Review Article

针对基孔肯雅病毒侵入:发现新的抑制剂替代品药物

卷 29, 期 4, 2022

发表于: 23 June, 2021

页: [612 - 634] 页: 23

弟呕挨: 10.2174/0929867328666210623165005

价格: $65

conference banner
摘要

基孔肯雅病毒 (CHIKV) 是导致基孔肯雅热 (CHIKF) 的甲病毒 (Togaviridae),其主要特征是严重的多关节痛,通过受感染的埃及伊蚊和伊蚊叮咬传播。白纹蚊。如今,没有获得许可的疫苗或批准的药物来专门治疗这种病毒性疾病。结构病毒蛋白参与其复制周期的关键步骤,例如病毒进入、膜融合、核衣壳组装和病毒出芽。在这种情况下,包膜 E3-E2-E1 糖蛋白复合物可以作为设计新候选药物的目标。在这篇综述中,讨论了 CHIKV 进入机制的各个方面,以提供有助于药物发现过程的见解。此外,还探索了几种天然的、基于天然的和合成的化合物,以及重新利用的药物和虚拟筛选,作为开发 CHIKV 进入抑制剂的替代方案。最后,我们对未通过计算机方法探索的抑制剂进行了补充分析。基于此,发现 Phe118、Val179 和 Lys181 是最常见的残基,分别存在于 89.6、82.7 和 93.1% 的复合物中。最后,讨论了与这些抑制剂和成熟包膜 E3-E2-E1 糖蛋白复合物相互作用相关的一些化学问题,以全世界的科学家提供数据为基础,以支持他们寻找针对这种新兴虫媒病毒的新抑制剂。

关键词: 靶点抑制剂、基孔肯雅病毒、药物化学、药物设计、再利用、天然产物、合成、虚拟筛选、分子对接、频率残基。

[1]
Weaver, S.C.; Forrester, N.L. Chikungunya: Evolutionary history and recent epidemic spread. Antiviral Res., 2015, 120, 32-39.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.016] [PMID: 25979669]
[2]
van Aalst, M.; Nelen, C.M.; Goorhuis, A.; Stijnis, C.; Grobusch, M.P. Long-term sequelae of Chikungunya virus disease: A systematic review. Travel Med. Infect. Dis., 2017, 15, 8-22.
[http://dx.doi.org/10.1016/j.tmaid.2017.01.004] [PMID: 28163198]
[3]
Thiberville, S.D.; Moyen, N.; Dupuis-Maguiraga, L.; Nougairede, A.; Gould, E.A.; Roques, P.; de Lamballerie, X. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res., 2013, 99(3), 345-370.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.009] [PMID: 23811281]
[4]
Tanabe, I.S.B.; Tanabe, E.L.L.; Santos, E.C.; Martins, W.V.; Araújo, I.M.T.C.; Cavalcante, M.C.A.; Lima, A.R.V.; Câmara, N.O.S.; Anderson, L.; Yunusov, D.; Bassi, Ê.J. Cellular and molecular immune response to Chikungunya virus infection. Front. Cell. Infect. Microbiol., 2018, 8, 345.
[http://dx.doi.org/10.3389/fcimb.2018.00345] [PMID: 30364124]
[5]
Leta, S.; Beyene, T.J.; De Clercq, E.M.; Amenu, K.; Kraemer, M.U.G.; Revie, C.W. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis., 2018, 67, 25-35.
[http://dx.doi.org/10.1016/j.ijid.2017.11.026] [PMID: 29196275]
[6]
Ross, R.W. The Newala epidemic. III. The virus: Isolation, pathogenic properties and relationship to the epidemic. J. Hyg. (Lond.), 1956, 54(2), 177-191.
[http://dx.doi.org/10.1017/S0022172400044442] [PMID: 13346078]
[7]
Powers, A.M.; Brault, A.C.; Tesh, R.B.; Weaver, S.C. Re-emergence of Chikungunya and O’nyong-nyong viruses: Evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol., 2000, 81(Pt 2), 471-479.
[PMID: 10644846]
[8]
Pyke, A.T.; Moore, P.R.; McMahon, J. New insights into Chikungunya virus emergence and spread from Southeast Asia. Emerg. Microbes Infect., 2018, 7(1), 26.
[http://dx.doi.org/10.1038/s41426-018-0024-2] [PMID: 29535302]
[9]
Wilson, M.E. Travel and the emergence of infectious diseases. Emerg. Infect. Dis., 1995, 1(2), 39-46.
[http://dx.doi.org/10.3201/eid0102.950201] [PMID: 8903157]
[10]
Yactayo, S.; Staples, J.E.; Millot, V.; Cibrelus, L.; Ramon-Pardo, P. Epidemiology of chikungunya in the americas. J. Infect. Dis., 2016, 214(Suppl. 5), S441-S445.
[http://dx.doi.org/10.1093/infdis/jiw390] [PMID: 27920170]
[11]
Brito, C.A.A. Alert: Severe cases and deaths associated with chikungunya in Brazil. Rev. Soc. Bras. Med. Trop., 2017, 50(5), 585-589.
[http://dx.doi.org/10.1590/0037-8682-0479-2016] [PMID: 29160503]
[12]
Mehta, R.; Gerardin, P.; de Brito, C.A.A.; Soares, C.N.; Ferreira, M.L.B.; Solomon, T. The neurological complications of Chikungunya virus: A systematic review. Rev. Med. Virol., 2018, 28(3)e1978
[http://dx.doi.org/10.1002/rmv.1978]
[13]
Chen, R.; Mukhopadhyay, S.; Merits, A.; Bolling, B.; Nasar, F.; Coffey, L.L.; Powers, A.; Weaver, S.C. ICTV virus taxonomy profile. Togaviridae. J. Gen. Virol., 2018, 99(6), 761-762.
[http://dx.doi.org/10.1099/jgv.0.001072] [PMID: 29745869]
[14]
Simizu, B.; Yamamoto, K.; Hashimoto, K.; Ogata, T. Structural proteins of Chikungunya virus. J. Virol., 1984, 51(1), 254-258.
[http://dx.doi.org/10.1128/JVI.51.1.254-258.1984] [PMID: 6726893]
[15]
Khan, A.H.; Morita, K.; Parquet, M.D.C.; Hasebe, F.; Mathenge, E.G.M.; Igarashi, A. Complete nucleotide sequence of Chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol., 2002, 83(Pt 12), 3075-3084.
[http://dx.doi.org/10.1099/0022-1317-83-12-3075] [PMID: 12466484]
[16]
Rupp, J.C.; Sokoloski, K.J.; Gebhart, N.N.; Hardy, R.W. Alphavirus RNA synthesis and non-structural protein functions. J. Gen. Virol., 2015, 96(9), 2483-2500.
[http://dx.doi.org/10.1099/jgv.0.000249] [PMID: 26219641]
[17]
Metz, S.W.; Pijlman, G.P. Function of Chikungunya virus structural proteins.Chikungunya virus; Okeoma, C.M., Ed.; Springer International Publishing: Cham, 2016, pp. 63-74.
[http://dx.doi.org/10.1007/978-3-319-42958-8_5]
[18]
Subudhi, B.B.; Chattopadhyay, S.; Mishra, P.; Kumar, A. Current strategies for inhibition of chikungunya infection. Viruses, 2018, 10(5), 235.
[http://dx.doi.org/10.3390/v10050235] [PMID: 29751486]
[19]
da Silva-Júnior, E.F.; Leoncini, G.O.; Rodrigues, É.E.S.; Aquino, T.M.; Araújo-Júnior, J.X. The medicinal chemistry of Chikungunya virus. Bioorg. Med. Chem., 2017, 25(16), 4219-4244.
[http://dx.doi.org/10.1016/j.bmc.2017.06.049] [PMID: 28689975]
[20]
Gigante, A.; Gómez-SanJuan, A.; Delang, L.; Li, C.; Bueno, O.; Gamo, A.M.; Priego, E.M.; Camarasa, M.J.; Jochmans, D.; Leyssen, P.; Decroly, E.; Coutard, B.; Querat, G.; Neyts, J.; Pérez-Pérez, M.J. Antiviral activity of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones against Chikungunya virus targeting the viral capping nsP1. Antiviral Res., 2017, 144, 216-222.
[http://dx.doi.org/10.1016/j.antiviral.2017.06.003] [PMID: 28619679]
[21]
Delang, L.; Li, C.; Tas, A.; Quérat, G.; Albulescu, I.C.; De Burghgraeve, T.; Guerrero, N.A.; Gigante, A.; Piorkowski, G.; Decroly, E.; Jochmans, D.; Canard, B.; Snijder, E.J.; Pérez-Pérez, M.J.; van Hemert, M.J.; Coutard, B.; Leyssen, P.; Neyts, J. The viral capping enzyme nsP1: A novel target for the inhibition of Chikungunya virus infection. Sci. Rep., 2016, 6, 31819.
[http://dx.doi.org/10.1038/srep31819] [PMID: 27545976]
[22]
Das, P.K.; Puusepp, L.; Varghese, F.S.; Utt, A.; Ahola, T.; Kananovich, D.G.; Lopp, M.; Merits, A.; Karelson, M. Design and validation of novel Chikungunya virus protease inhibitors. Antimicrob. Agents Chemother., 2016, 60(12), 7382-7395.
[http://dx.doi.org/10.1128/AAC.01421-16] [PMID: 27736770]
[23]
Kaur, P.; Thiruchelvan, M.; Lee, R.C.H.; Chen, H.; Chen, K.C.; Ng, M.L.; Chu, J.J.H. Inhibition of Chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob. Agents Chemother., 2013, 57(1), 155-167.
[http://dx.doi.org/10.1128/AAC.01467-12] [PMID: 23275491]
[24]
Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev., 1994, 58(3), 491-562.
[http://dx.doi.org/10.1128/MR.58.3.491-562.1994] [PMID: 7968923]
[25]
Lampio, A.; Kilpeläinen, I.; Pesonen, S.; Karhi, K.; Auvinen, P.; Somerharju, P.; Kääriäinen, L. Membrane binding mechanism of an RNA virus-capping enzyme. J. Biol. Chem., 2000, 275(48), 37853-37859.
[http://dx.doi.org/10.1074/jbc.M004865200] [PMID: 10984480]
[26]
Cross, R.K. Identification of a unique guanine-7-methyltransferase in Semliki Forest virus (SFV) infected cell extracts. Virology, 1983, 130(2), 452-463.
[http://dx.doi.org/10.1016/0042-6822(83)90099-5] [PMID: 6649413]
[27]
Ahola, T.; Kääriäinen, L. Reaction in alphavirus mRNA capping: Formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc. Natl. Acad. Sci. USA, 1995, 92(2), 507-511.
[http://dx.doi.org/10.1073/pnas.92.2.507] [PMID: 7831320]
[28]
Abraham, R.; Hauer, D.; McPherson, R.L.; Utt, A.; Kirby, I.T.; Cohen, M.S.; Merits, A.; Leung, A.K.L.; Griffin, D.E. ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. Proc. Natl. Acad. Sci. USA, 2018, 115(44), E10457-E10466.
[http://dx.doi.org/10.1073/pnas.1812130115] [PMID: 30322911]
[29]
Rubach, J.K.; Wasik, B.R.; Rupp, J.C.; Kuhn, R.J.; Hardy, R.W.; Smith, J.L. Characterization of purified Sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro. Virology, 2009, 384(1), 201-208.
[http://dx.doi.org/10.1016/j.virol.2008.10.030] [PMID: 19036396]
[30]
Tomar, S.; Hardy, R.W.; Smith, J.L.; Kuhn, R.J. Catalytic core of alphavirus nonstructural protein nsP4 possesses terminal adenylyltransferase activity. J. Virol., 2006, 80(20), 9962-9969.
[http://dx.doi.org/10.1128/JVI.01067-06] [PMID: 17005674]
[31]
Sun, S.; Xiang, Y.; Akahata, W.; Holdaway, H.; Pal, P.; Zhang, X.; Diamond, M.S.; Nabel, G.J.; Rossmann, M.G. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife, 2013, 2e00435
[http://dx.doi.org/10.7554/eLife.00435] [PMID: 23577234]
[32]
Lescar, J.; Roussel, A.; Wien, M.W.; Navaza, J.; Fuller, S.D.; Wengler, G.; Wengler, G.; Rey, F.A. The fusion glycoprotein shell of Semliki Forest virus: An icosahedral assembly primed for fusogenic activation at endosomal pH. Cell, 2001, 105(1), 137-148.
[http://dx.doi.org/10.1016/S0092-8674(01)00303-8] [PMID: 11301009]
[33]
Voss, J.E.; Vaney, M-C.; Duquerroy, S.; Vonrhein, C.; Girard-Blanc, C.; Crublet, E.; Thompson, A.; Bricogne, G.; Rey, F.A. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 2010, 468(7324), 709-712.
[http://dx.doi.org/10.1038/nature09555] [PMID: 21124458]
[34]
Li, L.; Jose, J.; Xiang, Y.; Kuhn, R.J.; Rossmann, M.G. Structural changes of envelope proteins during alphavirus fusion. Nature, 2010, 468(7324), 705-708.
[http://dx.doi.org/10.1038/nature09546] [PMID: 21124457]
[35]
Lee, S.; Owen, K.E.; Choi, H.K.; Lee, H.; Lu, G.; Wengler, G.; Brown, D.T.; Rossmann, M.G.; Kuhn, R.J. Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure, 1996, 4(5), 531-541.
[http://dx.doi.org/10.1016/S0969-2126(96)00059-7] [PMID: 8736552]
[36]
Sjöberg, M.; Garoff, H. Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. J. Virol., 2003, 77(6), 3441-3450.
[http://dx.doi.org/10.1128/JVI.77.6.3441-3450.2003] [PMID: 12610119]
[37]
Uchime, O.; Fields, W.; Kielian, M. The role of E3 in pH protection during alphavirus assembly and exit. J. Virol., 2013, 87(18), 10255-10262.
[http://dx.doi.org/10.1128/JVI.01507-13] [PMID: 23864626]
[38]
Linger, B.R.; Kunovska, L.; Kuhn, R.J.; Golden, B.L. Sindbis virus nucleocapsid assembly: RNA folding promotes capsid protein dimerization. RNA, 2004, 10(1), 128-138.
[http://dx.doi.org/10.1261/rna.5127104] [PMID: 14681591]
[39]
Aliperti, G.; Schlesinger, M.J. Evidence for an autoprotease activity of sindbis virus capsid protein. Virology, 1978, 90(2), 366-369.
[http://dx.doi.org/10.1016/0042-6822(78)90321-5] [PMID: 726255]
[40]
Hahn, C.S.; Strauss, J.H. Site-directed mutagenesis of the proposed catalytic amino acids of the Sindbis virus capsid protein autoprotease. J. Virol., 1990, 64(6), 3069-3073.
[http://dx.doi.org/10.1128/JVI.64.6.3069-3073.1990] [PMID: 2335827]
[41]
Liljeström, P.; Garoff, H. Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J. Virol., 1991, 65(1), 147-154.
[http://dx.doi.org/10.1128/JVI.65.1.147-154.1991] [PMID: 1985194]
[42]
Gaedigk-Nitschko, K.; Ding, M.X.; Levy, M.A.; Schlesinger, M.J. Site-directed mutations in the Sindbis virus 6K protein reveal sites for fatty acylation and the underacylated protein affects virus release and virion structure. Virology, 1990, 175(1), 282-291.
[http://dx.doi.org/10.1016/0042-6822(90)90210-I] [PMID: 2309447]
[43]
Yao, J.S.; Strauss, E.G.; Strauss, J.H. Interactions between PE2, E1, and 6K required for assembly of alphaviruses studied with chimeric viruses. J. Virol., 1996, 70(11), 7910-7920.
[http://dx.doi.org/10.1128/JVI.70.11.7910-7920.1996] [PMID: 8892914]
[44]
Loewy, A.; Smyth, J.; von Bonsdorff, C.H.; Liljeström, P.; Schlesinger, M.J. The 6-kilodalton membrane protein of Semliki Forest virus is involved in the budding process. J. Virol., 1995, 69(1), 469-475.
[http://dx.doi.org/10.1128/JVI.69.1.469-475.1995] [PMID: 7983743]
[45]
Long, K.M.; Whitmore, A.C.; Ferris, M.T.; Sempowski, G.D.; McGee, C.; Trollinger, B.; Gunn, B.; Heise, M.T. Dendritic cell immunoreceptor regulates Chikungunya virus pathogenesis in mice. J. Virol., 2013, 87(10), 5697-5706.
[http://dx.doi.org/10.1128/JVI.01611-12] [PMID: 23487448]
[46]
Klimstra, W.B.; Nangle, E.M.; Smith, M.S.; Yurochko, A.D.; Ryman, K.D. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J. Virol., 2003, 77(22), 12022-12032.
[http://dx.doi.org/10.1128/JVI.77.22.12022-12032.2003] [PMID: 14581539]
[47]
Moller-Tank, S.; Kondratowicz, A.S.; Davey, R.A.; Rennert, P.D.; Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol., 2013, 87(15), 8327-8341.
[http://dx.doi.org/10.1128/JVI.01025-13] [PMID: 23698310]
[48]
McAllister, N.; Liu, Y.; Silva, L.M.; Lentscher, A.J.; Chai, W.; Wu, N.; Griswold, K.A.; Raghunathan, K.; Vang, L.; Alexander, J.; Warfield, K.L.; Diamond, M.S.; Feizi, T.; Silva, L.A.; Dermody, T.S. Chikungunya virus strains from each genetic clade bind sulfated glycosaminoglycans as attachment factors. J. Virol., 2020, 94(24), e01500-e01520.
[http://dx.doi.org/10.1128/JVI.01500-20] [PMID: 32999033]
[49]
Holmes, A.C.; Basore, K.; Fremont, D.H.; Diamond, M.S. A molecular understanding of alphavirus entry. PLoS Pathog., 2020, 16(10)e1008876
[http://dx.doi.org/10.1371/journal.ppat.1008876] [PMID: 33091085]
[50]
Schnierle, B.S. Cellular attachment and entry factors for Chikungunya virus. Viruses, 2019, 11(11)E1078
[http://dx.doi.org/10.3390/v11111078] [PMID: 31752346]
[51]
Sahoo, B.; Chowdary, T.K. Conformational changes in Chikungunya virus E2 protein upon heparan sulfate receptor binding explain mechanism of E2-E1 dissociation during viral entry. Biosci. Rep., 2019, 39(6), 39.
[http://dx.doi.org/10.1042/BSR20191077] [PMID: 31167876]
[52]
Pirtle, E.C.; Beran, G.W. Virus survival in the environment. Rev. Sci. Tech., 1991, 10(3), 733-748.
[http://dx.doi.org/10.20506/rst.10.3.570]
[53]
Smith, T.J.; Cheng, R.H.; Olson, N.H.; Peterson, P.; Chase, E.; Kuhn, R.J.; Baker, T.S. Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. Proc. Natl. Acad. Sci. USA, 1995, 92(23), 10648-10652.
[http://dx.doi.org/10.1073/pnas.92.23.10648] [PMID: 7479858]
[54]
Duijl-richter, M.K.S. Van, ; Hoornweg, T.E.; Rodenhuiszybert, I.A.; Smit, J.M. Early events in Chikungunya virus infection—from virus cell binding to membrane fusion. 2015, 3647-3674.
[55]
Wintachai, P.; Wikan, N.; Kuadkitkan, A.; Jaimipuk, T.; Ubol, S.; Pulmanausahakul, R.; Auewarakul, P.; Kasinrerk, W.; Weng, W.Y.; Panyasrivanit, M.; Paemanee, A.; Kittisenachai, S.; Roytrakul, S.; Smith, D.R. Identification of prohibitin as a Chikungunya virus receptor protein. J. Med. Virol., 2012, 84(11), 1757-1770.
[http://dx.doi.org/10.1002/jmv.23403] [PMID: 22997079]
[56]
Zhang, R.; Kim, A.S.; Fox, J.M.; Nair, S.; Basore, K.; Klimstra, W.B.; Rimkunas, R.; Fong, R.H.; Lin, H.; Poddar, S.; Crowe, J.E., Jr; Doranz, B.J.; Fremont, D.H.; Diamond, M.S. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature, 2018, 557(7706), 570-574.
[http://dx.doi.org/10.1038/s41586-018-0121-3] [PMID: 29769725]
[57]
Hoornweg, T.E.; van Duijl-Richter, M.K.S.; Ayala Nuñez, N.V.; Albulescu, I.C.; van Hemert, M.J.; Smit, J.M. Dynamics of Chikungunya virus cell entry unraveled by single-virus tracking in living cells. J. Virol., 2016, 90(9), 4745-4756.
[http://dx.doi.org/10.1128/JVI.03184-15] [PMID: 26912616]
[58]
Bernard, E.; Solignat, M.; Gay, B.; Chazal, N.; Higgs, S.; Devaux, C.; Briant, L. Endocytosis of Chikungunya virus into mammalian cells: Role of clathrin and early endosomal compartments. PLoS One, 2010, 5(7)e11479
[http://dx.doi.org/10.1371/journal.pone.0011479] [PMID: 20628602]
[59]
Lee, C.H.R.; Mohamed Hussain, K.; Chu, J.J.H. Macropinocytosis dependent entry of Chikungunya virus into human muscle cells. PLoS Negl. Trop. Dis., 2019, 13(8)e0007610
[http://dx.doi.org/10.1371/journal.pntd.0007610] [PMID: 31449523]
[60]
Meyer, W.J.; Johnston, R.E. Structural rearrangement of infecting sindbis virions at the cell surface: Mapping of newly accessible epitopes. J. Virol., 1993, 67(9), 5117-5125.
[http://dx.doi.org/10.1128/JVI.67.9.5117-5125.1993] [PMID: 7688818]
[61]
Meyer, W.J.; Gidwitz, S.; Ayers, V.K.; Schoepp, R.J.; Johnston, R.E. Conformational alteration of Sindbis virion glycoproteins induced by heat, reducing agents, or low pH. J. Virol., 1992, 66(6), 3504-3513.
[http://dx.doi.org/10.1128/JVI.66.6.3504-3513.1992] [PMID: 1374808]
[62]
Wahlberg, J.M.; Garoff, H. Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. J. Cell Biol., 1992, 116(2), 339-348.
[http://dx.doi.org/10.1083/jcb.116.2.339] [PMID: 1370493]
[63]
Fuller, S.D.; Berriman, J.A.; Butcher, S.J.; Gowen, B.E.; Low, P.H. Low pH induces swiveling of the glycoprotein heterodimers in the Semliki Forest virus spike complex. Cell, 1995, 81(5), 715-725.
[http://dx.doi.org/10.1016/0092-8674(95)90533-2] [PMID: 7774013]
[64]
Gibbons, D.L.; Erk, I.; Reilly, B.; Navaza, J.; Kielian, M.; Rey, F.A.; Lepault, J. Visualization of the target-membrane-inserted fusion protein of Semliki Forest virus by combined electron microscopy and crystallography. Cell, 2003, 114(5), 573-583.
[http://dx.doi.org/10.1016/S0092-8674(03)00683-4] [PMID: 13678581]
[65]
Kielian, M.; Rey, F.A. Virus membrane-fusion proteins: More than one way to make a hairpin. Nat. Rev. Microbiol., 2006, 4(1), 67-76.
[http://dx.doi.org/10.1038/nrmicro1326] [PMID: 16357862]
[66]
Marsh, M.; Helenius, A. Virus entry: Open sesame. Cell, 2006, 124(4), 729-740.
[http://dx.doi.org/10.1016/j.cell.2006.02.007] [PMID: 16497584]
[67]
Raghavendhar, S.; Tripati, P.K.; Ray, P.; Patel, A.K. Evaluation of medicinal herbs for anti-chikv activity. Virology, 2019, 533, 45-49.
[http://dx.doi.org/10.1016/j.virol.2019.04.007] [PMID: 31082733]
[68]
K, S.; Purushothaman, I.; S, R. Spectral characterisation, antiviral activities, in silico ADMET and molecular docking of the compounds isolated from Tectona grandis to Chikungunya virus. Biomed. Pharmacother., 2017, 87, 302-310.
[http://dx.doi.org/10.1016/j.biopha.2016.12.069] [PMID: 28063412]
[69]
Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955.
[http://dx.doi.org/10.1002/hep.24610] [PMID: 21837753]
[70]
Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The green tea molecule EGCG inhibits Zika virus entry. Virology, 2016, 496, 215-218.
[http://dx.doi.org/10.1016/j.virol.2016.06.012] [PMID: 27344138]
[71]
Weber, C.; Sliva, K.; von Rhein, C.; Kümmerer, B.M.; Schnierle, B.S. The green tea catechin, epigallocatechin gallate inhibits Chikungunya virus infection. Antiviral Res., 2015, 113, 1-3.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.001] [PMID: 25446334]
[72]
Lu, J.W.; Hsieh, P.S.; Lin, C.C.; Hu, M.K.; Huang, S.M.; Wang, Y.M.; Liang, C.Y.; Gong, Z.; Ho, Y.J. Synergistic effects of combination treatment using EGCG and suramin against the Chikungunya virus. Biochem. Biophys. Res. Commun., 2017, 491(3), 595-602.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.157] [PMID: 28760340]
[73]
von Rhein, C.; Weidner, T.; Henß, L.; Martin, J.; Weber, C.; Sliva, K.; Schnierle, B.S. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro. Antiviral Res., 2016, 125, 51-57.
[http://dx.doi.org/10.1016/j.antiviral.2015.11.007] [PMID: 26611396]
[74]
Mounce, B.C.; Cesaro, T.; Carrau, L.; Vallet, T.; Vignuzzi, M. Curcumin inhibits Zika and Chikungunya virus infection by inhibiting cell binding. Antiviral Res., 2017, 142, 148-157.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[75]
Lani, R.; Hassandarvish, P.; Shu, M.H.; Phoon, W.H.; Chu, J.J.H.; Higgs, S.; Vanlandingham, D.; Abu Bakar, S.; Zandi, K. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res., 2016, 133, 50-61.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.009] [PMID: 27460167]
[76]
Oo, A.; Rausalu, K.; Merits, A.; Higgs, S.; Vanlandingham, D.; Bakar, S.A.; Zandi, K. Deciphering the potential of baicalin as an antiviral agent for Chikungunya virus infection. Antiviral Res., 2018, 150, 101-111.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.012] [PMID: 29269135]
[77]
Wintachai, P.; Thuaud, F.; Basmadjian, C.; Roytrakul, S.; Ubol, S.; Désaubry, L.; Smith, D.R. Assessment of flavaglines as potential Chikungunya virus entry inhibitors. Microbiol. Immunol., 2015, 59(3), 129-141.
[http://dx.doi.org/10.1111/1348-0421.12230] [PMID: 25643977]
[78]
Kaur, R. Neetu; Mudgal, R.; Jose, J.; Kumar, P.; Tomar, S. Glycan-dependent chikungunya viral infection divulged by antiviral activity of NAG specific chi-like lectin. Virology, 2019, 526, 91-98.
[http://dx.doi.org/10.1016/j.virol.2018.10.009] [PMID: 30388630]
[79]
Albulescu, I.C.; van Hoolwerff, M.; Wolters, L.A.; Bottaro, E.; Nastruzzi, C.; Yang, S.C.; Tsay, S.C.; Hwu, J.R.; Snijder, E.J.; van Hemert, M.J. Suramin inhibits Chikungunya virus replication through multiple mechanisms. Antiviral Res., 2015, 121, 39-46.
[http://dx.doi.org/10.1016/j.antiviral.2015.06.013] [PMID: 26112648]
[80]
Kuo, S.C.; Wang, Y.M.; Ho, Y.J.; Chang, T.Y.; Lai, Z.Z.; Tsui, P.Y.; Wu, T.Y.; Lin, C.C. Suramin treatment reduces chikungunya pathogenesis in mice. Antiviral Res., 2016, 134, 89-96.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.025] [PMID: 27577529]
[81]
D’hooghe, M.; Mollet, K.; De Vreese, R.; Jonckers, T.H.M.; Dams, G.; De Kimpe, N. Design, synthesis, and antiviral evaluation of purine-β-lactam and purine-aminopropanol hybrids. J. Med. Chem., 2012, 55(11), 5637-5641.
[http://dx.doi.org/10.1021/jm300383k] [PMID: 22519297]
[82]
Ching, K.C.; Kam, Y.W.; Merits, A.; Ng, L.F.P.; Chai, C.L.L. Trisubstituted thieno[3,2-b]pyrrole 5-carboxamides as potent inhibitors of alphaviruses. J. Med. Chem., 2015, 58(23), 9196-9213.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01047] [PMID: 26540338]
[83]
Passos, G.F.S.; Gomes, M.G.M.; Aquino, T.M.; Araújo-Júnior, J.X.; Souza, S.J.M.; Cavalcante, J.P.M.; Santos, E.C.D.; Bassi, Ê.J.; Silva-Júnior, E.F.D. Computer-aided design, synthesis, and antiviral evaluation of novel acrylamides as potential inhibitors of e3-e2-e1 glycoproteins complex from Chikungunya virus. Pharmaceuticals (Basel), 2020, 13(7), 141.
[http://dx.doi.org/10.3390/ph13070141] [PMID: 32629969]
[84]
Wang, Y.M.; Lu, J.W.; Lin, C.C.; Chin, Y.F.; Wu, T.Y.; Lin, L.I.; Lai, Z.Z.; Kuo, S.C.; Ho, Y.J. Antiviral activities of niclosamide and nitazoxanide against Chikungunya virus entry and transmission. Antiviral Res., 2016, 135, 81-90.
[http://dx.doi.org/10.1016/j.antiviral.2016.10.003] [PMID: 27742486]
[85]
Delogu, I.; Pastorino, B.; Baronti, C.; Nougairède, A.; Bonnet, E.; de Lamballerie, X. in vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Antiviral Res., 2011, 90(3), 99-107.
[http://dx.doi.org/10.1016/j.antiviral.2011.03.182] [PMID: 21440006]
[86]
Khan, M.; Santhosh, S.R.; Tiwari, M.; Lakshmana Rao, P.V.; Parida, M. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells. J. Med. Virol., 2010, 82(5), 817-824.
[http://dx.doi.org/10.1002/jmv.21663] [PMID: 20336760]
[87]
Rothan, H.A.; Bahrani, H.; Abdulrahman, A.Y.; Mohamed, Z.; Teoh, T.C.; Othman, S.; Rashid, N.N.; Rahman, N.A.; Yusof, R. Mefenamic acid in combination with ribavirin shows significant effects in reducing Chikungunya virus infection in vitro and in vivo. Antiviral Res., 2016, 127, 50-56.
[http://dx.doi.org/10.1016/j.antiviral.2016.01.006] [PMID: 26794398]
[88]
Varghese, F.S.; Rausalu, K.; Hakanen, M.; Saul, S.; Kümmerer, B.M.; Susi, P.; Merits, A.; Ahola, T. Obatoclax inhibits alphavirus membrane fusion by neutralizing the acidic environment of endocytic compartments. Antimicrob. Agents Chemother., 2017, 61(3), 61.
[http://dx.doi.org/10.1128/AAC.02227-16] [PMID: 27993855]
[89]
Rashad, A.A.; Keller, P.A. Structure based design towards the identification of novel binding sites and inhibitors for the Chikungunya virus envelope proteins. J. Mol. Graph. Model., 2013, 44, 241-252.
[http://dx.doi.org/10.1016/j.jmgm.2013.07.001] [PMID: 23911992]
[90]
Millies, B.; von Hammerstein, F.; Gellert, A.; Hammerschmidt, S.; Barthels, F.; Göppel, U.; Immerheiser, M.; Elgner, F.; Jung, N.; Basic, M.; Kersten, C.; Kiefer, W.; Bodem, J.; Hildt, E.; Windbergs, M.; Hellmich, U.A.; Schirmeister, T. Proline-based allosteric inhibitors of zika and dengue virus ns2b/ns3 proteases. J. Med. Chem., 2019, 62(24), 11359-11382.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01697] [PMID: 31769670]
[91]
Kovacikova, K.; van Hemert, M.J. Small-molecule inhibitors of Chikungunya virus: Mechanisms of action and antiviral drug resistance. Antimicrob. Agents Chemother., 2020, 64(12), 64.
[http://dx.doi.org/10.1128/AAC.01788-20] [PMID: 32928738]
[92]
Agarwal, G.; Gupta, S.; Gabrani, R.; Gupta, A.; Chaudhary, V.K.; Gupta, V. Virtual screening of inhibitors against envelope glycoprotein of Chikungunya virus: A drug repositioning approach. Bioinformation, 2019, 15(6), 439-447.
[http://dx.doi.org/10.6026/97320630015439] [PMID: 31312082]
[93]
Vora, J.; Patel, S.; Sinha, S.; Sharma, S.; Srivastava, A.; Chhabria, M.; Shrivastava, N. Structure based virtual screening, 3d-qsar, molecular dynamics and admet studies for selection of natural inhibitors against structural and non-structural targets of chikungunya. J. Biomol. Struct. Dyn., 2019, 37(12), 3150-3161.
[http://dx.doi.org/10.1080/07391102.2018.1509732] [PMID: 30114965]
[94]
Montes-Grajales, D.; Puerta-Guardo, H.; Espinosa, D.A.; Harris, E.; Caicedo-Torres, W.; Olivero-Verbel, J.; Martínez-Romero, E. in silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res., 2020, 173104668
[http://dx.doi.org/10.1016/j.antiviral.2019.104668] [PMID: 31786251]
[95]
Silva-Junior, E.F.; Barcellos Franca, P.H.; Quintans-Junior, L.J.; Mendonca-Junior, F.J.B.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Dynamic simulation, docking and dft studies applied to a set of anti-acetylcholinesterase inhibitors in the enzyme β-secretase (BACE-1): An important therapeutic target in alzheimer’s disease. Curr. Comput. Aided. Drug Des, 2017, 13(4), 266-274.
[http://dx.doi.org/10.2174/1573409913666170406150905] [PMID: 28382866]
[96]
Santana, C.C.; Silva-Júnior, E.F.; Santos, J.C.N.; Rodrigues, É.E.D.S.; da Silva, I.M.; Araújo-Júnior, J.X.; do Nascimento, T.G.; Oliveira Barbosa, L.A.; Dornelas, C.B.; Figueiredo, I.M.; Santos, J.C.C.; Grillo, L.A.M. Evaluation of guanylhydrazone derivatives as inhibitors of Candida rugosa digestive lipase: Biological, biophysical, theoretical studies and biotechnological application. Bioorg. Chem., 2019, 87, 169-180.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.030] [PMID: 30889500]
[97]
Silva, M.M.; Savariz, F.C.; Silva, E.F.; De Aquino, T.M.; Sarragiotto, M.H.; Santos, J.C.C.; Figueiredo, I.M.; Silva-Júnior, E.F.; de Aquino, T.M.; Sarragiotto, M.H.; Santos, J.C.C.; Figueiredo, I.M. Interaction of β-carbolines with DNA: Spectroscopic studies, correlation with biological activity and molecular docking. J. Braz. Chem. Soc., 2016, 27, 1558-1568.
[http://dx.doi.org/10.5935/0103-5053.20160035]
[98]
Dantas, N.; de Aquino, T.M.T.M.; de Araújo-Júnior, J.X.J.X.; da Silva-Júnior, E.; Gomes, E.A.E.A.; Gomes, A.A.S.; Siqueira-Júnior, J.P.J.P.; Mendonça, Junior F.J.B. Aminoguanidine hydrazones (AGH’s) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump. Chem. Biol. Interact., 2018, 280, 8-14.
[http://dx.doi.org/10.1016/j.cbi.2017.12.009] [PMID: 29208359]
[99]
Marques, R.A.; Gomes, A.O.C.V.; de Brito, M.V.; dos Santos, A.L.P.; da Silva, G.S.; de Lima, L.B.; Nunes, F.M.; de Mattos, M.C.; de Oliveira, F.C.E.; do Ó Pessoa, C.; de Moraes, M.O.; de Fátima, Â.; Franco, L.L.; Silva, M.D.M.; Dantas, M.D.D.A.; Santos, J.C.C.; Figueiredo, I.M.; da Silva-Júnior, E.F.; de Aquino, T.M.; de Araújo-Júnior, J.X.; de Oliveira, M.C.F.; Leslie Gunatilaka, A.A. Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of annonalide with dna. J. Photochem. Photobiol. Bol. Biol., 2018, 179, 156-166.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.01.016] [PMID: 29413989]
[100]
de M. Silva, M.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Soares, M.B.P.; da C. Pereira, A.L.; de L. Serafim, V.; Mendonça-Júnior, F.J.B.; do Carmo A. de Lima, M.; de Moura, E.F.; de Araújo-Júnior, J.X.; de A. Dantas, M.D.; de O. O. Nascimento, E.; Maciel, T.M.S.; de Aquino, T.M.; Figueiredo, I.M.; Santos, J.C.C. Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: Proposing a possible mechanism of action. J. Photochem. Photobiol. Bol. Biol., 2018, 189, 165-175.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.016] [PMID: 30366283]
[101]
Roque Marques, K.M.; do Desterro, M.R.; de Arruda, S.M.; de Araújo Neto, L.N.; do Carmo Alves de Lima, M.; de Almeida, S.M.V.; da Silva, E.C.D.; de Aquino, T.M.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X. de M Silva, M.; de A Dantas, M.D.; Santos, J.C.C.; Figueiredo, I.M.; Bazin, M.A.; Marchand, P.; da Silva, T.G.; Mendonça Junior, F.J.B. 5-nitro-thiophene-thiosemicarbazone derivatives present antitumor activity mediated by apoptosis and dna intercalation. Curr. Top. Med. Chem., 2019, 19(13), 1075-1091.
[http://dx.doi.org/10.2174/1568026619666190621120304] [PMID: 31223089]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy