Mini-Review Article

Emerging Role of Circular RNAs in Kidney Diseases in Nephrology

Author(s): Cong Ma, Junjun Luan, Jeffrey B. Kopp and Hua Zhou*

Volume 23, Issue 4, 2022

Published on: 06 August, 2021

Page: [330 - 343] Pages: 14

DOI: 10.2174/1389450122666210806124425

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Circular RNAs (circRNAs) have been identified to be involved in a variety of human diseases such as cancers, cardiovascular diseases, and autoimmune diseases. In recent years, the role of circRNAs in the development of kidney diseases in nephrology has been gradually recognized.

Objective: We updated and described the current status of circRNAs in kidney diseases in nephrology. We particularly focused on the roles and mechanisms of circRNAs in systemic lupus erythematosus and lupus nephritis.

Methods: We summarized recent reports published on PubMed, Web of Science, Scopus, Scielo databases using keywords circRNAs, kidney diseases or renal diseases, or systemic lupus erythematosus.

Results: Studies of circRNAs in certain kidney diseases, such as acute kidney injury, focal segmental glomerulosclerosis, idiopathic membranous nephropathy, IgA nephropathy, diabetic nephropathy, hypertensive renal damage, and particular lupus nephritis address the function and pathogenesis of circRNAs. Mechanisms of circRNAs in the above human kidney diseases so far have focused on the role of sponging microRNAs and regulating the expression of target genes. Moreover, circRNAs have been detected in blood, urine, and kidney tissue samples. These results suggest that circRNAs can serve as biomarkers for the diagnosis and monitoring of the progression of kidney diseases.

Conclusion: CircRNAs play important roles in the pathogenesis, diagnosis, and treatment of kidney diseases emphasizing lupus nephritis in nephrology.

Keywords: circRNAs, lupus nephritis, biomarker, sponging, systemic lupus erythematosus, kidney diseases in nephrology, microRNAs.

Graphical Abstract
[1]
Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers 2016; 2: 16039.
[http://dx.doi.org/10.1038/nrdp.2016.39] [PMID: 27306639]
[2]
Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE, Mohan C. Lupus nephritis. Nat Rev Dis Primers 2020; 6(1): 7.
[http://dx.doi.org/10.1038/s41572-019-0141-9] [PMID: 31974366]
[3]
Parikh SV, Almaani S, Brodsky S, Rovin BH. Update on lupus nephritis: Core curriculum 2020. Am J Kidney Dis 2020; 76(2): 265-81.
[http://dx.doi.org/10.1053/j.ajkd.2019.10.017] [PMID: 32220510]
[4]
Shen N, Liang D, Tang Y, de Vries N, Tak PP. MicroRNAs-novel regulators of systemic lupus erythematosus pathogenesis. Nat Rev Rheumatol 2012; 8(12): 701-9.
[http://dx.doi.org/10.1038/nrrheum.2012.142] [PMID: 23070646]
[5]
Luan J, Jiao C, Kong W, et al. CircHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol Ther Nucleic Acids 2018; 10: 245-53.
[http://dx.doi.org/10.1016/j.omtn.2017.12.006] [PMID: 29499937]
[6]
Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol 2015; 12(4): 381-8.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[7]
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell 2018; 71(3): 428-42.
[http://dx.doi.org/10.1016/j.molcel.2018.06.034] [PMID: 30057200]
[8]
Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302(5653): 2141-4.
[http://dx.doi.org/10.1126/science.1090100] [PMID: 14684825]
[9]
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22(3): 256-64.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[10]
See EJ, Toussaint ND, Bailey M, et al. Risk factors for major adverse kidney events in the first year after acute kidney injury. Clin Kidney J 2019; 14(2): 556-63.
[http://dx.doi.org/10.1093/ckj/sfz169] [PMID: 33623679]
[11]
Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine 2018; 34: 267-74.
[http://dx.doi.org/10.1016/j.ebiom.2018.07.036] [PMID: 30078734]
[12]
Li LJ, Zhao W, Tao SS, et al. Competitive endogenous RNA network: potential implication for systemic lupus erythematosus. Expert Opin Ther Targets 2017; 21(6): 639-48.
[http://dx.doi.org/10.1080/14728222.2017.1319938] [PMID: 28406715]
[13]
Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019; 394(10212): 1949-64.
[http://dx.doi.org/10.1016/S0140-6736(19)32563-2] [PMID: 31777389]
[14]
Ren GL, Zhu J, Li J, Meng XM. Noncoding RNAs in acute kidney injury. J Cell Physiol 2019; 234(3): 2266-76.
[http://dx.doi.org/10.1002/jcp.27203] [PMID: 30146769]
[15]
Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020; 5(1): 9.
[http://dx.doi.org/10.1038/s41392-020-0106-1] [PMID: 32296020]
[16]
Deng JS, Jiang WP, Chen CC, et al. Cordyceps cicadae mycelia ameliorate Cisplatin-induced acute kidney injury by suppressing the TLR4/NF-kappaB/MAPK and activating the HO-1/Nrf2 and Sirt-1/AMPK pathways in mice. Oxid Med Cell Longev 2020; 2020: 7912763.
[http://dx.doi.org/10.1155/2020/7912763] [PMID: 32089779]
[17]
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Ardalan M, Barzegari A, Zununi Vahed S. Molecular pathophysiology of acute kidney injury: The role of sirtuins and their interactions with other macromolecular players. J Cell Physiol 2021; 236(5): 3257-74.
[http://dx.doi.org/10.1002/jcp.30084] [PMID: 32989772]
[18]
Saaoud F, Drummer I V C, Shao Y, et al. Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacol Ther 2021; 220: 107715.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107715] [PMID: 33141028]
[19]
Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med 2011; 17(11): 1391-401.
[http://dx.doi.org/10.1038/nm.2507] [PMID: 22064429]
[20]
Jin P, Li LH, Shi Y, Hu NB. Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene 2021; 767: 145075.
[http://dx.doi.org/10.1016/j.gene.2020.145075] [PMID: 32858179]
[21]
Korkmaz A, Kolankaya D. Inhibiting inducible nitric oxide synthase with rutin reduces renal ischemia/reperfusion injury. Can J Surg 2013; 56(1): 6-14.
[http://dx.doi.org/10.1503/cjs.004811] [PMID: 23187035]
[22]
Gill N, Nally JV Jr, Fatica RA. Renal failure secondary to acute tubular necrosis: epidemiology, diagnosis, and management. Chest 2005; 128(4): 2847-63.
[http://dx.doi.org/10.1378/chest.128.4.2847] [PMID: 16236963]
[23]
Liu H, Liu Y, Bian Z, et al. Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 Kip1 axis. Mol Cancer 2018; 17(1): 151.
[http://dx.doi.org/10.1186/s12943-018-0902-1] [PMID: 30336780]
[24]
Huang T, Cao Y, Wang H, et al. Circular RNA YAP1 acts as the sponge of microRNA-21-5p to secure HK-2 cells from ischaemia/reperfusion-induced injury. J Cell Mol Med 2020; 24(8): 4707-15.
[http://dx.doi.org/10.1111/jcmm.15142] [PMID: 32160412]
[25]
Luo Y, Liu F, Gui R. High expression of circulating exosomal circAKT3 is associated with higher recurrence in HCC patients undergoing surgical treatment. Surg Oncol 2020; 33: 276-81.
[http://dx.doi.org/10.1016/j.suronc.2020.04.021] [PMID: 32561093]
[26]
Xu Y, Jiang T, Wu C, Zhang Y. CircAKT3 inhibits glycolysis balance in lung cancer cells by regulating miR-516b-5p/STAT3 to inhibit cisplatin sensitivity. Biotechnol Lett 2020; 42(7): 1123-35.
[http://dx.doi.org/10.1007/s10529-020-02846-9] [PMID: 32170433]
[27]
Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer 2019; 18(1): 71.
[http://dx.doi.org/10.1186/s12943-019-0969-3] [PMID: 30927924]
[28]
Xu Y, Jiang W, Zhong L, et al. Circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p /Wnt/β-catenin pathway and oxidative stress. Mol Cancer 2019; 18(1): 71.
[PMID: 30927924]
[29]
Molinas SM, Cortés-González C, González-Bobadilla Y, et al. Effects of losartan pretreatment in an experimental model of ischemic acute kidney injury. Nephron Exp Nephrol 2009; 112(1): e10-9.
[http://dx.doi.org/10.1159/000210574] [PMID: 19342869]
[30]
Fang M, Liu S, Zhou Y, et al. Circular RNA involved in the protective effect of losartan on ischemia and reperfusion induced acute kidney injury in rat model. Am J Transl Res 2019; 11(2): 1129-44.
[PMID: 30899412]
[31]
Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005; 294(7): 813-8.
[http://dx.doi.org/10.1001/jama.294.7.813] [PMID: 16106006]
[32]
Lin Q, Li S, Jiang N, et al. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy 2020; 19(1): 1-16.
[http://dx.doi.org/10.1080/15548627.2020.1848971] [PMID: 33345685]
[33]
Cheng W, Li XW, Xiao YQ, Duan SB. Non-coding RNA-associated ceRNA networks in a new contrast-induced acute kidney injury rat model. Mol Ther Nucleic Acids 2019; 17: 102-12.
[http://dx.doi.org/10.1016/j.omtn.2019.05.011] [PMID: 31234008]
[34]
Qi Z, Li Z, Li W, et al. Pseudoginsengenin DQ exhibits therapeutic effects in cisplatin-induced acute kidney injury via Sirt1/NF-κB and caspase signaling pathway without compromising its antitumor activity in mice. Molecules 2018; 23(11): 3038.
[http://dx.doi.org/10.3390/molecules23113038] [PMID: 30469321]
[35]
Oh CJ, Ha CM, Choi YK, et al. Pyruvate dehydrogenase kinase 4 deficiency attenuates cisplatin-induced acute kidney injury. Kidney Int 2017; 91(4): 880-95.
[http://dx.doi.org/10.1016/j.kint.2016.10.011] [PMID: 28040265]
[36]
Li CM, Li M, Ye ZC, et al. Circular RNA expression profiles in cisplatin-induced acute kidney injury in mice. Epigenomics 2019; 11(10): 1191-207.
[http://dx.doi.org/10.2217/epi-2018-0167] [PMID: 31339054]
[37]
Beltrán-García J, Osca-Verdegal R, Nacher-Sendra E, Pallardó FV, García-Giménez JL. Circular RNAs in sepsis: biogenesis, function, and clinical significance. Cells 2020; 9(6): 1544.
[http://dx.doi.org/10.3390/cells9061544] [PMID: 32630422]
[38]
Poston J, Koyner J. Sepsis associated acute kidney injury. BMJ 2019; 364: k4891.
[http://dx.doi.org/10.1136/bmj.k4891]
[39]
Ma Y, Zhang D, Wu H, et al. Circular RNA PRKCI silencing represses esophageal cancer progression and elevates cell radiosensitivity through regulating the miR-186-5p/PARP9 axis. Life Sci 2020; 259: 118168.
[http://dx.doi.org/10.1016/j.lfs.2020.118168] [PMID: 32739469]
[40]
Zhang X, Yang H, Zhao L, Li G, Duan Y. Circular RNA PRKCI promotes glioma cell progression by inhibiting microRNA-545. Cell Death Dis 2019; 10(8): 616.
[http://dx.doi.org/10.1038/s41419-019-1863-z] [PMID: 31409777]
[41]
Qiu M, Xia W, Chen R, et al. The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Res 2018; 78(11): 2839-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2808] [PMID: 29588350]
[42]
Shi X, Ma W, Li Y, et al. CircPRKCI relieves lipopolysaccharide-induced HK2 cell injury by upregulating the expression of miR-545 target gene ZEB2. Biofactors 2020; 46(3): 475-86.
[http://dx.doi.org/10.1002/biof.1620] [PMID: 32104945]
[43]
Wei W, Yao Y, Bi H, Xu W, Gao Y. Circular RNA circ_0068,888 protects against lipopolysaccharide-induced HK-2 cell injury via sponging microRNA-21-5p. Biochem Biophys Res Commun 2021; 540: 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2020.12.018] [PMID: 33429194]
[44]
Li H, Zhang X, Wang P, Zhou X, Liang H, Li C. Knockdown of circ-FANCA alleviates LPS-induced HK2 cell injury via targeting miR-93-5p/OXSR1 axis in septic acute kidney injury. Diabetol Metab Syndr 2021; 13(1): 7.
[http://dx.doi.org/10.1186/s13098-021-00625-8] [PMID: 33468219]
[45]
Shi Y, Sun CF, Ge WH, Du YP, Hu NB. Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress. J Cell Mol Med 2020; 24(19): 11397-408.
[http://dx.doi.org/10.1111/jcmm.15741] [PMID: 32827242]
[46]
Ma X, Zhu G, Jiao T, Shao F. Effects of circular RNA Ttc3/miR-148a/Rcan2 axis on inflammation and oxidative stress in rats with acute kidney injury induced by sepsis. Life Sci 2021; 272: 119233.
[http://dx.doi.org/10.1016/j.lfs.2021.119233] [PMID: 33600863]
[47]
Howitt SH, Oakley J, Caiado C, et al. A novel patient-specific model for predicting severe oliguria; development and comparison with kidney disease: improving global outcomes acute kidney injury classification. Crit Care Med 2020; 48(1): e18-25.
[http://dx.doi.org/10.1097/CCM.0000000000004074] [PMID: 31663925]
[48]
Kölling M, Seeger H, Haddad G, et al. CiRs-126:the circular RNA predicts survival in critically Ill patients with acute kidney injury. Kidney Int Rep 2018; 3(5): 1144-52.
[http://dx.doi.org/10.1016/j.ekir.2018.05.012] [PMID: 30197981]
[49]
Williams WW, Taheri D, Tolkoff-Rubin N, Colvin RB. Clinical role of the renal transplant biopsy. Nat Rev Nephrol 2012; 8(2): 110-21.
[http://dx.doi.org/10.1038/nrneph.2011.213] [PMID: 22231130]
[50]
Kölling M, Haddad G, Wegmann U, et al. Circular RNAs in urine of kidney transplant patients with acute T cell-mediated allograft rejection. Clin Chem 2019; 65(10): 1287-94.
[http://dx.doi.org/10.1373/clinchem.2019.305854] [PMID: 31371281]
[51]
Yao T, Zha D, Gao P, Wu X. Silencing circ-USP1 protects the renal tubular from kidney injury induced by hypoxia via modulating miR-194-5p/DNMT3A axis in acute renal allografts. J Cell Mol Med 2021; 25(13): 5940-8.
[http://dx.doi.org/10.1111/jcmm.16286] [PMID: 33484504]
[52]
Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2017; 12(3): 502-17.
[http://dx.doi.org/10.2215/CJN.05960616] [PMID: 28242845]
[53]
Bose B, Cattran D, Toronto Glomerulonephritis R. Glomerular diseases: FSGS. Clin J Am Soc Nephrol 2014; 9(3): 626-32.
[http://dx.doi.org/10.2215/CJN.05810513] [PMID: 23990165]
[54]
Buratin A, Paganin M, Gaffo E, et al. Large-scale circular RNA deregulation in T-ALL: unlocking unique ectopic expression of molecular subtypes. Blood Adv 2020; 4(23): 5902-14.
[http://dx.doi.org/10.1182/bloodadvances.2020002337] [PMID: 33259601]
[55]
Liu Z, Liu F, Wang F, Yang X, Guo W. CircZNF609 promotes cell proliferation, migration, invasion, and glycolysis in nasopharyngeal carcinoma through regulating HRAS via miR-338-3p. Mol Cell Biochem 2021; 476(1): 175-86.
[http://dx.doi.org/10.1007/s11010-020-03894-5] [PMID: 32970285]
[56]
Liao X, Zhan W, Tian B, Luo Y, Gu F, Li R. Circular RNA ZNF609 promoted hepatocellular carcinoma progression by upregulating PAP2C expression via sponging miR-342-3p. OncoTargets Ther 2020; 13: 7773-83.
[http://dx.doi.org/10.2147/OTT.S253936] [PMID: 32801783]
[57]
Zuo Y, Shen W, Wang C, Niu N, Pu J. Circular RNA circ-ZNF609 promotes lung adenocarcinoma proliferation by modulating miR-1224-3p/ETV1 signaling. Cancer Manag Res 2020; 12: 2471-9.
[http://dx.doi.org/10.2147/CMAR.S232260] [PMID: 32308483]
[58]
Tong H, Zhao K, Wang J, Xu H, Xiao J. CircZNF609/miR-134-5p/BTG-2 axis regulates proliferation and migration of glioma cell. J Pharm Pharmacol 2020; 72(1): 68-75.
[http://dx.doi.org/10.1111/jphp.13188] [PMID: 31721211]
[59]
Wu W, Wei N, Shao G, Jiang C, Zhang S, Wang L. circZNF609 promotes the proliferation and migration of gastric cancer by sponging miR-483-3p and regulating CDK6. OncoTargets Ther 2019; 12: 8197-205.
[http://dx.doi.org/10.2147/OTT.S193031] [PMID: 31632070]
[60]
Zhang X, Zhao Y, Kong P, Han M, Li B. Expression of circZNF609 is down-regulated in colorectal cancer tissue and promotes apoptosis in colorectal cancer cells by upregulating p53. Med Sci Monit 2019; 25: 5977-85.
[http://dx.doi.org/10.12659/MSM.915926] [PMID: 31401644]
[61]
Jin C, Zhao W, Zhang Z, Liu W. Silencing circular RNA circZNF609 restrains growth, migration and invasion by up-regulating microRNA-186-5p in prostate cancer. Artif Cells Nanomed Biotechnol 2019; 47(1): 3350-8.
[http://dx.doi.org/10.1080/21691401.2019.1648281] [PMID: 31387394]
[62]
Wang S, Xue X, Wang R, et al. CircZNF609 promotes breast cancer cell growth, migration, and invasion by elevating p70S6K1 via sponging miR-145-5p. Cancer Manag Res 2018; 10: 3881-90.
[http://dx.doi.org/10.2147/CMAR.S174778] [PMID: 30288120]
[63]
Li L, Luo Y, Zhang Y, et al. CircZNF609 aggravates neuropathic pain via miR-22-3p/ENO1 axis in CCI rat models. Gene 2020; 763: 145069.
[http://dx.doi.org/10.1016/j.gene.2020.145069] [PMID: 32827683]
[64]
Liang B, Li M, Deng Q, et al. CircRNA ZNF609 in peripheral blood leukocytes acts as a protective factor and a potential biomarker for coronary artery disease. Ann Transl Med 2020; 8(12): 741.
[http://dx.doi.org/10.21037/atm-19-4728] [PMID: 32647666]
[65]
Cui X, Fu J, Luan J, et al. CircZNF609 is involved in the pathogenesis of focal segmental glomerulosclerosis by sponging miR-615-5p. Biochem Biophys Res Commun 2020; 531(3): 341-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.066] [PMID: 32800553]
[66]
Ronco P, Debiec H. Molecular pathogenesis of membranous nephropathy. Annu Rev Pathol 2020; 15: 287-313.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043811] [PMID: 31622560]
[67]
Jin X, Deng B, Ye K, et al. Comprehensive expression profiles and bioinformatics analysis reveal special circular RNA expression and potential predictability in the peripheral blood of humans with idiopathic membranous nephropathy. Mol Med Rep 2019; 20(5): 4125-39.
[http://dx.doi.org/10.3892/mmr.2019.10671] [PMID: 31545426]
[68]
Ma H, Xu Y, Zhang R, Guo B, Zhang S, Zhang X. Differential expression study of circular RNAs in exosomes from serum and urine in patients with idiopathic membranous nephropathy. Arch Med Sci 2019; 15(3): 738-53.
[http://dx.doi.org/10.5114/aoms.2019.84690] [PMID: 31110542]
[69]
Robert T, Berthelot L, Cambier A, Rondeau E, Monteiro RC. Molecular insights into the pathogenesis of IgA nephropathy. Trends Mol Med 2015; 21(12): 762-75.
[http://dx.doi.org/10.1016/j.molmed.2015.10.003] [PMID: 26614735]
[70]
Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: an interesting autoimmune kidney disease. Am J Med Sci 2021; 361(2): 176-94.
[http://dx.doi.org/10.1016/j.amjms.2020.10.003] [PMID: 33309134]
[71]
Liu H, Liu D, Liu Y, et al. Comprehensive analysis of circRNA expression profiles and circRNA-associated competing endogenous RNA networks in IgA nephropathy. Peer J 2020; 8: e10395.
[http://dx.doi.org/10.7717/peerj.10395] [PMID: 33344076]
[72]
Luan R, Tian G, Ci X, Zheng Q, Wu L, Lu X. Differential expression analysis of urinary exosomal circular RNAs in patients with IgA nephropathy. Nephrology (Carlton) 2021; 26(5): 432-41.
[http://dx.doi.org/10.1111/nep.13855] [PMID: 33501721]
[73]
Loganathan TS, Sulaiman SA, Abdul MNA, et al. Interactions among non-coding RNAs in diabetic nephropathy. Front Pharmacol 2020; 11: 191.
[http://dx.doi.org/10.3389/fphar.2020.00191] [PMID: 32194418]
[74]
Ding H, Xu Y, Jiang N. Upregulation of miR-101a suppresses chronic renal fibrosis by regulating KDM3A via blockade of the YAP-TGF-beta-Smad signaling pathway. Mol Ther Nucleic Acids 2020; 19: 1276-89.
[http://dx.doi.org/10.1016/j.omtn.2020.01.002] [PMID: 32092824]
[75]
Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 2011; 6: 395-423.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092150] [PMID: 21261520]
[76]
Kurogi Y. Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. Med Res Rev 2003; 23(1): 15-31.
[http://dx.doi.org/10.1002/med.10028] [PMID: 12424751]
[77]
Hu W, Han Q, Zhao L, Wang L. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1. J Cell Physiol 2019; 234(2): 1469-76.
[http://dx.doi.org/10.1002/jcp.26959] [PMID: 30054916]
[78]
Fan S, Hu K, Zhang D, Liu F. Interference of circRNA HIPK3 alleviates cardiac dysfunction in lipopolysaccharide-induced mice models and apoptosis in H9C2 cardiomyocytes. Ann Transl Med 2020; 8(18): 1147.
[http://dx.doi.org/10.21037/atm-20-5306] [PMID: 33240996]
[79]
Cai H, Jiang Z, Yang X, Lin J, Cai Q, Li X. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1. Endocr J 2020; 67(4): 397-408.
[http://dx.doi.org/10.1507/endocrj.EJ19-0271] [PMID: 31875589]
[80]
Si X, Zheng H, Wei G, et al. CircRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Mol Ther Nucleic Acids 2020; 21: 636-55.
[http://dx.doi.org/10.1016/j.omtn.2020.06.024] [PMID: 32736292]
[81]
Wang J, Li X, Liu Y, et al. CircHIPK3 promotes pyroptosis in acinar cells through regulation of the miR-193a-5p/GSDMD axis. Front Med (Lausanne) 2020; 7: 88.
[http://dx.doi.org/10.3389/fmed.2020.00088] [PMID: 32318575]
[82]
Cui G, Wang L, Huang W. Circular RNA HIPK3 regulates human lens epithelial cell dysfunction by targeting the miR-221-3p/PI3K/AKT pathway in age-related cataract. Exp Eye Res 2020; 198: 108128.
[http://dx.doi.org/10.1016/j.exer.2020.108128] [PMID: 32681842]
[83]
Zhu X, Sun J. CircHIPK3 regulates melanoma cell behaviors by binding with miR-215-5p to upregulate YY1. Mol Cell Probes 2020; 53: 101644.
[http://dx.doi.org/10.1016/j.mcp.2020.101644] [PMID: 32800940]
[84]
Han B, Shaolong E, Luan L, Li N, Liu X. CircHIPK3 promotes clear cell renal cell carcinoma (ccRCC) cells proliferation and metastasis via altering of miR-508-3p/CXCL13 signal. OncoTargets Ther 2020; 13: 6051-62.
[http://dx.doi.org/10.2147/OTT.S251436] [PMID: 32821115]
[85]
Liu R, Zhang M, Ge Y. Circular RNA HIPK3 exacerbates diabetic nephropathy and promotes proliferation by sponging miR-185. Gene 2021; 765: 145065.
[http://dx.doi.org/10.1016/j.gene.2020.145065] [PMID: 32889056]
[86]
Mou X, Chenv JW, Zhou DY, et al. A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR-101b by targeting TGFβRI. Mol Med Rep 2020; 22(5): 3785-94.
[PMID: 32901868]
[87]
Wang Q, Cang Z, Shen L, et al. circ_0037128/miR-17-3p/AKT3 axis promotes the development of diabetic nephropathy. Gene 2021; 765: 145076.
[http://dx.doi.org/10.1016/j.gene.2020.145076] [PMID: 32860899]
[88]
Wang W, Feng J, Zhou H, Li Q. Circ_0123996 promotes cell proliferation and fibrosisin mouse mesangial cells through sponging miR-149-5p and inducing Bach1 expression. Gene 2020; 761: 144971.
[http://dx.doi.org/10.1016/j.gene.2020.144971] [PMID: 32707301]
[89]
Chen B, Li Y, Liu Y, Xu Z. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J Cell Physiol 2019; 234(11): 21249-59.
[http://dx.doi.org/10.1002/jcp.28730] [PMID: 31087368]
[90]
Ge X, Xi L, Wang Q, et al. Circular RNA Circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy. Gene 2020; 758: 144952.
[http://dx.doi.org/10.1016/j.gene.2020.144952] [PMID: 32683074]
[91]
Bai S, Xiong X, Tang B, et al. Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-κB/MMP-2 axis. Cell Death Dis 2020; 11(11): 1008.
[http://dx.doi.org/10.1038/s41419-020-03169-3] [PMID: 33230102]
[92]
Fu J, Akat KM, Sun Z, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol 2019; 30(4): 533-45.
[http://dx.doi.org/10.1681/ASN.2018090896] [PMID: 30846559]
[93]
Long Z, Gong F, Li Y, Fan Z, Li J. Circ_0000285 regulates proliferation, migration, invasion and apoptosis of osteosarcoma by miR-409-3p/IGFBP3 axis. Cancer Cell Int 2020; 20: 481.
[http://dx.doi.org/10.1186/s12935-020-01557-5] [PMID: 33041662]
[94]
Zhang W, Zhang S. Downregulation of circRNA_0000285 suppresses cervical cancer development by regulating miR197-3p-ELK1 axis. Cancer Manag Res 2020; 12: 8663-74.
[http://dx.doi.org/10.2147/CMAR.S253174] [PMID: 32982457]
[95]
Chi BJ, Zhao DM, Liu L, et al. Downregulation of hsa_circ_0000285 serves as a prognostic biomarker for bladder cancer and is involved in cisplatin resistance. Neoplasma 2019; 66(2): 197-202.
[http://dx.doi.org/10.4149/neo_2018_180318N185] [PMID: 30509102]
[96]
Yao T, Zha D, Hu C, Wu X. Circ_0000285 promotes podocyte injury through sponging miR-654-3p and activating MAPK6 in diabetic nephropathy. Gene 2020; 747: 144661.
[http://dx.doi.org/10.1016/j.gene.2020.144661] [PMID: 32275999]
[97]
Li G, Qin Y, Qin S, Zhou X, Zhao W, Zhang D. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells. Life Sci 2020; 259: 118269.
[http://dx.doi.org/10.1016/j.lfs.2020.118269] [PMID: 32798559]
[98]
An L, Ji D, Hu W, et al. Interference of hsa_circ_0003928 alleviates high glucose-induced cell apoptosis and inflammation in HK-2 cells via miR-151-3p/Anxa2. Diabetes Metab Syndr Obes 2020; 13: 3157-68.
[http://dx.doi.org/10.2147/DMSO.S265543] [PMID: 32982348]
[99]
Wen S, Li S, Li L, Fan Q. CircACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol Pharm Bull 2020; 43(3): 558-64.
[http://dx.doi.org/10.1248/bpb.b19-00901] [PMID: 32115515]
[100]
Gordin D, Groop PH. Aspects of hyperglycemia contribution to arterial stiffness and cardiovascular complications in patients with type 1 diabetes. J Diabetes Sci Technol 2016; 10(5): 1059-64.
[http://dx.doi.org/10.1177/1932296816636894] [PMID: 26956240]
[101]
Vasuri F, Fittipaldi S, Pacilli A, Buzzi M, Pasquinelli G. The incidence and morphology of Monckeberg’s medial calcification in banked vascular segments from a monocentric donor population. Cell Tissue Bank 2016; 17(2): 219-23.
[http://dx.doi.org/10.1007/s10561-016-9543-z] [PMID: 26757897]
[102]
Wang S, Zhan J, Lin X, Wang Y, Wang Y, Liu Y. CircRNA-0077930 from hyperglycaemia-stimulated vascular endothelial cell exosomes regulates senescence in vascular smooth muscle cells. Cell Biochem Funct 2020; 38(8): 1056-68.
[http://dx.doi.org/10.1002/cbf.3543] [PMID: 32307741]
[103]
Cheng J, Liu Q, Hu N, et al. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene 2019; 709: 1-7.
[http://dx.doi.org/10.1016/j.gene.2019.05.012] [PMID: 31108165]
[104]
Peng F, Gong W, Li S, et al. CircRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes 2020; db200203.
[http://dx.doi.org/10.2337/db200203] [PMID: 33203695]
[105]
Griffin KA. Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension 2017; 70(4): 687-94.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.08314] [PMID: 28760941]
[106]
Cheng X, Joe B. Circular RNAs in rat models of cardiovascular and renal diseases. Physiol Genomics 2017; 49(9): 484-90.
[http://dx.doi.org/10.1152/physiolgenomics.00064.2017] [PMID: 28778982]
[107]
Lu C, Chen B, Chen C, et al. CircNr1h4 regulates the pathological process of renal injury in salt-sensitive hypertensive mice by targeting miR-155-5p. J Cell Mol Med 2020; 24(2): 1700-12.
[http://dx.doi.org/10.1111/jcmm.14863] [PMID: 31782248]
[108]
Hassan MO, Duarte R, Dix-Peek T, et al. Transforming growth factor-β protects against inflammation-related atherosclerosis in South African CKD patients. Int J Nephrol 2018; 2018: 8702372.
[http://dx.doi.org/10.1155/2018/8702372] [PMID: 29977619]
[109]
Deng W, Chen K, Liu S, Wang Y. Silencing circular ANRIL protects HK-2 cells from lipopolysaccharide-induced inflammatory injury through up-regulating microRNA-9. Artif Cells Nanomed Biotechnol 2019; 47(1): 3478-84.
[http://dx.doi.org/10.1080/21691401.2019.1652187] [PMID: 31432701]
[110]
Le X, Yu X, Shen N. Novel insights of microRNAs in the development of systemic lupus erythematosus. Curr Opin Rheumatol 2017; 29(5): 450-7.
[http://dx.doi.org/10.1097/BOR.0000000000000420] [PMID: 28570283]
[111]
D’Cruz DP, Khamashta MA, Hughes GRV. Systemic lupus erythematosus. Lancet 2007; 369(9561): 587-96.
[http://dx.doi.org/10.1016/S0140-6736(07)60279-7] [PMID: 17307106]
[112]
Zhang C, Wang X, Chen Y, Wu Z, Zhang C, Shi W. The down-regulation of hsa_circ_0012919, the sponge for miR-125a-3p, contributes to DNA methylation of CD11a and CD70 in CD4+ T cells of systemic lupus erythematous. Clin Sci (Lond) 2018; 132(21): 2285-98.
[http://dx.doi.org/10.1042/CS20180403] [PMID: 30237316]
[113]
Zhao X, Tang Y, Qu B, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 2010; 62(11): 3425-35.
[http://dx.doi.org/10.1002/art.27632] [PMID: 20589685]
[114]
Li LJ, Zhu ZW, Zhao W, et al. Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology 2018; 155(1): 137-49.
[http://dx.doi.org/10.1111/imm.12940] [PMID: 29700819]
[115]
Guo G, Wang H, Ye L, et al. Hsa_circ_0000479 as a novel diagnostic biomarker of systemic lupus erythematosus. Front Immunol 2019; 10: 2281.
[http://dx.doi.org/10.3389/fimmu.2019.02281] [PMID: 31608065]
[116]
Luo Q, Zhang L, Fang L, et al. Circular RNAs hsa_circ_0000479 in peripheral blood mononuclear cells as novel biomarkers for systemic lupus erythematosus. Autoimmunity 2020; 53(3): 167-76.
[http://dx.doi.org/10.1080/08916934.2020.1728529] [PMID: 32093518]
[117]
Wang X, Zhang C, Wu Z, Chen Y, Shi W. CircIBTK inhibits DNA demethylation and activation of AKT signaling pathway via miR-29b in peripheral blood mononuclear cells in systemic lupus erythematosus. Arthritis Res Ther 2018; 20(1): 118.
[http://dx.doi.org/10.1186/s13075-018-1618-8] [PMID: 29884225]
[118]
Li H, Li K, Lai W, et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 2018; 480: 17-25.
[http://dx.doi.org/10.1016/j.cca.2018.01.026] [PMID: 29360436]
[119]
Miao Q, Zhong Z, Jiang Z, et al. RNA-seq of circular RNAs identified circPTPN22 as a potential new activity indicator in systemic lupus erythematosus. Lupus 2019; 28(4): 520-8.
[http://dx.doi.org/10.1177/0961203319830493] [PMID: 30871426]
[120]
Luo Q, Zhang L, Li X, et al. Identification of circular RNAs hsa_circ_0044235 and hsa_circ_0068367 as novel biomarkers for systemic lupus erythematosus. Int J Mol Med 2019; 44(4): 1462-72.
[http://dx.doi.org/10.3892/ijmm.2019.4302] [PMID: 31432107]
[121]
Zhang MY, Wang JB, Zhu ZW, et al. Differentially expressed circular RNAs in systemic lupus erythematosus and their clinical significance. Biomed Pharmacother 2018; 107: 1720-7.
[http://dx.doi.org/10.1016/j.biopha.2018.08.161] [PMID: 30257390]
[122]
Li S, Zhang J, Tan X, et al. Microarray expression profile of circular RNAs and mRNAs in children with systemic lupus erythematosus. Clin Rheumatol 2019; 38(5): 1339-50.
[http://dx.doi.org/10.1007/s10067-018-4392-8] [PMID: 30628013]
[123]
Luo Q, Li X, Fu B, et al. Expression profile and diagnostic value of circRNAs in peripheral blood from patients with systemic lupus erythematosus. Mol Med Rep 2021; 23(1): 1.
[http://dx.doi.org/10.3892/mmr.2020.11639] [PMID: 33169172]
[124]
Luo Q, Zhang L, Xiong L, et al. Peripheral blood circular RNA hsa_circ_0082688-hsa_circ_0008675 can be used as a candidate biomarker of systemic lupus erythematosus with renal involvement. Clin Exp Rheumatol 2020; 38(5): 822-33.
[PMID: 32940208]
[125]
Maroz N, Segal MS. Lupus nephritis and end-stage kidney disease. Am J Med Sci 2013; 346(4): 319-23.
[http://dx.doi.org/10.1097/MAJ.0b013e31827f4ee3] [PMID: 23370533]
[126]
Zhou H, Hasni SA, Perez P, et al. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J Am Soc Nephrol 2013; 24(7): 1073-87.
[http://dx.doi.org/10.1681/ASN.2012080849] [PMID: 23723424]
[127]
Luan J, Fu J, Chen C, et al. LNA-anti-miR-150 ameliorated kidney injury of lupus nephritis by inhibiting renal fibrosis and macrophage infiltration. Arthritis Res Ther 2019; 21(1): 276.
[http://dx.doi.org/10.1186/s13075-019-2044-2] [PMID: 31829247]
[128]
Zhang C, Gao C, Di X, et al. Hsa_circ_0123190 acts as a competitive endogenous RNA to regulate APLNR expression by sponging hsa-miR-483-3p in lupus nephritis. Arthritis Res Ther 2021; 23(1): 24.
[http://dx.doi.org/10.1186/s13075-020-02404-8] [PMID: 33436040]
[129]
Tian S, Liu X, Fan Q, Ma J, Yao L, Li Y. Microarray expression and functional analysis of circular RNAs in the glomeruli of NZB/W F1 mice with lupus nephritis. Exp Ther Med 2019; 18(4): 2813-24.
[http://dx.doi.org/10.3892/etm.2019.7901] [PMID: 31555374]
[130]
Ouyang Q, Huang Q, Jiang Z, Zhao J, Shi GP, Yang M. Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol Immunol 2018; 101: 531-8.
[http://dx.doi.org/10.1016/j.molimm.2018.07.029] [PMID: 30172209]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy