://dx.doi.org/10.2174/156800912798888956] [PMID: 22111836]
[12]
Zhao, X.; You, J. Advances in study of vascular endothelial growth factor and thyroid disease. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2012, 29(4), 784-787.
[PMID: 23016436]
[13]
Toda, S.; Nishimura, T.; Yamada, S.; Koike, N.; Yonemitsu, N.; Watanabe, K.; Matsumura, S.; Gärtner, R.; Sugihara, H. Immunohistochemical expression of growth factors in subacute thyroiditis and their effects on thyroid folliculogenesis and angiogenesis in collagen gel matrix culture. J. Pathol., 1999, 188(4), 415-422.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199908)188:4<415::AID-PATH380>3.0.CO;2-H] [PMID: 10440753]
[14]
Nagura, S.; Katoh, R.; Miyagi, E.; Shibuya, M.; Kawaoi, A. Expression of vascular endothelial growth factor (VEGF) and VEGF receptor-1 (Flt-1) in Graves disease possibly correlated with increased vascular density. Hum. Pathol., 2001, 32(1), 10-17.
[http://dx.doi.org/10.1053/hupa.2001.21139] [PMID: 11172289]
[15]
Kihara, M.; Kontani, K.; Yamauchi, A.; Miyauchi, A.; Nakamura, H.; Yodoi, J.; Yokomise, H. Expression of thioredoxin in patients with Graves’ disease. Int. J. Mol. Med., 2005, 15(5), 795-799.
[http://dx.doi.org/10.3892/ijmm.15.5.795] [PMID: 15806300]
[16]
Malkomes, P.; Oppermann, E.; Bechstein, W.O.; Holzer, K. Vascular endothelial growth factor-marker for proliferation in thyroid diseases? Exp. Clin. Endocrinol. Diabetes, 2013, 121(1), 6-13.
[http://dx.doi.org/10.1055/s-0032-1327634] [PMID: 23329570]
[17]
Itoh, A.; Iwase, K.; Jimbo, S.; Yamamoto, H.; Yamamoto, N.; Kokubo, M.; Senda, T.; Nakai, A.; Nagagasaka, A.; Nagasaka, T.; Hibi, Y.; Seko, T. Expression of vascular endothelial growth factor and presence of angiovascular cells in tissues from different thyroid disorders. World J. Surg., 2010, 34(2), 242-248.
[http://dx.doi.org/10.1007/s00268-009-0344-4] [PMID: 20041248]
[18]
Biondi, B.; Kahaly, G.J.; Robertson, R.P. Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocr. Rev., 2019, 40(3), 789-824.
[http://dx.doi.org/10.1210/er.2018-00163] [PMID: 30649221]
[19]
Chen, R.H.; Chen, H.Y.; Man, K.M.; Chen, S.J.; Chen, W.; Liu, P.L.; Chen, Y.H.; Chen, W.C. Thyroid diseases increased the risk of type 2 diabetes mellitus: A nation-wide cohort study. Medicine (Baltimore), 2019, 98(20), e15631.
[http://dx.doi.org/10.1097/MD.0000000000015631] [PMID: 31096476]
[20]
Elgazar, E.H.; Esheba, N.E.; Shalaby, S.A.; Mohamed, W.F. Thyroid dysfunction prevalence and relation to glycemic control in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr., 2019, 13(4), 2513-2517.
[http://dx.doi.org/10.1016/j.dsx.2019.07.020] [PMID: 31405670]
[21]
Lee, S.A.; Chun, S.Y.; Kim, W.; Ju, Y.J.; Choi, D.W.; Park, E.C. Association between continuity of care and the onset of thyroid disorder among diabetes patients in korea. Int. J. Environ. Res. Public Health, 2019, 16(2), E233.
[http://dx.doi.org/10.3390/ijerph16020233] [PMID: 30650629]
[22]
Konar, H.; Sarkar, M.; Roy, M. Association of thyroid dysfunction and autoimmunity in pregnant women with diabetes mellitus. J. Obstet. Gynaecol. India, 2018, 68(4), 283-288.
[http://dx.doi.org/10.1007/s13224-017-1033-0] [PMID: 30065543]
[23]
Calcaterra, V.; Regalbuto, C.; Dobbiani, G.; Montalbano, C.; Vinci, F.; De Silvestri, A.; Albertini, R.; Larizza, D. Autoimmune thyroid diseases in children and adolescents with maturity onset diabetes of the young type 2. Horm. Res. Paediatr., 2019, 92(1), 52-55.
[http://dx.doi.org/10.1159/000502037] [PMID: 31484194]
[24]
Ogbonna, S.U.; Ezeani, I.U. Risk factors of thyroid dysfunction in patients with type 2 diabetes mellitus. Front. Endocrinol. (Lausanne), 2019, 10, 440.
[http://dx.doi.org/10.3389/fendo.2019.00440] [PMID: 31333585]
[25]
Fei, X.; Xing, M.; Wo, M.; Wang, H.; Yuan, W.; Huang, Q. Thyroid stimulating hormone and free triiodothyronine are valuable predictors for diabetic nephropathy in patient with type 2 diabetes mellitus. Ann. Transl. Med., 2018, 6(15), 305.
[http://dx.doi.org/10.21037/atm.2018.07.07] [PMID: 30211193]
[26]
Wu, J.; Yue, S.; Geng, J.; Liu, L.; Teng, W.; Liu, L.; Chen, L. Relationship between diabetic retinopathy and subclinical hypothyroidism: a meta-analysis. Sci. Rep., 2015, 5, 12212.
[http://dx.doi.org/10.1038/srep12212] [PMID: 26193340]
[27]
Zhu, F.F.; Yang, L.Z. The association between the levels of thyroid hormones and peripheral nerve conduction in patients with type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes, 2018, 126(8), 493-504.
[http://dx.doi.org/10.1055/a-0635-0826] [PMID: 29945270]
[28]
Yang, G.R.; Yang, J.K.; Zhang, L.; An, Y.H.; Lu, J.K. Association between subclinical hypothyroidism and proliferative diabetic retinopathy in type 2 diabetic patients: a case-control study. Tohoku J. Exp. Med., 2010, 222(4), 303-310.
[http://dx.doi.org/10.1620/tjem.222.303] [PMID: 21139382]
[29]
Yang, J.K.; Liu, W.; Shi, J.; Li, Y.B. An association between subclinical hypothyroidism and sight-threatening diabetic retinopathy in type 2 diabetic patients. Diabetes Care, 2010, 33(5), 1018-1020.
[http://dx.doi.org/10.2337/dc09-1784] [PMID: 20150298]
[30]
Kim, B.Y.; Kim, C.H.; Jung, C.H.; Mok, J.O.; Suh, K.I.; Kang, S.K. Association between subclinical hypothyroidism and severe diabetic retinopathy in Korean patients with type 2 diabetes. Endocr. J., 2011, 58(12), 1065-1070.
[http://dx.doi.org/10.1507/endocrj.EJ11-0199] [PMID: 21931224]
[31]
Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013, 36(Suppl. 1), S67-S74.
[http://dx.doi.org/10.2337/dc13-S067] [PMID: 23264425]
[32]
American academy of ophthalmology retina/vitreous panel preferred practice pattern guidelines. Diabetic Retinopathy; American Academy of Ophthalmology: San Francisco, CA, 2016.
[33]
Wilkinson, C.P.; Ferris, F.L., III; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 2003, 110(9), 1677-1682.
[http://dx.doi.org/10.1016/S0161-6420(03)00475-5] [PMID: 13129861]
[34]
Yeap, B.B.; Manning, L.; Chubb, S.A.; Hankey, G.J.; Golledge, J.; Almeida, O.P.; Flicker, L. Reference ranges for thyroid-stimulating hormone and free thyroxine in older men: results from the health in men study. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(3), 444-449.
[PMID: 27440910]
[35]
Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7), 412-419.
[http://dx.doi.org/10.1007/BF00280883] [PMID: 3899825]
[36]
Qi, Q.; Zhang, Q.M.; Li, C.J.; Dong, R.N.; Li, J.J.; Shi, J.Y.; Yu, D.M.; Zhang, J.Y. Association of thyroid-stimulating hormone levels with microvascular complications in type 2 diabetes patients. Med. Sci. Monit., 2017, 23, 2715-2720.
[http://dx.doi.org/10.12659/MSM.902006] [PMID: 28578377]
[37]
Han, C.; He, X.; Xia, X.; Li, Y.; Shi, X.; Shan, Z.; Teng, W. Subclinical hypothyroidism and type 2 diabetes: a systematic review and meta-analysis. PLoS One, 2015, 10(8), e0135233.
[http://dx.doi.org/10.1371/journal.pone.0135233] [PMID: 26270348]
[38]
Zhang, S.; Feng, G.; Kang, F.; Guo, Y.; Ti, H.; Hao, L.; Gao, P.; Gao, J. Hypothyroidism and adverse endpoints in diabetic patients: a systematic review and meta-analysis. Front. Endocrinol. (Lausanne), 2020, 10, 889.
[http://dx.doi.org/10.3389/fendo.2019.00889] [PMID: 31998230]
[39]
Ramis, J.N.; Artigas, C.F.; Santiago, M.A.; Mañes, F.J.; Canonge, R.S.; Comas, L.M. Is there a relationship between TSH levels and diabetic retinopathy in the Caucasian population? Diabetes Res. Clin. Pract., 2012, 97(3), e45-e47.
[http://dx.doi.org/10.1016/j.diabres.2012.05.015] [PMID: 22717499]
[40]
Garduño-Garcia, J. de J.; Alvirde-Garcia, U.; López-Carrasco, G.; Padilla Mendoza, M.E.; Mehta, R.; Arellano-Campos, O.; Choza, R.; Sauque, L.; Garay-Sevilla, M.E.; Malacara, J.M.; Gomez-Perez, F.J.; Aguilar-Salinas, C.A. TSH and free thyroxine concentrations are associated with differing metabolic markers in euthyroid subjects. Eur. J. Endocrinol., 2010, 163(2), 273-278.
[http://dx.doi.org/10.1530/EJE-10-0312] [PMID: 20516204]
[41]
Lu, Y.H.; Xia, Z.L.; Ma, Y.Y.; Chen, H.J.; Yan, L.P.; Xu, H.F. Subclinical hypothyroidism is associated with metabolic syndrome and clomiphene citrate resistance in women with polycystic ovary syndrome. Gynecol. Endocrinol., 2016, 32(10), 852-855.
[http://dx.doi.org/10.1080/09513590.2016.1183193] [PMID: 27172176]
[42]
Peixoto de Miranda, E.J.; Bittencourt, M.S.; Pereira, A.C.; Goulart, A.C.; Santos, I.S.; Lotufo, P.A.; Bensenor, I.M. Subclinical hypothyroidism is associated with higher carotid intima-media thickness in cross-sectional analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutr. Metab. Cardiovasc. Dis., 2016, 26(10), 915-921.
[http://dx.doi.org/10.1016/j.numecd.2016.06.005] [PMID: 27389191]
[43]
Xu, C.; Zhou, L.; Wu, K.; Li, Y.; Xu, J.; Jiang, D.; Gao, L. Abnormal glucose metabolism and insulin resistance are induced via the ire1α/xbp-1 pathway in subclinical hypothyroidism. Front. Endocrinol. (Lausanne), 2019, 10, 303.
[http://dx.doi.org/10.3389/fendo.2019.00303] [PMID: 31156553]
[44]
Berkowitz, B.A.; Luan, H.; Roberts, R.L. Effect of methylimidazole-induced hypothyroidism in a model of low retinal neovascular incidence. Invest. Ophthalmol. Vis. Sci., 2004, 45(3), 919-921.
[http://dx.doi.org/10.1167/iovs.03-0914] [PMID: 14985311]
[45]
Öberg, D.; Salemyr, J.; Örtqvist, E.; Juul, A.; Bang, P. A longitudinal study of serum insulin-like growth factor-I levels over 6 years in a large cohort of children and adolescents with type 1 diabetes mellitus: A marker reflecting diabetic retinopathy. Pediatr. Diabetes, 2018, 19(5), 972-978.
[http://dx.doi.org/10.1111/pedi.12681] [PMID: 29663652]
[46]
Raman, P.; Singal, A.K.; Behl, A. Effect of insulin-like growth factor-1 on diabetic retinopathy in pubertal age patients with type 1 diabetes. Asia Pac. J. Ophthalmol. (Phila.), 2019, 8(4), 319-323.
[http://dx.doi.org/10.1097/APO.0000000000000250] [PMID: 31369407]
[47]
Milani, A.T.; Khadem-Ansari, M.H.; Rasmi, Y. Effects of thyroid-stimulating hormone on adhesion molecules and pro-inflammatory cytokines secretion in human umbilical vein endothelial cells. Res. Pharm. Sci., 2018, 13(6), 546-556.
[http://dx.doi.org/10.4103/1735-5362.245966] [PMID: 30607152]
[48]
Rodríguez-Castelán, J.; Del Moral-Morales, A.; Piña-Medina, A.G.; Zepeda-Pérez, D.; Castillo-Romano, M.; Méndez-Tepepa, M.; Espindola-Lozano, M.; Camacho-Arroyo, I.; Cuevas-Romero, E. Hypothyroidism induces uterine hyperplasia and inflammation related to sex hormone receptors expression in virgin rabbits. Life Sci., 2019, 230, 111-120.
[http://dx.doi.org/10.1016/j.lfs.2019.05.063] [PMID: 31129141]
[49]
Li, F.; Liu, Y.; Ren, L.; Sun, Q.; Luo, Y.X. IGF-1 regulates Ang II and VEGF signaling pathways in retinal neovascularization. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(19), 6175-6180.
[PMID: 30338783]
[50]
Sun, X.; Zhang, H.; Liu, J.; Wang, G. Serum vascular endothelial growth factor level is elevated in patients with impaired glucose tolerance and type 2 diabetes mellitus. J. Int. Med. Res., 2019, 47(11), 5584-5592.
[http://dx.doi.org/10.1177/0300060519872033] [PMID: 31547733]
[51]
Schmid, C.; Brändle, M.; Zwimpfer, C.; Zapf, J.; Wiesli, P. Effect of thyroxine replacement on creatinine, insulin-like growth factor 1, acid-labile subunit, and vascular endothelial growth factor. Clin. Chem., 2004, 50(1), 228-231.
[http://dx.doi.org/10.1373/clinchem.2003.021022] [PMID: 14709659]
[52]
Dedecjus, M.; Kołomecki, K.; Brzeziński, J.; Adamczewski, Z.; Tazbir, J.; Lewiński, A. Influence of L-thyroxine administration on poor-platelet plasma VEGF concentrations in patients with induced short-term hypothyroidism, monitored for thyroid carcinoma. Endocr. J., 2007, 54(1), 63-69.
[http://dx.doi.org/10.1507/endocrj.K05-112] [PMID: 17090953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy