Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Structure and Functions of T-cell Immunoglobulin-domain and Mucin- domain Protein 3 in Cancer

Author(s): Xinjie Lu*

Volume 29, Issue 11, 2022

Published on: 06 August, 2021

Page: [1851 - 1865] Pages: 15

DOI: 10.2174/0929867328666210806120904

Price: $65

conference banner
Abstract

Background: T-cell immunoglobulin (Ig)-domain and mucin-domain (TIM) proteins represent a family of receptors expressed on T-cells that play essential cellular immunity roles. The TIM proteins span across the membrane belonging to type I transmembrane proteins. The N terminus contains an Ig-like V-type domain and a Ser/Thr-rich mucin stalk as a co-inhibitory receptor. The C-terminal tail oriented toward the cytosol predominantly mediates intracellular signaling.

Methods: This review discusses the structural features and functions of TIM-3, specifically on its role in mediating immune responses in different cell types and the rationale for TIM-3-targeted cancer immunotherapy.

Results: TIM-3 has gained significant importance to be a potential biomarker in cancer immunotherapy. It has been shown that blockade with checkpoint inhibitors promotes anti-tumor immunity and inhibits tumor growth in several preclinical tumor models.

Conclusion: TIM-3 is an immune regulating molecule expressed on several cell types, including IFNγ-producing T-cells, FoxP3+ Treg cells, and innate immune cells. The roles of TIM-3 in immunosuppression support its merit as a target for cancer immunotherapy.

Keywords: T-cell immunoglobulin, cancer, Galectin-9, TIM-3, receptor, ligand.

[1]
Kuchroo, V.K.; Umetsu, D.T.; DeKruyff, R.H.; Freeman, G.J. The TIM gene family: emerging roles in immunity and disease. Nat. Rev. Immunol., 2003, 3(6), 454-462.
[http://dx.doi.org/10.1038/nri1111] [PMID: 12776205]
[2]
Freeman, G.J.; Casasnovas, J.M.; Umetsu, D.T.; DeKruyff, R.H. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev., 2010, 235(1), 172-189.
[http://dx.doi.org/10.1111/j.0105-2896.2010.00903.x] [PMID: 20536563]
[3]
Corredera, E.; Phong, B.L.; Moore, J.A.; Kane, L.P.; Lee, S.E. TIM-3-expressing mast cells are present in chronic rhinosinusitis with nasal polyps. Otolaryngol. Head Neck Surg., 2018, 159(3), 581-586.
[http://dx.doi.org/10.1177/0194599818774560] [PMID: 29759032]
[4]
Rennert, P.D. Novel roles for TIM-1 in immunity and infection. Immunol. Lett., 2011, 141(1), 28-35.
[http://dx.doi.org/10.1016/j.imlet.2011.08.003] [PMID: 21911007]
[5]
He, Y.; Cao, J.; Zhao, C.; Li, X.; Zhou, C.; Hirsch, F.R. TIM-3, a promising target for cancer immunotherapy. OncoTargets Ther., 2018, 11, 7005-7009.
[http://dx.doi.org/10.2147/OTT.S170385] [PMID: 30410357]
[6]
Anderson, A.C.; Anderson, D.E.; Bregoli, L.; Hastings, W.D.; Kassam, N.; Lei, C.; Chandwaskar, R.; Karman, J.; Su, E.W.; Hirashima, M.; Bruce, J.N.; Kane, L.P.; Kuchroo, V.K.; Hafler, D.A. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science, 2007, 318(5853), 1141-1143.
[http://dx.doi.org/10.1126/science.1148536] [PMID: 18006747]
[7]
Hastings, W.D.; Anderson, D.E.; Kassam, N.; Koguchi, K.; Greenfield, E.A.; Kent, S.C.; Zheng, X.X.; Strom, T.B.; Hafler, D.A.; Kuchroo, V.K. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines. Eur. J. Immunol., 2009, 39(9), 2492-2501.
[http://dx.doi.org/10.1002/eji.200939274] [PMID: 19676072]
[8]
Monney, L.; Sabatos, C.A.; Gaglia, J.L.; Ryu, A.; Waldner, H.; Chernova, T.; Manning, S.; Greenfield, E.A.; Coyle, A.J.; Sobel, R.A.; Freeman, G.J.; Kuchroo, V.K. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 2002, 415(6871), 536-541.
[http://dx.doi.org/10.1038/415536a] [PMID: 11823861]
[9]
Li, Z.; Ju, Z.; Frieri, M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity. Allergy Asthma Proc., 2013, 34(1), e21-e26.
[http://dx.doi.org/10.2500/aap.2013.34.3646] [PMID: 23406933]
[10]
Phong, B.L.; Avery, L.; Sumpter, T.L.; Gorman, J.V.; Watkins, S.C.; Colgan, J.D.; Kane, L.P. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation. J. Exp. Med., 2015, 212(13), 2289-2304.
[http://dx.doi.org/10.1084/jem.20150388] [PMID: 26598760]
[11]
Kobayashi, N.; Karisola, P.; Peña-Cruz, V.; Dorfman, D.M.; Jinushi, M.; Umetsu, S.E.; Butte, M.J.; Nagumo, H.; Chernova, I.; Zhu, B.; Sharpe, A.H.; Ito, S.; Dranoff, G.; Kaplan, G.G.; Casasnovas, J.M.; Umetsu, D.T.; Dekruyff, R.H.; Freeman, G.J. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity, 2007, 27(6), 927-940.
[http://dx.doi.org/10.1016/j.immuni.2007.11.011] [PMID: 18082433]
[12]
Santiago, C.; Ballesteros, A.; Martínez-Muñoz, L.; Mellado, M.; Kaplan, G.G.; Freeman, G.J.; Casasnovas, J.M. Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity, 2007, 27(6), 941-951.
[http://dx.doi.org/10.1016/j.immuni.2007.11.008] [PMID: 18083575]
[13]
DeKruyff, R.H.; Bu, X.; Ballesteros, A.; Santiago, C.; Chim, Y.L.; Lee, H.H.; Karisola, P.; Pichavant, M.; Kaplan, G.G.; Umetsu, D.T.; Freeman, G.J.; Casasnovas, J.M. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J. Immunol., 2010, 184(4), 1918-1930.
[http://dx.doi.org/10.4049/jimmunol.0903059] [PMID: 20083673]
[14]
Fadok, V.A.; Voelker, D.R.; Campbell, P.A.; Cohen, J.J.; Bratton, D.L.; Henson, P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol., 1992, 148(7), 2207-2216.
[PMID: 1545126]
[15]
Verhoven, B.; Schlegel, R.A.; Williamson, P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med., 1995, 182(5), 1597-1601.
[http://dx.doi.org/10.1084/jem.182.5.1597] [PMID: 7595231]
[16]
Savill, J.; Dransfield, I.; Gregory, C.; Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol., 2002, 2(12), 965-975.
[http://dx.doi.org/10.1038/nri957] [PMID: 12461569]
[17]
Wada, J.; Kanwar, Y.S. Identification and characterization of galectin-9, a novel β-galactoside-binding mammalian lectin. J. Biol. Chem., 1997, 272(9), 6078-6086.
[http://dx.doi.org/10.1074/jbc.272.9.6078] [PMID: 9038233]
[18]
Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol., 2018, 8, 86.
[http://dx.doi.org/10.3389/fonc.2018.00086] [PMID: 29644214]
[19]
Loos, M.; Hedderich, D.M.; Friess, H.; Kleeff, J. B7-h3 and its role in antitumor immunity. Clin. Dev. Immunol., 2010, 2010, 683875.
[http://dx.doi.org/10.1155/2010/683875] [PMID: 21127709]
[20]
Zang, X.; Loke, P.; Kim, J.; Murphy, K.; Waitz, R.; Allison, J.P. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10388-10392.
[http://dx.doi.org/10.1073/pnas.1434299100] [PMID: 12920180]
[21]
Hobo, W. Norde, W.J.; Schaap, N.; Fredrix, H.; Maas, F.; Schellens, K.; Falkenburg, J.H.; Korman, A.J.; Olive, D.; van der Voort, R.; Dolstra, H. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation. J. Immunol., 2012, 189(1), 39-49.
[http://dx.doi.org/10.4049/jimmunol.1102807] [PMID: 22634623]
[22]
Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol., 2005, 6(12), 1245-1252.
[http://dx.doi.org/10.1038/ni1271] [PMID: 16286920]
[23]
Yasinska, I.M.; Sakhnevych, S.S.; Pavlova, L.; Teo Hansen Selnø, A.; Teuscher Abeleira, A.M.; Benlaouer, O.; Gonçalves Silva, I.; Mosimann, M.; Varani, L.; Bardelli, M.; Hussain, R.; Siligardi, G.; Cholewa, D.; Berger, S.M.; Gibbs, B.F.; Ushkaryov, Y.A.; Fasler-Kan, E.; Klenova, E.; Sumbayev, V.V. The tim-3-galectin-9 pathway and its regulatory mechanisms in human breast cancer. Front. Immunol., 2019, 10, 1594.
[http://dx.doi.org/10.3389/fimmu.2019.01594] [PMID: 31354733]
[24]
Leitner, J.; Rieger, A.; Pickl, W.F.; Zlabinger, G.; Grabmeier-Pfistershammer, K.; Steinberger, P. TIM-3 does not act as a receptor for galectin-9. PLoS Pathog., 2013, 9(3), e1003253.
[http://dx.doi.org/10.1371/journal.ppat.1003253] [PMID: 23555261]
[25]
Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol., 2020, 20(3), 173-185.
[http://dx.doi.org/10.1038/s41577-019-0224-6] [PMID: 31676858]
[26]
Yang, R.; Sun, L.; Li, C.F.; Wang, Y.H.; Yao, J.; Li, H.; Yan, M.; Chang, W.C.; Hsu, J.M.; Cha, J.H.; Hsu, J.L.; Chou, C.W.; Sun, X.; Deng, Y.; Chou, C.K.; Yu, D.; Hung, M.C. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun., 2021, 12(1), 832.
[http://dx.doi.org/10.1038/s41467-021-21099-2] [PMID: 33547304]
[27]
Pennisi, E. Genomics. DNA study forces rethink of what it means to be a gene. Science, 2007, 316(5831), 1556-1557.
[http://dx.doi.org/10.1126/science.316.5831.1556] [PMID: 17569836]
[28]
Yasinska, I.M.; Gonçalves Silva, I.; Sakhnevych, S.S.; Ruegg, L.; Hussain, R.; Siligardi, G.; Fiedler, W.; Wellbrock, J.; Bardelli, M.; Varani, L.; Raap, U.; Berger, S.; Gibbs, B.F.; Fasler-Kan, E.; Sumbayev, V.V. High mobility group box 1 (HMGB1) acts as an “alarmin” to promote acute myeloid leukaemia progression. OncoImmunology, 2018, 7(6), e1438109.
[http://dx.doi.org/10.1080/2162402X.2018.1438109] [PMID: 29872582]
[29]
Chiba, S.; Baghdadi, M.; Akiba, H.; Yoshiyama, H.; Kinoshita, I.; Dosaka-Akita, H.; Fujioka, Y.; Ohba, Y.; Gorman, J.V.; Colgan, J.D.; Hirashima, M.; Uede, T.; Takaoka, A.; Yagita, H.; Jinushi, M. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol., 2012, 13(9), 832-842.
[http://dx.doi.org/10.1038/ni.2376] [PMID: 22842346]
[30]
Xia, J.; Yu, X.; Song, X.; Li, G.; Mao, X.; Zhang, Y. Inhibiting the cytoplasmic location of HMGB1 reverses cisplatin resistance in human cervical cancer cells. Mol. Med. Rep., 2017, 15(1), 488-494.
[http://dx.doi.org/10.3892/mmr.2016.6003] [PMID: 27959427]
[31]
Prall, F.; Nollau, P.; Neumaier, M.; Haubeck, H.D.; Drzeniek, Z.; Helmchen, U.; Löning, T.; Wagener, C. CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues. J. Histochem. Cytochem., 1996, 44(1), 35-41.
[http://dx.doi.org/10.1177/44.1.8543780] [PMID: 8543780]
[32]
Huang, Y.H.; Zhu, C.; Kondo, Y.; Anderson, A.C.; Gandhi, A.; Russell, A.; Dougan, S.K.; Petersen, B.S.; Melum, E.; Pertel, T.; Clayton, K.L.; Raab, M.; Chen, Q.; Beauchemin, N.; Yazaki, P.J.; Pyzik, M.; Ostrowski, M.A.; Glickman, J.N.; Rudd, C.E.; Ploegh, H.L.; Franke, A.; Petsko, G.A.; Kuchroo, V.K.; Blumberg, R.S. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature, 2015, 517(7534), 386-390.
[http://dx.doi.org/10.1038/nature13848] [PMID: 25363763]
[33]
Gendler, S.J.; Spicer, A.P. Epithelial mucin genes. Annu. Rev. Physiol., 1995, 57, 607-634.
[http://dx.doi.org/10.1146/annurev.ph.57.030195.003135] [PMID: 7778880]
[34]
Chang, S.K.; Dohrman, A.F.; Basbaum, C.B.; Ho, S.B.; Tsuda, T.; Toribara, N.W.; Gum, J.R.; Kim, Y.S. Localization of mucin (MUC2 and MUC3) messenger RNA and peptide expression in human normal intestine and colon cancer. Gastroenterology, 1994, 107(1), 28-36.
[http://dx.doi.org/10.1016/0016-5085(94)90057-4] [PMID: 8020672]
[35]
Park, H.U.; Kim, J.W.; Kim, G.E.; Bae, H.I.; Crawley, S.C.; Yang, S.C.; Gum, J.R., Jr; Batra, S.K.; Rousseau, K.; Swallow, D.M.; Sleisenger, M.H.; Kim, Y.S. Aberrant expression of MUC3 and MUC4 membrane-associated mucins and sialyl Le(x) antigen in pancreatic intraepithelial neoplasia. Pancreas, 2003, 26(3), e48-e54.
[http://dx.doi.org/10.1097/00006676-200304000-00022] [PMID: 12657964]
[36]
Rakha, E.A.; Boyce, R.W.; Abd El-Rehim, D.; Kurien, T.; Green, A.R.; Paish, E.C.; Robertson, J.F.; Ellis, I.O. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod. Pathol., 2005, 18(10), 1295-1304.
[http://dx.doi.org/10.1038/modpathol.3800445] [PMID: 15976813]
[37]
Wang, R.Q.; Fang, D.C. Alterations of MUC1 and MUC3 expression in gastric carcinoma: relevance to patient clinicopathological features. J. Clin. Pathol., 2003, 56(5), 378-384.
[http://dx.doi.org/10.1136/jcp.56.5.378] [PMID: 12719460]
[38]
Leroy, X.; Gouyer, V.; Ballereau, C.; Zerimech, F.; Huet, G.; Copin, M.C.; Aubert, J.P.; Porchet, N. Quantitative RT-PCR assay for MUC3 and VEGF mRNA in renal clear cell carcinoma: relationship with nuclear grade and prognosis. Urology, 2003, 62(4), 771-775.
[http://dx.doi.org/10.1016/S0090-4295(03)00560-0] [PMID: 14550470]
[39]
Weiss, A.A.; Babyatsky, M.W.; Ogata, S.; Chen, A.; Itzkowitz, S.H. Expression of MUC2 and MUC3 mRNA in human normal, malignant, and inflammatory intestinal tissues. J. Histochem. Cytochem., 1996, 44(10), 1161-1166.
[http://dx.doi.org/10.1177/44.10.8813081] [PMID: 8813081]
[40]
Cao, Y.; Blohm, D.; Ghadimi, B.M.; Stosiek, P.; Xing, P.X.; Karsten, U. Mucins (MUC1 and MUC3) of gastrointestinal and breast epithelia reveal different and heterogeneous tumor-associated aberrations in glycosylation. J. Histochem. Cytochem., 1997, 45(11), 1547-1557.
[http://dx.doi.org/10.1177/002215549704501111] [PMID: 9358856]
[41]
Schultz, J.; Copley, R.R.; Doerks, T.; Ponting, C.P.; Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res., 2000, 28(1), 231-234.
[http://dx.doi.org/10.1093/nar/28.1.231] [PMID: 10592234]
[42]
Desseyn, J.L.; Tetaert, D.; Gouyer, V. Architecture of the large membrane-bound mucins. Gene, 2008, 410(2), 215-222.
[http://dx.doi.org/10.1016/j.gene.2007.12.014] [PMID: 18242885]
[43]
Gao, X.; Zhu, Y.; Li, G.; Huang, H.; Zhang, G.; Wang, F.; Sun, J.; Yang, Q.; Zhang, X.; Lu, B. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One, 2012, 7(2), e30676.
[http://dx.doi.org/10.1371/journal.pone.0030676] [PMID: 22363469]
[44]
Gleason, M.K.; Lenvik, T.R.; McCullar, V.; Felices, M.; O’Brien, M.S.; Cooley, S.A.; Verneris, M.R.; Cichocki, F.; Holman, C.J.; Panoskaltsis-Mortari, A.; Niki, T.; Hirashima, M.; Blazar, B.R.; Miller, J.S. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood, 2012, 119(13), 3064-3072.
[http://dx.doi.org/10.1182/blood-2011-06-360321] [PMID: 22323453]
[45]
Yuan, S.; Cao, L.; Ling, H.; Dang, M.; Sun, Y.; Zhang, X.; Chen, Y.; Zhang, L.; Su, D.; Wang, X.; Rao, Z. TIM-1 acts a dual-attachment receptor for Ebolavirus by interacting directly with viral GP and the PS on the viral envelope. Protein Cell, 2015, 6(11), 814-824.
[http://dx.doi.org/10.1007/s13238-015-0220-y] [PMID: 26487564]
[46]
McIntire, J.J.; Umetsu, D.T.; DeKruyff, R.H. TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin. Immunopathol., 2004, 25(3-4), 335-348.
[http://dx.doi.org/10.1007/s00281-003-0141-3] [PMID: 15007635]
[47]
Miyanishi, M.; Tada, K.; Koike, M.; Uchiyama, Y.; Kitamura, T.; Nagata, S. Identification of Tim4 as a phosphatidylserine receptor. Nature, 2007, 450(7168), 435-439.
[http://dx.doi.org/10.1038/nature06307] [PMID: 17960135]
[48]
Gandhi, A.K.; Kim, W.M.; Sun, Z.J.; Huang, Y.H.; Bonsor, D.A.; Sundberg, E.J.; Kondo, Y.; Wagner, G.; Kuchroo, V.K.; Petsko, G.; Blumberg, R.S. High resolution X-ray and NMR structural study of human T-cell immunoglobulin and mucin domain containing protein-3. Sci. Rep., 2018, 8(1), 17512.
[http://dx.doi.org/10.1038/s41598-018-35754-0] [PMID: 30504845]
[49]
Bork, P.; Holm, L.; Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol., 1994, 242(4), 309-320.
[http://dx.doi.org/10.1016/S0022-2836(84)71582-8] [PMID: 7932691]
[50]
Proba, K.; Honegger, A.; Plückthun, A. A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J. Mol. Biol., 1997, 265(2), 161-172.
[http://dx.doi.org/10.1006/jmbi.1996.0726] [PMID: 9020980]
[51]
Cao, E.; Zang, X.; Ramagopal, U.A.; Mukhopadhaya, A.; Fedorov, A.; Fedorov, E.; Zencheck, W.D.; Lary, J.W.; Cole, J.L.; Deng, H.; Xiao, H.; Dilorenzo, T.P.; Allison, J.P.; Nathenson, S.G.; Almo, S.C. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity, 2007, 26(3), 311-321.
[http://dx.doi.org/10.1016/j.immuni.2007.01.016] [PMID: 17363302]
[52]
Das, M.; Zhu, C.; Kuchroo, V.K. Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev., 2017, 276(1), 97-111.
[http://dx.doi.org/10.1111/imr.12520] [PMID: 28258697]
[53]
Ngiow, S.F.; Teng, M.W.; Smyth, M.J. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res., 2011, 71(21), 6567-6571.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1487] [PMID: 22009533]
[54]
Fujihara, S.; Mori, H.; Kobara, H.; Rafiq, K.; Niki, T.; Hirashima, M.; Masaki, T. Galectin-9 in cancer therapy. Recent Pat. Endocr. Metab. Immune Drug Discov., 2013, 7(2), 130-137.
[http://dx.doi.org/10.2174/1872214811307020006] [PMID: 23514536]
[55]
Zhang, Z.Y.; Dong, J.H.; Chen, Y.W.; Wang, X.Q.; Li, C.H.; Wang, J.; Wang, G.Q.; Li, H.L.; Wang, X.D. Galectin-9 acts as a prognostic factor with antimetastatic potential in hepatocellular carcinoma. Asian Pac. J. Cancer Prev., 2012, 13(6), 2503-2509.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2503] [PMID: 22938412]
[56]
Laderach, D.J.; Gentilini, L.D.; Giribaldi, L.; Delgado, V.C.; Nugnes, L.; Croci, D.O.; Al Nakouzi, N.; Sacca, P.; Casas, G.; Mazza, O.; Shipp, M.A.; Vazquez, E.; Chauchereau, A.; Kutok, J.L.; Rodig, S.J.; Elola, M.T.; Compagno, D.; Rabinovich, G.A. A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease. Cancer Res., 2013, 73(1), 86-96.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1260] [PMID: 23108139]
[57]
Mayoral, M.A.; Mayoral, C.; Meneses, A.; Villalvazo, L.; Guzman, A.; Espinosa, B.; Ochoa, J.L.; Zenteno, E.; Guevara, J. Identification of galectin-3 and mucin-type O-glycans in breast cancer and its metastasis to brain. Cancer Invest., 2008, 26(6), 615-623.
[http://dx.doi.org/10.1080/07357900701837051] [PMID: 18584353]
[58]
Cada, Z.; Smetana, K., Jr; Lacina, L.; Plzáková, Z.; Stork, J.; Kaltner, H.; Russwurm, R.; Lensch, M.; André, S.; Gabius, H.J. Immunohistochemical fingerprinting of the network of seven adhesion/growth-regulatory lectins in human skin and detection of distinct tumour-associated alterations. Folia Biol. (Praha), 2009, 55(4), 145-152.
[PMID: 19691922]
[59]
Kageshita, T.; Kashio, Y.; Yamauchi, A.; Seki, M.; Abedin, M.J.; Nishi, N.; Shoji, H.; Nakamura, T.; Ono, T.; Hirashima, M. Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance. Int. J. Cancer, 2002, 99(6), 809-816.
[http://dx.doi.org/10.1002/ijc.10436] [PMID: 12115481]
[60]
Chan, S.W.; Kallarakkal, T.G.; Abraham, M.T. Changed expression of E-cadherin and galectin-9 in oral squamous cell carcinomas but lack of potential as prognostic markers. Asian Pac. J. Cancer Prev., 2014, 15(5), 2145-2152.
[http://dx.doi.org/10.7314/APJCP.2014.15.5.2145] [PMID: 24716948]
[61]
Terris, B.; Blaveri, E.; Crnogorac-Jurcevic, T.; Jones, M.; Missiaglia, E.; Ruszniewski, P.; Sauvanet, A.; Lemoine, N.R. Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am. J. Pathol., 2002, 160(5), 1745-1754.
[http://dx.doi.org/10.1016/S0002-9440(10)61121-2] [PMID: 12000726]
[62]
Türeci, O.; Schmitt, H.; Fadle, N.; Pfreundschuh, M.; Sahin, U. Molecular definition of a novel human galectin which is immunogenic in patients with Hodgkin’s disease. J. Biol. Chem., 1997, 272(10), 6416-6422.
[http://dx.doi.org/10.1074/jbc.272.10.6416] [PMID: 9045665]
[63]
Yang, J.; Zhu, L.; Cai, Y.; Suo, J.; Jin, J. Role of downregulation of galectin-9 in the tumorigenesis of gastric cancer. Int. J. Oncol., 2014, 45(3), 1313-1320.
[http://dx.doi.org/10.3892/ijo.2014.2494] [PMID: 24919464]
[64]
Jiang, J.; Jin, M.S.; Kong, F.; Cao, D.; Ma, H.X.; Jia, Z.; Wang, Y.P.; Suo, J.; Cao, X. Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS One, 2013, 8(12), e81799.
[http://dx.doi.org/10.1371/journal.pone.0081799] [PMID: 24339967]
[65]
Kashio, Y.; Nakamura, K.; Abedin, M.J.; Seki, M.; Nishi, N.; Yoshida, N.; Nakamura, T.; Hirashima, M. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J. Immunol., 2003, 170(7), 3631-3636.
[http://dx.doi.org/10.4049/jimmunol.170.7.3631] [PMID: 12646627]
[66]
Sabatos, C.A.; Chakravarti, S.; Cha, E.; Schubart, A.; Sánchez-Fueyo, A.; Zheng, X.X.; Coyle, A.J.; Strom, T.B.; Freeman, G.J.; Kuchroo, V.K. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat. Immunol., 2003, 4(11), 1102-1110.
[http://dx.doi.org/10.1038/ni988] [PMID: 14556006]
[67]
Kuchroo, V.K.; Meyers, J.H.; Umetsu, D.T.; DeKruyff, R.H. TIM family of genes in immunity and tolerance. Adv. Immunol., 2006, 91, 227-249.
[http://dx.doi.org/10.1016/S0065-2776(06)91006-2] [PMID: 16938542]
[68]
Nakano, M.; Ito, M.; Tanaka, R.; Yamaguchi, K.; Ariyama, H.; Mitsugi, K.; Yoshihiro, T.; Ohmura, H.; Tsuruta, N.; Hanamura, F.; Sagara, K.; Okumura, Y.; Nio, K.; Tsuchihashi, K.; Arita, S.; Kusaba, H.; Akashi, K.; Baba, E. PD-1+ TIM-3+ T cells in malignant ascites predict prognosis of gastrointestinal cancer. Cancer Sci., 2018, 109(9), 2986-2992.
[http://dx.doi.org/10.1111/cas.13723] [PMID: 30187676]
[69]
Oweida, A.; Hararah, M.K.; Phan, A.; Binder, D.; Bhatia, S.; Lennon, S.; Bukkapatnam, S.; Van Court, B.; Uyanga, N.; Darragh, L.; Kim, H.M.; Raben, D.; Tan, A.C.; Heasley, L.; Clambey, E.; Nemenoff, R.; Karam, S.D. Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3 upregulation and regulatory T-cell infiltration. Clin. Cancer Res., 2018, 24(21), 5368-5380.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1038] [PMID: 30042205]
[70]
McMahan, R.H.; Golden-Mason, L.; Nishimura, M.I.; McMahon, B.J.; Kemper, M.; Allen, T.M.; Gretch, D.R.; Rosen, H.R. Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J. Clin. Invest., 2010, 120(12), 4546-4557.
[http://dx.doi.org/10.1172/JCI43127] [PMID: 21084749]
[71]
Sakuishi, K.; Apetoh, L.; Sullivan, J.M.; Blazar, B.R.; Kuchroo, V.K.; Anderson, A.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med., 2010, 207(10), 2187-2194.
[http://dx.doi.org/10.1084/jem.20100643] [PMID: 20819927]
[72]
Zhou, Q.; Munger, M.E.; Veenstra, R.G.; Weigel, B.J.; Hirashima, M.; Munn, D.H.; Murphy, W.J.; Azuma, M.; Anderson, A.C.; Kuchroo, V.K.; Blazar, B.R. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, 2011, 117(17), 4501-4510.
[http://dx.doi.org/10.1182/blood-2010-10-310425] [PMID: 21385853]
[73]
Fourcade, J.; Sun, Z.; Benallaoua, M.; Guillaume, P.; Luescher, I.F.; Sander, C.; Kirkwood, J.M.; Kuchroo, V.; Zarour, H.M. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med., 2010, 207(10), 2175-2186.
[http://dx.doi.org/10.1084/jem.20100637] [PMID: 20819923]
[74]
Ngiow, S.F.; von Scheidt, B.; Akiba, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res., 2011, 71(10), 3540-3551.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0096] [PMID: 21430066]
[75]
Anderson, A.C. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol. Res., 2014, 2(5), 393-398.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0039] [PMID: 24795351]
[76]
Liu, Z.; McMichael, E.L.; Shayan, G.; Li, J.; Chen, K.; Srivastava, R.; Kane, L.P.; Lu, B.; Ferris, R.L. Novel effector phenotype of TIM-3+ regulatory T-cells leads to enhanced suppressive function in head and neck cancer patients. Clin. Cancer Res., 2018, 24(18), 4529-4538.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1350] [PMID: 29712685]
[77]
Bu, M.; Shen, Y.; Seeger, W.L.; An, S.; Qi, R.; Sanderson, J.A.; Cai, Y. Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8(+) T cell inflammation than their peripheral counterparts, a function dependent on TIM3 expression. Tumour Biol., 2016, 37(3), 3949-3956.
[http://dx.doi.org/10.1007/s13277-015-4237-x] [PMID: 26482613]
[78]
Sakuishi, K.; Ngiow, S.F.; Sullivan, J.M.; Teng, M.W.; Kuchroo, V.K.; Smyth, M.J.; Anderson, A.C. TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. OncoImmunology, 2013, 2(4), e23849.
[http://dx.doi.org/10.4161/onci.23849] [PMID: 23734331]
[79]
Arce-Sillas, A.; Álvarez-Luquín, D.D.; Tamaya-Domínguez, B.; Gomez-Fuentes, S.; Trejo-García, A.; Melo-Salas, M.; Cárdenas, G.; Rodríguez-Ramírez, J.; Adalid-Peralta, L.; Regulatory, T. Regulatory T cells: molecular actions on effector cells in immune regulation. J. Immunol. Res., 2016, 2016, 1720827.
[http://dx.doi.org/10.1155/2016/1720827] [PMID: 27298831]
[80]
Liu, J.F.; Wu, L.; Yang, L.L.; Deng, W.W.; Mao, L.; Wu, H.; Zhang, W.F.; Sun, Z.J. Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 44.
[http://dx.doi.org/10.1186/s13046-018-0713-7] [PMID: 29506555]
[81]
Allahmoradi, E.; Taghiloo, S.; Tehrani, M.; Hossein-Nattaj, H.; Janbabaei, G.; Shekarriz, R.; Asgarian-Omran, H. CD4+ T cells are exhausted and show functional defects in chronic lymphocytic leukemia. Iran. J. Immunol., 2017, 14(4), 257-269.
[PMID: 29276179]
[82]
Zahran, A.M.; Mohammed Saleh, M.F.; Sayed, M.M.; Rayan, A.; Ali, A.M.; Hetta, H.F. Up-regulation of regulatory T cells, CD200 and TIM3 expression in cytogenetically normal acute myeloid leukemia. Cancer Biomark., 2018, 22(3), 587-595.
[http://dx.doi.org/10.3233/CBM-181368] [PMID: 29843224]
[83]
Wu, J.; Lin, G.; Zhu, Y.; Zhang, H.; Shi, G.; Shen, Y.; Zhu, Y.; Dai, B.; Ye, D. Low TIM3 expression indicates poor prognosis of metastatic prostate cancer and acts as an independent predictor of castration resistant status. Sci. Rep., 2017, 7(1), 8869.
[http://dx.doi.org/10.1038/s41598-017-09484-8] [PMID: 28827755]
[84]
Takano, S.; Saito, H.; Ikeguchi, M. An increased number of PD-1+ and Tim-3+ CD8+ T cells is involved in immune evasion in gastric cancer. Surg. Today, 2016, 46(11), 1341-1347.
[http://dx.doi.org/10.1007/s00595-016-1305-9] [PMID: 26801344]
[85]
Nguyen, LT ; Ohashi, PS Clinical blockade of PD1 and LAG3-potential mechanisms of action. Nature reviews, 2015, 15, 45-56.
[http://dx.doi.org/10.1038/nri3790]
[86]
Datar, I.; Sanmamed, M.F.; Wang, J.; Henick, B.S.; Choi, J.; Badri, T.; Dong, W.; Mani, N.; Toki, M.; Mejías, L.D.; Lozano, M.D.; Perez-Gracia, J.L.; Velcheti, V.; Hellmann, M.D.; Gainor, J.F.; McEachern, K.; Jenkins, D.; Syrigos, K.; Politi, K.; Gettinger, S.; Rimm, D.L.; Herbst, R.S.; Melero, I.; Chen, L.; Schalper, K.A. Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis. Clin. Cancer Res., 2019, 25(15), 4663-4673.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4142] [PMID: 31053602]
[87]
Gao, X.; Yang, J.; He, Y.; Zhang, J. Quantitative assessment of TIM-3 polymorphisms and cancer risk in Chinese Han population. Oncotarget, 2016, 7(24), 35768-35775.
[http://dx.doi.org/10.18632/oncotarget.8157] [PMID: 27008699]
[88]
Bai, J.; Li, X.; Tong, D.; Shi, W.; Song, H.; Li, Q. T-cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and prognosis of non-small-cell lung cancer. Tumour Biol., 2013, 34(2), 805-809.
[http://dx.doi.org/10.1007/s13277-012-0610-1] [PMID: 23359271]
[89]
Tong, D.; Zhou, Y.; Chen, W.; Deng, Y.; Li, L.; Jia, Z.; Qi, D. T cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and susceptibility to pancreatic cancer. Mol. Biol. Rep., 2012, 39(11), 9941-9946.
[http://dx.doi.org/10.1007/s11033-012-1862-y] [PMID: 22733499]
[90]
Cao, B.; Zhu, L.; Zhu, S.; Li, D.; Zhang, C.; Xu, C.; Zhang, S. Genetic variations and haplotypes in TIM-3 gene and the risk of gastric cancer. Cancer Immunol. Immunother., 2010, 59(12), 1851-1857.
[http://dx.doi.org/10.1007/s00262-010-0910-5] [PMID: 20811886]
[91]
Wang, Z.; Liu, X.; Wang, X.; Chong, T.; Lin, S.; Wang, M.; Ma, X.; Liu, K.; Xu, P.; Feng, Y.; Dai, Z. Polymorphisms in TIM-3 and breast cancer susceptibility in Chinese women: A case-control study. Oncotarget, 2016, 7(28), 43703-43712.
[http://dx.doi.org/10.18632/oncotarget.9665] [PMID: 27248321]
[92]
Pu, F.; Chen, F.; Zhang, Z.; Feng, J.; Xia, P. Functional variants of TIM-3/HAVCR2 3'UTR in lymphoblastoid cell lines. Future Sci. OA, 2018, 4(5), FSO298.
[http://dx.doi.org/10.4155/fsoa-2017-0121] [PMID: 29796301]
[93]
Chen, F.; Zhang, H.; Pu, F. Association between a functional variant in RAD51 gene’s 3¢ untranslated region and its mRNA expression in lymphoblastoid cell lines. Springerplus, 2016, 5(1), 1688.
[http://dx.doi.org/10.1186/s40064-016-3339-2] [PMID: 27733989]
[94]
Li, Z.; Li, N.; Li, F.; Zhou, Z.; Sang, J.; Chen, Y.; Han, Q.; Lv, Y.; Liu, Z. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma. Medicine (Baltimore), 2016, 95(52), e5749.
[http://dx.doi.org/10.1097/MD.0000000000005749] [PMID: 28033288]
[95]
Wu, J.L.; Zhao, J.; Zhang, H.B.; Zuo, W.W.; Li, Y.; Kang, S. Genetic variants and expression of the TIM-3 gene are associated with clinical prognosis in patients with epithelial ovarian cancer. Gynecol. Oncol., 2020, 159(1), 270-276.
[http://dx.doi.org/10.1016/j.ygyno.2020.07.012] [PMID: 32694063]
[96]
Zhang, P.; Wang, Y.; Liu, X.R.; Hong, S.R.; Yao, J. Downregulated Tim-3 expression is responsible for the incidence and development of colorectal cancer. Oncol. Lett., 2018, 16(1), 1059-1066.
[http://dx.doi.org/10.3892/ol.2018.8697] [PMID: 29963183]
[97]
Piao, Y.R.; Piao, L.Z.; Zhu, L.H.; Jin, Z.H.; Dong, X.Z. Prognostic value of T cell immunoglobulin mucin-3 in prostate cancer. Asian Pac. J. Cancer Prev., 2013, 14(6), 3897-3901.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3897] [PMID: 23886204]
[98]
Yang, M.; Yu, Q.; Liu, J.; Fu, W.; Cao, Y.; Yu, L.; Shao, S.; Wang, X.; Niu, H.; Wang, Y. T-cell immunoglobulin mucin-3 expression in bladder urothelial carcinoma: Clinicopathologic correlations and association with survival. J. Surg. Oncol., 2015, 112(4), 430-435.
[http://dx.doi.org/10.1002/jso.24012] [PMID: 26265374]
[99]
Cao, Y.; Zhou, X.; Huang, X.; Li, Q.; Gao, L.; Jiang, L.; Huang, M.; Zhou, J. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS One, 2013, 8(1), e53834.
[http://dx.doi.org/10.1371/journal.pone.0053834] [PMID: 23335978]
[100]
Yan, W.; Liu, X.; Ma, H.; Zhang, H.; Song, X.; Gao, L.; Liang, X.; Ma, C. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut, 2015, 64(10), 1593-1604.
[http://dx.doi.org/10.1136/gutjnl-2014-307671] [PMID: 25608525]
[101]
Kim, H.D.; Song, G.W.; Park, S.; Jung, M.K.; Kim, M.H.; Kang, H.J.; Yoo, C.; Yi, K.; Kim, K.H.; Eo, S.; Moon, D.B.; Hong, S.M.; Ju, Y.S.; Shin, E.C.; Hwang, S. Park, SH Association Between Expression Level of PD1 by Tumor-Infiltrating CD8+ T-cells and Features of Hepatocellular Carcinoma. Gastroenterology, 2018.
[102]
Kato, R.; Yamasaki, M.; Urakawa, S.; Nishida, K.; Makino, T.; Morimoto-Okazawa, A.; Kawashima, A.; Iwahori, K.; Suzuki, S.; Ueda, R.; Mori, M.; Satoh, T.; Doki, Y.; Wada, H. Increased Tim-3+ T cells in PBMCs during nivolumab therapy correlate with responses and prognosis of advanced esophageal squamous cell carcinoma patients. Cancer Immunol. Immunother., 2018, 67(11), 1673-1683.
[http://dx.doi.org/10.1007/s00262-018-2225-x] [PMID: 30128737]
[103]
Koyama, S.; Akbay, E.A.; Li, Y.Y.; Herter-Sprie, G.S.; Buczkowski, K.A.; Richards, W.G.; Gandhi, L.; Redig, A.J.; Rodig, S.J.; Asahina, H.; Jones, R.E.; Kulkarni, M.M.; Kuraguchi, M.; Palakurthi, S.; Fecci, P.E.; Johnson, B.E.; Janne, P.A.; Engelman, J.A.; Gangadharan, S.P.; Costa, D.B.; Freeman, G.J.; Bueno, R.; Hodi, F.S.; Dranoff, G.; Wong, K.K.; Hammerman, P.S. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun., 2016, 7, 10501.
[http://dx.doi.org/10.1038/ncomms10501] [PMID: 26883990]
[104]
Shayan, G.; Srivastava, R.; Li, J.; Schmitt, N.; Kane, L.P.; Ferris, R.L. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. OncoImmunology, 2016, 6(1), e1261779.
[http://dx.doi.org/10.1080/2162402X.2016.1261779] [PMID: 28197389]
[105]
Tang, D.; Lotze, M.T. Tumor immunity times out: TIM-3 and HMGB1. Nat. Immunol., 2012, 13(9), 808-810.
[http://dx.doi.org/10.1038/ni.2396] [PMID: 22910384]
[106]
Komohara, Y.; Morita, T.; Annan, D.A.; Horlad, H.; Ohnishi, K.; Yamada, S.; Nakayama, T.; Kitada, S.; Suzu, S.; Kinoshita, I.; Dosaka-Akita, H.; Akashi, K.; Takeya, M.; Jinushi, M. The coordinated actions of TIM-3 on cancer and myeloid cells in the regulation of tumorigenicity and clinical prognosis in clear cell renal cell carcinomas. Cancer Immunol. Res., 2015, 3(9), 999-1007.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0156] [PMID: 25783986]
[107]
Yuan, J.; Jiang, B.; Zhao, H.; Huang, Q. Prognostic implication of TIM-3 in clear cell renal cell carcinoma. Neoplasma, 2014, 61(1), 35-40.
[http://dx.doi.org/10.4149/neo_2014_006] [PMID: 24195506]
[108]
Cheville, J.C.; Lohse, C.M.; Zincke, H.; Weaver, A.L.; Blute, M.L. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am. J. Surg. Pathol., 2003, 27(5), 612-624.
[http://dx.doi.org/10.1097/00000478-200305000-00005] [PMID: 12717246]
[109]
Kikushige, Y.; Shima, T.; Takayanagi, S.; Urata, S.; Miyamoto, T.; Iwasaki, H.; Takenaka, K.; Teshima, T.; Tanaka, T.; Inagaki, Y.; Akashi, K. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell, 2010, 7(6), 708-717.
[http://dx.doi.org/10.1016/j.stem.2010.11.014] [PMID: 21112565]
[110]
Jan, M.; Chao, M.P.; Cha, A.C.; Alizadeh, A.A.; Gentles, A.J.; Weissman, I.L.; Majeti, R. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 5009-5014.
[http://dx.doi.org/10.1073/pnas.1100551108] [PMID: 21383193]
[111]
de Mingo Pulido, Á.; Gardner, A.; Hiebler, S.; Soliman, H.; Rugo, H.S.; Krummel, M.F.; Coussens, L.M.; Ruffell, B. TIM-3 Regulates CD103+ Dendritic Cell Function and Response to Chemotherapy in Breast Cancer. Cancer Cell, 2018, 33(1), 60-74.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.11.019] [PMID: 29316433]
[112]
Lu, X.; Yang, L.; Yao, D.; Wu, X.; Li, J.; Liu, X.; Deng, L.; Huang, C.; Wang, Y.; Li, D.; Liu, J. Tumor antigen-specific CD8+ T cells are negatively regulated by PD-1 and Tim-3 in human gastric cancer. Cell. Immunol., 2017, 313, 43-51.
[http://dx.doi.org/10.1016/j.cellimm.2017.01.001] [PMID: 28110884]
[113]
Thommen, D.S.; Schumacher, T.N. T Cell Dysfunction in Cancer. Cancer Cell, 2018, 33(4), 547-562.
[http://dx.doi.org/10.1016/j.ccell.2018.03.012] [PMID: 29634943]
[114]
Yang, Z.Z.; Grote, D.M.; Ziesmer, S.C.; Niki, T.; Hirashima, M.; Novak, A.J.; Witzig, T.E.; Ansell, S.M. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J. Clin. Invest., 2012, 122(4), 1271-1282.
[http://dx.doi.org/10.1172/JCI59806] [PMID: 22426209]
[115]
Jones, R.B.; Ndhlovu, L.C.; Barbour, J.D.; Sheth, P.M.; Jha, A.R.; Long, B.R.; Wong, J.C.; Satkunarajah, M.; Schweneker, M.; Chapman, J.M.; Gyenes, G.; Vali, B.; Hyrcza, M.D.; Yue, F.Y.; Kovacs, C.; Sassi, A.; Loutfy, M.; Halpenny, R.; Persad, D.; Spotts, G.; Hecht, F.M.; Chun, T.W.; McCune, J.M.; Kaul, R.; Rini, J.M.; Nixon, D.F.; Ostrowski, M.A. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J. Exp. Med., 2008, 205(12), 2763-2779.
[http://dx.doi.org/10.1084/jem.20081398] [PMID: 19001139]
[116]
Friedlaender, A.; Addeo, A.; Banna, G. New emerging targets in cancer immunotherapy: the role of TIM3. ESMO Open, 2019, 4(Suppl. 3), e000497.
[http://dx.doi.org/10.1136/esmoopen-2019-000497] [PMID: 31275616]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy