Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Natural-Derived Molecules as a Potential Adjuvant in Chemotherapy: Normal Cell Protectors and Cancer Cell Sensitizers

Author(s): Rajib Hossain, Divya Jain, Rasel A. Khan, Muhammad T. Islam*, Mohammad S. Mubarak* and Abu Saim Mohammad Saikat

Volume 22, Issue 5, 2022

Published on: 03 January, 2022

Page: [836 - 850] Pages: 15

DOI: 10.2174/1871520621666210623104227

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Cancer is a global threat to humans and a leading cause of death worldwide. Cancer treatment includes, among other things, the use of chemotherapeutic agents, compounds that are vital for treating and preventing cancer. However, chemotherapeutic agents produce oxidative stress along with other side effects that would affect the human body.

Objective: The aim of the study was to reduce the oxidative stress of chemotherapeutic agents in cancer and normal cells by naturally derived compounds with anti-cancer properties, and protect normal cells from the oxidation process. Therefore, the need to develop more potent chemotherapeutics with fewer side effects has become increasingly important.

Methods: Recent literature dealing with the antioxidant and anticancer activities of the naturally derived compounds, morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin, has been surveyed and examined in this review. For this, data were gathered from different search engines, including Google Scholar, ScienceDirect, PubMed, Scopus, Web of Science, Scopus, and Scifinder, among others. Additionally, several patent offices such as WIPO, CIPO, and USPTO were consulted to obtain published articles related to these compounds.

Result: Numerous plants contain flavonoids and polyphenolic compounds, such as morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin, which exhibit antioxidant, anti-inflammatory, and anti-carcinogenic actions via several mechanisms. These compounds act as sensitizers of cancer cells and protector of healthy cells. Moreover, these compounds can reduce oxidative stress, which is accelerated by chemotherapeutics, and exhibit a potent anticancer effect on cancer cells.

Conclusion: Based on these findings, more research is recommended to explore and evaluate such flavonoids and polyphenolic compounds.

Keywords: Cancer cell therapy, flavonoids, polyphenolic compounds, natural compounds, normal cell, oxidative stress, sensitizer cells, protector cells.

Graphical Abstract
[1]
Seyed, M.A.; Jantan, I.; Bukhari, S.N.A.; Vijayaraghavan, K. A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem., 2016, 64(4), 725-737.
[http://dx.doi.org/10.1021/acs.jafc.5b05993] [PMID: 26758628]
[2]
Mathur, P.; Sathishkumar, K.; Chaturvedi, M.; Das, P.; Sudarshan, K.L.; Santhappan, S.; Nallasamy, V.; John, A.; Narasimhan, S.; Roselind, F.S. Cancer statistics, 2020: Report from national cancer registry program, India. JCO Glob Oncol., 2020, 6, 1063-1075.
[http://dx.doi.org/10.1200/GO.20.00122] [PMID: 32673076]
[3]
Jing, P.; Bomser, J.A.; Schwartz, S.J.; He, J.; Magnuson, B.A.; Giusti, M.M. Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J. Agric. Food Chem., 2008, 56(20), 9391-9398.
[http://dx.doi.org/10.1021/jf8005917] [PMID: 18800807]
[4]
Bawadood, A.S.; Al-Abbasi, F.A.; Anwar, F.; El-Halawany, A.M.; Al-Abd, A.M. 6-Shogaol suppresses the growth of breast cancer cells by inducing apoptosis and suppressing autophagy via targeting notch signaling pathway. Biomed. Pharmacother., 2020, 128(110302), 110302.
[http://dx.doi.org/10.1016/j.biopha.2020.110302] [PMID: 32505819]
[5]
Yeh, C-T.; Yen, G-C. Induction of apoptosis by the anthocyanidins through regulation of bcl-2 gene and activation of c-jun n-terminal kinase cascade in hepatoma cells. J. Agric. Food Chem., 2005, 53(5), 1740-1749.
[http://dx.doi.org/10.1021/jf048955e] [PMID: 15740068]
[6]
Bhat, T.A.; Nambiar, D.; Tailor, D.; Pal, A.; Agarwal, R.; Singh, R.P. Acacetin inhibits in vitro and in vivo angiogenesis and downregulates Stat signaling and VEGF expression. Cancer Prev. Res. (Phila.), 2013, 6(10), 1128-1139.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0209] [PMID: 23943785]
[7]
Li, Y.; Jia, S.; Dai, W. Fisetin modulates human oral squamous cell carcinoma proliferation by blocking PAK4 signaling pathways. Drug Des. Devel. Ther., 2020, 14, 773-782.
[http://dx.doi.org/10.2147/DDDT.S229270] [PMID: 32158195]
[8]
Huang, W.; Liang, Y.; Chung, H.Y.; Wang, G.; Huang, J.J.; Li, Y. Cyperenoic acid, a sesquiterpene derivative from Croton crassifolius, inhibits tumor growth through anti-angiogenesis by attenuating VEGFR2 signal pathway in breast cancer. Phytomed., 2020, 76, 153253.
[http://dx.doi.org/10.1016/j.phymed.2020.153253] [PMID: 32531699]
[9]
Chaudhary, S.C.; Alam, M.S.; Siddiqui, M.S.; Athar, M. Chemopreventive effect of farnesol on DMBA/TPA-induced skin tumorigenesis: Involvement of inflammation, Ras-ERK pathway and apoptosis. Life Sci., 2009, 85(5-6), 196-205.
[http://dx.doi.org/10.1016/j.lfs.2009.05.008] [PMID: 19470390]
[10]
Hernández-Vázquez, J.M.V.; López-Muñoz, H.; Escobar-Sánchez, M.L.; Flores-Guzmán, F.; Weiss-Steider, B.; Hilario-Martínez, J.C.; Sandoval-Ramírez, J.; Fernández-Herrera, M.A.; Sánchez Sánchez, L. Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. Eur. J. Pharmacol., 2020, 871(172942), 172942.
[http://dx.doi.org/10.1016/j.ejphar.2020.172942] [PMID: 31972180]
[11]
Genovese, S.; Epifano, F.; Preziuso, F.; Slater, J.; Nangia-Makker, P.; Majumdar, A.P.N.; Fiorito, S. Gercumin synergizes the action of 5-fluorouracil and oxaliplatin against chemoresistant human cancer colon cells. Biochem. Biophys. Res. Commun., 2020, 522(1), 95-99.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.068] [PMID: 31740005]
[12]
Sakakibara, K.; Tsujioka, T.; Kida, J-I.; Kurozumi, N.; Nakahara, T.; Suemori, S-I.; Kitanaka, A.; Arao, Y.; Tohyama, K. Binimetinib, a novel MEK1/2 inhibitor, exerts anti-leukemic effects under inactive status of PI3Kinase/Akt pathway. Int. J. Hematol., 2019, 110(2), 213-227.
[http://dx.doi.org/10.1007/s12185-019-02667-1] [PMID: 31129802]
[13]
Ghosh, N.; Hossain, U.; Mandal, A.; Sil, P.C. The Wnt signaling pathway: A potential therapeutic target against cancer. Ann. N. Y. Acad. Sci., 2019, 1443(1), 54-74.
[http://dx.doi.org/10.1111/nyas.14027] [PMID: 31017675]
[14]
Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res., 2010, 16(11), 2927-2931.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2329] [PMID: 20484021]
[15]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[16]
Agani, F.; Jiang, B-H. Oxygen-independent regulation of HIF-1: Novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer Drug Targets, 2013, 13(3), 245-251.
[http://dx.doi.org/10.2174/1568009611313030003] [PMID: 23297826]
[17]
Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 979-987.
[http://dx.doi.org/10.1038/nrd2656] [PMID: 19043449]
[18]
Leinonen, H.M.; Kansanen, E.; Pölönen, P.; Heinäniemi, M.; Levonen, A-L. Role of the Keap1-Nrf2 pathway in cancer. Adv. Cancer Res., 2014, 122, 281-320.
[http://dx.doi.org/10.1016/B978-0-12-420117-0.00008-6] [PMID: 24974185]
[19]
Liu, H.; Lv, L.; Yang, K. Chemotherapy targeting cancer stem cells. Am. J. Cancer Res., 2015, 5(3), 880-893.
[PMID: 26045975]
[20]
Conklin, K.A. Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness. Integr. Cancer Ther., 2004, 3(4), 294-300.
[http://dx.doi.org/10.1177/1534735404270335] [PMID: 15523100]
[21]
Angsutararux, P.; Luanpitpong, S.; Issaragrisil, S. Chemotherapy-induced cardiotoxicity: Overview of the roles of oxidative stress. Oxid. Med. Cell. Longev., 2015, 2015, 795602.
[http://dx.doi.org/10.1155/2015/795602] [PMID: 26491536]
[22]
Khan, R.; Khan, A.Q.; Qamar, W.; Lateef, A.; Tahir, M.; Rehman, M.U.; Ali, F.; Sultana, S. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53. Toxicol. Appl. Pharmacol., 2012, 258(3), 315-329. a
[http://dx.doi.org/10.1016/j.taap.2011.11.013] [PMID: 22155348]
[23]
Khan, R.; Khan, A.Q.; Qamar, W.; Lateef, A.; Ali, F.; Rehman, M.U.; Tahir, M.; Sharma, S.; Sultana, S. Chrysin abrogates cisplatin-induced oxidative stress, p53 expression, goblet cell disintegration and apoptotic responses in the jejunum of Wistar rats. Br. J. Nutr., 2012, 108(9), 1574-1585. b
[http://dx.doi.org/10.1017/S0007114511007239] [PMID: 22309980]
[24]
Rehman, M.U.; Rather, I.A. Myricetin abrogates cisplatin-induced oxidative stress, inflammatory response, and goblet cell disintegration in colon of Wistar rats. Plants (Basel), 2019, 9(1), 28.
[http://dx.doi.org/10.3390/plants9010028] [PMID: 31878169]
[25]
Pezzuto, J.M. Plant-derived anticancer agents. Biochem. Pharmacol., 1997, 53(2), 121-133.
[http://dx.doi.org/10.1016/S0006-2952(96)00654-5] [PMID: 9037244]
[26]
Uzoigwe, J.; Sauter, E.R. Cancer prevention and treatment using combination therapy with plant- and animal-derived compounds. Expert Rev. Clin. Pharmacol., 2012, 5(6), 701-709.
[http://dx.doi.org/10.1586/ecp.12.62] [PMID: 23234327]
[27]
Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342.
[PMID: 15713904]
[28]
Sithranga Boopathy, N.; Kathiresan, K. Anticancer drugs from marine flora: An overview. J. Oncol., 2010, 2010, 214186.
[http://dx.doi.org/10.1155/2010/214186] [PMID: 21461373]
[29]
Newman, D.J.; Cragg, G.M. Microbial antitumor drugs: Natural products of microbial origin as anticancer agents. Curr. Opin. Investig. Drugs, 2009, 10(12), 1280-1296.
[PMID: 19943200]
[30]
Agrawal, A.D. Pharmacological activities of flavonoids: A review. Int. J. Pharm. Sci. Nanotechnol., 2011, 4(2), 1394-1398.
[31]
Gao, K.; Henning, S.M.; Niu, Y.; Youssefian, A.A.; Seeram, N.P.; Xu, A.; Heber, D. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem., 2006, 17(2), 89-95.
[http://dx.doi.org/10.1016/j.jnutbio.2005.05.009] [PMID: 16111881]
[32]
Wang, L.; Chen, N.; Cheng, H. Fisetin inhibits vascular endothelial growth factor-induced angiogenesis in retinoblastoma cells. Oncol. Lett., 2020, 20(2), 1239-1244.
[http://dx.doi.org/10.3892/ol.2020.11679] [PMID: 32724364]
[33]
Lee, J-W.; Choi, H.J.; Kim, E-J.; Hwang, W.Y.; Jung, M-H.; Kim, K.S. Fisetin induces apoptosis in uterine leiomyomas through multiple pathways. Sci. Rep., 2020, 10(1), 7993.
[http://dx.doi.org/10.1038/s41598-020-64871-y] [PMID: 32409692]
[34]
Rashid, S.; Ali, N.; Nafees, S.; Hasan, S.K.; Sultana, S. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem. Toxicol., 2014, 66, 185-193.
[http://dx.doi.org/10.1016/j.fct.2014.01.026] [PMID: 24486618]
[35]
Finaud, J.; Scislowski, V.; Lac, G.; Durand, D.; Vidalin, H.; Robert, A.; Filaire, E. Antioxidant status and oxidative stress in professional rugby players: Evolution throughout a season. Int. J. Sports Med., 2006, 27(2), 87-93.
[http://dx.doi.org/10.1055/s-2005-837489] [PMID: 16475052]
[36]
Matés, J.M.; Pérez-Gómez, C.; Núñez de Castro, I. Antioxidant enzymes and human diseases. Clin. Biochem., 1999, 32(8), 595-603.
[http://dx.doi.org/10.1016/S0009-9120(99)00075-2] [PMID: 10638941]
[37]
Bucioli, S.A.; de Abreu, L.C.; Valenti, V.E.; Leone, C.; Vannucchi, H. Effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress. BMC Complement. Altern. Med., 2011, 11(1), 133.
[http://dx.doi.org/10.1186/1472-6882-11-133] [PMID: 22185374]
[38]
Andrei, S.; Pintea, A.; Bunea, A.; Groza, I.; Bogdan, L.; Ciupe, S.; Crainic, D. Non-enzymatic antioxidants concentration and lipids peroxidation level in milk from cows with subclinical mastitis. Bull. Univ. Agric. Sci. Vet. Med., 2009, 66(1), 196-201.
[39]
Shukla, A.; Rasik, A.M.; Patnaik, G.K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res., 1997, 26(2), 93-101.
[http://dx.doi.org/10.3109/10715769709097788] [PMID: 9257121]
[40]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[41]
Soga, M.; Matsuzawa, A.; Ichijo, H. Oxidative stress-induced diseases via the ask1 signaling pathway. Int. J. Cell Biol., 2012, 2012, 439587.
[http://dx.doi.org/10.1155/2012/439587] [PMID: 22654913]
[42]
Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol., 2014, 2, 289-295.
[http://dx.doi.org/10.1016/j.redox.2014.01.006] [PMID: 24494204]
[43]
Müller, I.; Niethammer, D.; Bruchelt, G. Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity. Int. J. Mol. Med., 1998, 1(2), 491-494.
[http://dx.doi.org/10.3892/ijmm.1.2.491] [PMID: 9852255]
[44]
Sayed-Ahmed, M.M.; Mansour, H.H.; Gharib, O.A.; Hafez, H.F. Acetyl-L-carnitine modulates bleomycin-induced oxidative stress and energy depletion in lung tissues. J. Egypt. Natl. Canc. Inst., 2004, 16(4), 237-243.
[PMID: 16116501]
[45]
Mhaidat, N.M.; Ali, R.M.; Shotar, A.M.; Alkaraki, A.K. Antioxidant activity of simvastatin prevents ifosfamide-induced nephrotoxicity. Pak. J. Pharm. Sci., 2016, 29(2), 433-437.
[PMID: 27087071]
[46]
Abraham, P.; Kolli, V.K.; Rabi, S. Melatonin attenuates methotrexate-induced oxidative stress and renal damage in rats. Cell Biochem. Funct., 2010, 28(5), 426-433.
[http://dx.doi.org/10.1002/cbf.1676] [PMID: 20589739]
[47]
Waly, M.I.; Al Moundhri, M.S.; Ali, B.H. Effect of curcumin on cisplatin- and oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293 cells. Ren. Fail., 2011, 33(5), 518-523.
[http://dx.doi.org/10.3109/0886022X.2011.577546] [PMID: 21574897]
[48]
Di Cesare Mannelli, L.; Zanardelli, M.; Failli, P.; Ghelardini, C. Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: Could it correlate with in vivo neuropathy? Free Radic. Biol. Med., 2013, 61, 143-150.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.019] [PMID: 23548635]
[49]
Sarszegi, Z.; Bognar, E.; Gaszner, B.; Kónyi, A.; Gallyas, F., Jr; Sumegi, B.; Berente, Z. BGP-15, a PARP-inhibitor, prevents imatinib-induced cardiotoxicity by activating Akt and suppressing JNK and p38 MAP kinases. Mol. Cell. Biochem., 2012, 365(1-2), 129-137.
[http://dx.doi.org/10.1007/s11010-012-1252-8] [PMID: 22350755]
[50]
El-Khouly, D.; El-Bakly, W.M.; Awad, A.S.; El-Mesallamy, H.O.; El-Demerdash, E. Thymoquinone blocks lung injury and fibrosis by attenuating bleomycin-induced oxidative stress and activation of nuclear factor Kappa-B in rats. Toxicol., 2012, 302(2-3), 106-113.
[http://dx.doi.org/10.1016/j.tox.2012.09.001] [PMID: 22982510]
[51]
Stagos, D.; Kouris, S.; Kouretas, D. Plant phenolics protect from bleomycin-induced oxidative stress and mutagenicity in Salmonella typhimurium TA102. Anticancer Res., 2004, 24(2B), 743-745.
[PMID: 15161021]
[52]
Cort, A.; Ozdemir, E.; Timur, M.; Ozben, T. Effects of N-acetyl-L-cysteine on bleomycin induced oxidative stress in malignant testicular germ cell tumors. Biochimie, 2012, 94(12), 2734-2739.
[http://dx.doi.org/10.1016/j.biochi.2012.08.015] [PMID: 22940535]
[53]
Liu, R.; Chen, H.; Bai, H.; Zhang, W.; Wang, X.; Qin, X.; Zhang, X.; Li, W.; Liang, X.; Hai, C. Suppression of nuclear factor erythroid 2-related factor 2 via extracellular signal-regulated kinase contributes to bleomycin-induced oxidative stress and fibrogenesis. Toxicol. Lett., 2013, 220(1), 15-25.
[http://dx.doi.org/10.1016/j.toxlet.2013.03.034] [PMID: 23570914]
[54]
Olayinka, E.T.; Ore, A.; Adeyemo, O.A.; Ola, O.S.; Olotu, O.O.; Echebiri, R.C. Quercetin, a flavonoid antioxidant, ameliorated procarbazine-induced oxidative damage to murine tissues. Antioxidants, 2015, 4(2), 304-321.
[http://dx.doi.org/10.3390/antiox4020304] [PMID: 26783707]
[55]
Olayinka, E.T.; Ore, A.; Adeyemo, O.A.; Ola, O.S. The role of flavonoid antioxidant, morin in improving procarbazine-induced oxidative stress on testicular function in rat. Porto Biomed J, 2018, 4(1), e28.
[http://dx.doi.org/10.1016/j.pbj.0000000000000028] [PMID: 31595255]
[56]
Manda, K.; Bhatia, A.L. Prophylactic action of melatonin against cyclophosphamide-induced oxidative stress in mice. Cell Biol. Toxicol., 2003, 19(6), 367-372.
[http://dx.doi.org/10.1023/B:CBTO.0000013342.17370.16] [PMID: 15015761]
[57]
Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFκB/MAPK pathway. Chem. Biol. Interact., 2015, 231, 98-107.
[http://dx.doi.org/10.1016/j.cbi.2015.02.021] [PMID: 25753322]
[58]
Spector, A. Review: Oxidative stress and disease. J. Ocul. Pharmacol. Ther., 2000, 16(2), 193-201.
[http://dx.doi.org/10.1089/jop.2000.16.193] [PMID: 10803430]
[59]
Da Pozzo, E.; De Leo, M.; Faraone, I.; Milella, L.; Cavallini, C.; Piragine, E.; Testai, L.; Calderone, V.; Pistelli, L.; Braca, A.; Martini, C. Antioxidant and antisenescence effects of bergamot juice. Oxid. Med. Cell. Longev., 2018, 2018, 9395804.
[http://dx.doi.org/10.1155/2018/9395804] [PMID: 30116497]
[60]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[61]
Lee, M.H.; Cha, H.J.; Choi, E.O.; Han, M.H.; Kim, S.O.; Kim, G.Y.; Hong, S.H.; Park, C.; Moon, S.K.; Jeong, S.J.; Jeong, M.J.; Kim, W.J.; Choi, Y.H. Antioxidant and cytoprotective effects of morin against hydrogen peroxide-induced oxidative stress are associated with the induction of Nrf-2 mediated HO-1 expression in V79-4 Chinese hamster lung fibroblasts. Int. J. Mol. Med., 2017, 39(3), 672-680. a
[http://dx.doi.org/10.3892/ijmm.2017.2871] [PMID: 28204816]
[62]
Lee, M.H.; Han, M.H.; Lee, D-S.; Park, C.; Hong, S-H.; Kim, G-Y.; Hong, S.H.; Song, K.S.; Choi, I-W.; Cha, H-J.; Choi, Y.H. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int. J. Mol. Med., 2017, 39(2), 399-406. b
[http://dx.doi.org/10.3892/ijmm.2016.2837] [PMID: 28035409]
[63]
Yong, H.J.; Ahn, J.J. Antioxidant and skin protection effect of morin upon UVA exposure. Biomed. Dermatol., 2018, 2(1), 1-7.
[http://dx.doi.org/10.1186/s41702-018-0026-7]
[64]
Bachewal, P.; Gundu, C.; Yerra, V.G.; Kalvala, A.K.; Areti, A.; Kumar, A. Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. Biofactors, 2018, 44(2), 109-122.
[http://dx.doi.org/10.1002/biof.1397] [PMID: 29193444]
[65]
Chen, Y.; Li, Y.; Xu, H.; Li, G.; Ma, Y.; Pang, Y.J. Morin mitigates oxidative stress, apoptosis and inflammation in cerebral ischemic rats. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(2), 348-355.
[http://dx.doi.org/10.21010/ajtcam.v14i2.36] [PMID: 28573251]
[66]
Xu, M.; Zhang, Y. Morin inhibits ovarian cancer growth through the inhibition of NF-KB signaling pathway. Anticancer. Agents Med. Chem., 2019, 19(18), 2243-2250.
[http://dx.doi.org/10.2174/1871521409666191014164742] [PMID: 31660844]
[67]
Çelik, H.; Kucukler, S.; Çomaklı, S.; Özdemir, S.; Caglayan, C.; Yardım, A.; Kandemir, F.M. Morin attenuates ifosfamide-induced neurotoxicity in rats via suppression of oxidative stress, neuroinflammation and neuronal apoptosis. Neurotoxicol., 2020, 76, 126-137.
[http://dx.doi.org/10.1016/j.neuro.2019.11.004] [PMID: 31722249]
[68]
Bastin, A.R.; Sadeghi, A.; Abolhassani, M.; Doustimotlagh, A.H.; Mohammadi, A. Malvidin prevents lipopolysaccharide-induced oxidative stress and inflammation in human peripheral blood mononuclear cells. IUBMB Life, 2020, 72(7), 1504-1514.
[http://dx.doi.org/10.1002/iub.2286] [PMID: 32268009]
[69]
Huang, W.; Zhu, Y.; Li, C.; Sui, Z.; Min, W. Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxid. Med. Cell. Longev., 2016, 2016, 1591803.
[http://dx.doi.org/10.1155/2016/1591803] [PMID: 27034731]
[70]
Dai, T.; Shi, K.; Chen, G.; Shen, Y.; Pan, T. Malvidin attenuates pain and inflammation in rats with osteoarthritis by suppressing NF-κB signaling pathway. Inflamm. Res., 2017, 66(12), 1075-1084.
[http://dx.doi.org/10.1007/s00011-017-1087-6] [PMID: 28852776]
[71]
Seo, H.R.; Choi, M.J.; Choi, J.M.; Ko, J.C.; Ko, J.Y.; Cho, E.J. Malvidin protects WI-38 human fibroblast cells against stress-induced premature senescence. J. Cancer Prev., 2016, 21(1), 32-40.
[http://dx.doi.org/10.15430/JCP.2016.21.1.32] [PMID: 27051647]
[72]
Sassi, A.; Boubaker, J.; Loussaief, A.; Jomaa, K.; Ghedira, K.; Chekir-Ghedira, L. Protective effect of chrysin, a dietary flavone against genotoxic and oxidative damage induced by mitomycin C in Balb/C mice. Nutr. Cancer, 2021, 73(2), 329-338.
[http://dx.doi.org/10.1080/01635581.2020.1749289] [PMID: 32270711]
[73]
Mantawy, E.M.; Esmat, A.; El-Bakly, W.M.; Salah ElDin, R.A.; El-Demerdash, E. Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci. Rep., 2017, 7(1), 4795.
[http://dx.doi.org/10.1038/s41598-017-05005-9] [PMID: 28684738]
[74]
Kucukler, S.; Benzer, F.; Yildirim, S.; Gur, C.; Kandemir, F.M.; Bengu, A.S.; Ayna, A.; Caglayan, C.; Dortbudak, M.B. Protective effects of chrysin against oxidative stress and inflammation induced by lead acetate in rat kidneys: A biochemical and histopathological approach. Biol. Trace Elem. Res., 2021, 199(4), 1501-1514.
[http://dx.doi.org/10.1007/s12011-020-02268-8] [PMID: 32613487]
[75]
Şengül, E. Antioxidant, anti-inflammatory and antiapoptotic effects of naringin on cardiac damage induced by cisplatin. Indian J. Tradit. Knowl., 2020, 2, 459-465.
[76]
Khodayar, M.J.; Kalantari, H.; Mahdavinia, M.; Khorsandi, L.; Alboghobeish, S.; Samimi, A.; Alizadeh, S.; Zeidooni, L. Protective effect of naringin against BPA-induced cardiotoxicity through prevention of oxidative stress in male Wistar rats. Drug Chem. Toxicol., 2020, 43(1), 85-95.
[http://dx.doi.org/10.1080/01480545.2018.1504958] [PMID: 30264589]
[77]
Tajaldini, M.; Samadi, F.; Khosravi, A.; Ghasemnejad, A.; Asadi, J. Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. Biomed. Pharmacother., 2020, 121(109594), 109594.
[http://dx.doi.org/10.1016/j.biopha.2019.109594] [PMID: 31707344]
[78]
Elsawy, H.; Algefare, A.I.; Alfwuaires, M.; Khalil, M.; Elmenshawy, O.M.; Sedky, A.; Abdel-Moneim, A.M. Naringin alleviates methotrexate-induced liver injury in male albino rats and enhances its antitumor efficacy in HepG2 cells. Biosci. Rep., 2020, 40(6), BSR20193686.
[http://dx.doi.org/10.1042/BSR20193686] [PMID: 32458964]
[79]
Akintunde, J.K.; Abioye, J.B.; Ebinama, O.N. Potential protective effects of naringin on oculo-pulmonary injury induced by wood smoke PM10 exposure by modulation of oxidative damage and acetylcholine esterase activity in a rat model. Curr. Ther. Res. Clin. Exp., 2020, 92, 100586.
[http://dx.doi.org/10.1016/j.curtheres.2020.100586] [PMID: 32419878]
[80]
Wali, A.F.; Rashid, S.; Rashid, S.M.; Ansari, M.A.; Khan, M.R.; Haq, N.; Alhareth, D.Y.; Ahmad, A.; Rehman, M.U. Naringenin regulates doxorubicin-induced liver dysfunction: Impact on oxidative stress and inflammation. Plants (Basel), 2020, 9(4), 550.
[http://dx.doi.org/10.3390/plants9040550] [PMID: 32344607]
[81]
Malayeri, A.; Badparva, R.; Mombeini, M.A.; Khorsandi, L.; Goudarzi, M. Naringenin: A potential natural remedy against methotrexate-induced hepatotoxicity in rats. Drug Chem. Toxicol., 2020, 1-8.
[http://dx.doi.org/10.1080/01480545.2020.1719132] [PMID: 31986916]
[82]
Lee, S.E.; Yang, H.; Son, G.W.; Park, H.R.; Park, C-S.; Jin, Y-H.; Park, Y.S. Eriodictyol protects endothelial cells against oxidative stress-induced cell death through modulating ERK/Nrf2/ARE-dependent heme oxygenase-1 expression. Int. J. Mol. Sci., 2015, 16(7), 14526-14539.
[http://dx.doi.org/10.3390/ijms160714526] [PMID: 26132561]
[83]
Lv, P.; Yu, J.; Xu, X.; Lu, T.; Xu, F. Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells. J. Cell. Biochem., 2019, 120(4), 5644-5651.
[http://dx.doi.org/10.1002/jcb.27848] [PMID: 30317656]
[84]
Liu, S.; Zhang, X.; Wang, J. Isovitexin protects against cisplatin-induced kidney injury in mice through inhibiting inflammatory and oxidative responses. Int. Immunopharmacol., 2020, 83(106437), 106437.
[http://dx.doi.org/10.1016/j.intimp.2020.106437] [PMID: 32222637]
[85]
Tomar, A.; Kaushik, S.; Khan, S.I.; Bisht, K.; Nag, T.C.; Arya, D.S.; Bhatia, J. The dietary isoflavone daidzein mitigates oxidative stress, apoptosis, and inflammation in CDDP-induced kidney injury in rats: Impact of the MAPK signaling pathway. J. Biochem. Mol. Toxicol., 2020, 34(2), e22431.
[http://dx.doi.org/10.1002/jbt.22431] [PMID: 31833131]
[86]
Wei, J.; Yang, F.; Gong, C.; Shi, X.; Wang, G. Protective effect of daidzein against streptozotocin-induced Alzheimer’s disease via improving cognitive dysfunction and oxidative stress in rat model. J. Biochem. Mol. Toxicol., 2019, 33(6), e22319.
[http://dx.doi.org/10.1002/jbt.22319] [PMID: 30897277]
[87]
Atiq, A.; Shal, B.; Naveed, M.; Khan, A.; Ali, J.; Zeeshan, S.; Al-Sharari, S.D.; Kim, Y.S.; Khan, S. Diadzein ameliorates 5-fluorouracil-induced intestinal mucositis by suppressing oxidative stress and inflammatory mediators in rodents. Eur. J. Pharmacol., 2019, 843, 292-306.
[http://dx.doi.org/10.1016/j.ejphar.2018.12.014] [PMID: 30529194]
[88]
Foti, P.; Erba, D.; Riso, P.; Spadafranca, A.; Criscuoli, F.; Testolin, G. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch. Biochem. Biophys., 2005, 433(2), 421-427.
[http://dx.doi.org/10.1016/j.abb.2004.10.008] [PMID: 15581598]
[89]
Akpa, A.R.; Ayo, J.O.; Mika’il, H.G.; Zakari, F.O. Protective effect of fisetin against subchronic chlorpyrifos-induced toxicity on oxidative stress biomarkers and neurobehavioral parameters in adult male albino mice. Toxicol. Res., 2020, 37(2), 163-171.
[http://dx.doi.org/10.1007/s43188-020-00049-y] [PMID: 33868974]
[90]
Rodius, S.; de Klein, N.; Jeanty, C.; Sánchez-Iranzo, H.; Crespo, I.; Ibberson, M.; Xenarios, I.; Dittmar, G.; Mercader, N.; Niclou, S.P.; Azuaje, F. Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity. Sci. Rep., 2020, 10(1), 2896.
[http://dx.doi.org/10.1038/s41598-020-59894-4] [PMID: 32076073]
[91]
Zhang, S.; Xue, R.; Geng, Y.; Wang, H.; Li, W. Fisetin prevents HT22 cells from high glucose-induced neurotoxicity via PI3K/Akt/CREB signaling pathway. Front. Neurosci., 2020, 14, 241.
[http://dx.doi.org/10.3389/fnins.2020.00241] [PMID: 32265642]
[92]
Huang, M-T.; Ferraro, T. Phenolic compounds in food and cancer prevention. ACS Symposium Series, 1992, pp. 8-34.
[http://dx.doi.org/10.1021/bk-1992-0507.ch002]
[93]
Varela-Rodríguez, L.; Sánchez-Ramírez, B.; Hernández-Ramírez, V.I.; Varela-Rodríguez, H.; Castellanos-Mijangos, R.D.; González-Horta, C.; Chávez-Munguía, B.; Talamás-Rohana, P. Effect of gallic acid and myricetin on ovarian cancer models: A possible alternative antitumoral treatment. BMC Complement Med. Ther., 2020, 20(1), 110.
[http://dx.doi.org/10.1186/s12906-020-02900-z] [PMID: 32276584]
[94]
Morissette, M.; Litim, N.; Di Paolo, T. Natural phytoestrogens: A class of promising neuroprotective agents for Parkinson disease; Elsevier, 2018, pp. 9-61.
[http://dx.doi.org/10.1016/B978-0-12-809593-5.00002-1]
[95]
Jin, H.; Lee, W.S.; Eun, S.Y.; Jung, J.H.; Park, H.S.; Kim, G.; Choi, Y.H.; Ryu, C.H.; Jung, J.M.; Hong, S.C.; Shin, S.C.; Kim, H.J. Morin, a flavonoid from Moraceae, suppresses growth and invasion of the highly metastatic breast cancer cell line MDA-MB 231 partly through suppression of the Akt pathway. Int. J. Oncol., 2014, 45(4), 1629-1637.
[http://dx.doi.org/10.3892/ijo.2014.2535] [PMID: 24993541]
[96]
Sharma, S.H.; Kumar, J.S.; Chellappan, D.R.; Nagarajan, S. Molecular chemoprevention by morin - a plant flavonoid that targets nuclear factor kappa B in experimental colon cancer. Biomed. Pharmacother., 2018, 100, 367-373.
[http://dx.doi.org/10.1016/j.biopha.2018.02.035] [PMID: 29453046]
[97]
Sithara, T.; Arun, K.B.; Syama, H.P.; Reshmitha, T.R.; Nisha, P. Morin inhibits proliferation of SW480 colorectal cancer cells by inducing apoptosis mediated by reactive oxygen species formation and uncoupling of warburg effect. Front. Pharmacol., 2017, 8, 640.
[http://dx.doi.org/10.3389/fphar.2017.00640] [PMID: 28955240]
[98]
Lee, J.; Jin, H.; Lee, W.S.; Nagappan, A.; Choi, Y.H.; Kim, G.S.; Jung, J.; Ryu, C.H.; Shin, S.C.; Hong, S.C.; Kim, H.J. Morin, a flavonoid from moraceae, inhibits cancer cell adhesion to endothelial cells and EMT by downregulating VCAM1 and Ncadherin. Asian Pac. J. Cancer Prev., 2016, 17(7), 3071-3075.
[PMID: 27509931]
[99]
Park, C.; Lee, W.S.; Go, S-I.; Nagappan, A.; Han, M.H.; Hong, S.H.; Kim, G.S.; Kim, G.Y.; Kwon, T.K.; Ryu, C.H.; Shin, S.C.; Choi, Y.H. Morin, a flavonoid from moraceae, induces apoptosis by induction of BAD protein in human leukemic cells. Int. J. Mol. Sci., 2014, 16(1), 645-659.
[http://dx.doi.org/10.3390/ijms16010645] [PMID: 25561222]
[100]
Nowak, E.; Sypniewski, D.; Bednarek, I. Morin exerts anti-metastatic, anti-proliferative and anti-adhesive effect in ovarian cancer cells: An in vitro studies. Mol. Biol. Rep., 2020, 47(3), 1965-1978.
[http://dx.doi.org/10.1007/s11033-020-05293-x] [PMID: 32020427]
[101]
Umadevi, I.; Daniel, M.; Sabnis, S.D. Chemotaxonomic studies on some members of anacardiaceae. Proceedings: Plant Sci., 1988, 98(3), 205-208.
[102]
Hergert, H.L. The flavonoids of lodgepole pine bark. J. Org. Chem., 1956, 21(5), 534-537.
[http://dx.doi.org/10.1021/jo01111a013]
[103]
Chua, L.S.; Latiff, N.A.; Lee, S.Y.; Lee, C.T.; Sarmidi, M.R.; Aziz, R.A. Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem., 2011, 127(3), 1186-1192.
[http://dx.doi.org/10.1016/j.foodchem.2011.01.122] [PMID: 25214112]
[104]
Ong, K.C.; Khoo, H.E. Biological effects of myricetin. Gen. Pharmacol., 1997, 29(2), 121-126.
[http://dx.doi.org/10.1016/S0306-3623(96)00421-1] [PMID: 9251891]
[105]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[106]
Basli, A.; Soulet, S.; Chaher, N.; Mérillon, J.M.; Chibane, M.; Monti, J.P.; Richard, T. Wine polyphenols: Potential agents in neuroprotection. Oxid. Med. Cell. Longev., 2012, 2012, 805762.
[http://dx.doi.org/10.1155/2012/805762] [PMID: 22829964]
[107]
Kong, N-N.; Fang, S-T.; Wang, J-H.; Wang, Z-H.; Xia, C-H. Two new flavonoid glycosides from the halophyte Limonium franchetii. J. Asian Nat. Prod. Res., 2014, 16(4), 370-375.
[http://dx.doi.org/10.1080/10286020.2014.884081] [PMID: 24597719]
[108]
Rao, K. V.; Seshadri, T. R. Nuclear oxidation in the flavone series-Part IV. New synthesis of herbacetin and hibiscetin, 1948, 25, 444-448.
[109]
Tranchimand, S.; Tron, T.; Gaudin, C.; Iacazio, G. First chemical synthesis of three natural depsides involved in flavonol catabolism and related to quercetinase catalysis. Synth. Commun., 2006, 36(5), 587-597.
[http://dx.doi.org/10.1080/00397910500406534]
[110]
Zhu, M.L.; Zhang, P.M.; Jiang, M.; Yu, S.W.; Wang, L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells. BMC Complement Med. Ther., 2020, 20(1), 209.
[http://dx.doi.org/10.1186/s12906-020-02965-w] [PMID: 32631392]
[111]
Mukhtar, H.; Das, M.; Khan, W.A.; Wang, Z.Y.; Bik, D.P.; Bickers, D.R. Exceptional activity of tannic acid among naturally occurring plant phenols in protecting against 7,12-dimethylbenz(a)anthracene-, benzo(a)pyrene-, 3-methylcholanthrene, and N-methyl-N-nitrosourea-induced skin tumorigenesis in mice. Cancer Res., 1988, 48(9), 2361-2365.
[PMID: 3128399]
[112]
Zhang, S.; Wang, L.; Liu, H.; Zhao, G.; Ming, L. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn. Pathol., 2014, 9(1), 68.
[http://dx.doi.org/10.1186/1746-1596-9-68] [PMID: 24650056]
[113]
Wang, L.; Feng, J.; Chen, X.; Guo, W.; Du, Y.; Wang, Y.; Zang, W.; Zhang, S.; Zhao, G. Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell Int., 2014, 14(71), 1-8.
[http://dx.doi.org/10.1186/s12935-014-0071-2] [PMID: 25788859]
[114]
Kang, H.R.; Moon, J.Y.; Ediriweera, M.K.; Song, Y.W.; Cho, M.; Kasiviswanathan, D.; Cho, S.K. Dietary flavonoid myricetin inhibits invasion and migration of radioresistant lung cancer cells (A549-IR) by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway. Food Sci. Nutr., 2020, 8(4), 2059-2067.
[http://dx.doi.org/10.1002/fsn3.1495] [PMID: 32328272]
[115]
Park, S.; Song, G.; Lim, W. Myricetin inhibits endometriosis growth through cyclin E1 down-regulation in vitro and in vivo. J. Nutr. Biochem., 2020, 78, 108328.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108328] [PMID: 31952013]
[116]
Labbé, D.; Provençal, M.; Lamy, S.; Boivin, D.; Gingras, D.; Béliveau, R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J. Nutr., 2009, 139(4), 646-652.
[http://dx.doi.org/10.3945/jn.108.102616] [PMID: 19244381]
[117]
Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Spandidos, D.A. Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg. Med. Chem., 2011, 19(9), 2842-2849.
[http://dx.doi.org/10.1016/j.bmc.2011.03.042] [PMID: 21482471]
[118]
Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res., 2014, 34(2), 701-706.
[PMID: 24511002]
[119]
Yusof, S.; Ghazali, H.M.; King, G.S. Naringin content in local citrus fruits. Food Chem., 1990, 37(2), 113-121.
[http://dx.doi.org/10.1016/0308-8146(90)90085-I]
[120]
Wong, K-C.; Pang, W-Y.; Wang, X-L.; Mok, S-K.; Lai, W-P.; Chow, H-K.; Leung, P-C.; Yao, X-S.; Wong, M-S. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. Br. J. Nutr., 2013, 110(3), 475-485.
[http://dx.doi.org/10.1017/S0007114512005405] [PMID: 23302510]
[121]
Chen, R.; Qi, Q-L.; Wang, M-T.; Li, Q-Y. Therapeutic potential of naringin: An overview. Pharm. Biol., 2016, 54(12), 3203-3210.
[http://dx.doi.org/10.1080/13880209.2016.1216131] [PMID: 27564838]
[122]
Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem., 2008, 56(15), 6185-6205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[123]
Lewinska, A.; Siwak, J.; Rzeszutek, I.; Wnuk, M. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Toxicol. In Vitro, 2015, 29(3), 417-425.
[http://dx.doi.org/10.1016/j.tiv.2014.12.005] [PMID: 25499067]
[124]
Kim, D.I.; Lee, S.J.; Lee, S.B.; Park, K.; Kim, W.J.; Moon, S.K. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis, 2008, 29(9), 1701-1709.
[http://dx.doi.org/10.1093/carcin/bgn055] [PMID: 18296682]
[125]
Aroui, S.; Fetoui, H.; Kenani, A. Natural dietary compound naringin inhibits glioblastoma cancer neoangiogenesis. BMC Pharmacol. Toxicol., 2020, 21(46), 1-10.
[http://dx.doi.org/10.1186/s40360-020-00426-1] [PMID: 32576255]
[126]
Li, J.; Zhao, J.; Zhang, H.; Liu, M.; Li, X. Naringin suppressing the PI3K/Akt signaling pathway as a drug target in BIU87 cells; Res. Square, 2020.
[127]
Marín, L.; Gutiérrez-Del-Río, I.; Yagüe, P.; Manteca, Á.; Villar, C.J.; Lombó, F. De novo biosynthesis of apigenin, luteolin, and eriodictyol in the actinomycete streptomyces albus and production improvement by feeding and spore conditioning. Front. Microbiol., 2017, 8, 921.
[http://dx.doi.org/10.3389/fmicb.2017.00921] [PMID: 28611737]
[128]
Islam, A.; Islam, M.S.; Rahman, M.K.; Uddin, M.N.; Akanda, M.R. The pharmacological and biological roles of eriodictyol. Arch. Pharm. Res., 2020, 43(6), 582-592.
[http://dx.doi.org/10.1007/s12272-020-01243-0] [PMID: 32594426]
[129]
Zhang, Y.; Zhang, R.; Ni, H. Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway. Arch. Med. Sci., 2019, 16(2), 446-452.
[http://dx.doi.org/10.5114/aoms.2019.85152] [PMID: 32190156]
[130]
Wang, F.; Wang, Y-H.; Wang, J-J.; Xu, H-L.; Wang, C-M. Eriodictyol-induced anti-cancer and apoptotic effects in human hepatocellular carcinoma cells are associated with cell cycle arrest and modulation of apoptosis-related proteins. Bangladesh J. Pharmacol., 2016, 11(2), 285.
[http://dx.doi.org/10.3329/bjp.v11i2.25549]
[131]
Li, W.; Du, Q.; Li, X.; Zheng, X.; Lv, F.; Xi, X.; Huang, G.; Yang, J.; Liu, S. Eriodictyol inhibits proliferation, metastasis and induces apoptosis of glioma cells via PI3K/Akt/NF-KB signaling pathway. Front. Pharmacol., 2020, 11, 114.
[http://dx.doi.org/10.3389/fphar.2020.00114] [PMID: 32158391]
[132]
Pereira, C.A.M.; Yariwake, J.H.; McCullagh, M. Distinction of the C-glycosylflavone isomer pairs orientin/isoorientin and vitexin/isovitexin using HPLC-MS exact mass measurement and in-source CID. Phytochem. Anal., 2005, 16(5), 295-301.
[http://dx.doi.org/10.1002/pca.820] [PMID: 16223084]
[133]
Fu, Y.; Zu, Y.; Liu, W.; Zhang, L.; Tong, M.; Efferth, T.; Kong, Y.; Hou, C.; Chen, L. Determination of vitexin and isovitexin in pigeonpea using ultrasonic extraction followed by LC-MS. J. Sep. Sci., 2008, 31(2), 268-275.
[http://dx.doi.org/10.1002/jssc.200700312] [PMID: 18196523]
[134]
Wang, J.; Tang, F.; Yue, Y.; Guo, X.; Yao, X. Development and validation of an HPTLC method for simultaneous quantitation of isoorientin, isovitexin, orientin, and vitexin in bamboo-leaf flavonoids. J. AOAC Int., 2010, 93(5), 1376-1383.
[http://dx.doi.org/10.1093/jaoac/93.5.1376] [PMID: 21140646]
[135]
Moheb, A.; Ibrahim, R.K.; Roy, R.; Sarhan, F. Changes in wheat leaf phenolome in response to cold acclimation. Phytochem, 2011, 72(18), 2294-2307.
[http://dx.doi.org/10.1016/j.phytochem.2011.08.021] [PMID: 21955620]
[136]
Lv, H.; Yu, Z.; Zheng, Y.; Wang, L.; Qin, X.; Cheng, G.; Ci, X. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-KB and activating HO-1/Nrf2 pathways. Int. J. Biol. Sci., 2016, 12(1), 72-86.
[http://dx.doi.org/10.7150/ijbs.13188] [PMID: 26722219]
[137]
Zhang, J.; Yuan, K.; Zhou, W.L.; Zhou, J.; Yang, P. Studies on the active components and antioxidant activities of the extracts of Mimosa pudica Linn. from southern China. Pharmacogn. Mag., 2011, 7(25), 35-39.
[http://dx.doi.org/10.4103/0973-1296.75899] [PMID: 21472077]
[138]
Borghi, S.M.; Carvalho, T.T.; Staurengo-Ferrari, L.; Hohmann, M.S.N.; Pinge-Filho, P.; Casagrande, R.; Verri, W.A. Jr Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod., 2013, 76(6), 1141-1149.
[http://dx.doi.org/10.1021/np400222v] [PMID: 23742617]
[139]
Flores, G.; Dastmalchi, K.; Dabo, A.J.; Whalen, K.; Pedraza-Peñalosa, P.; Foronjy, R.F.; D’Armiento, J.M.; Kennelly, E.J. Antioxidants of therapeutic relevance in COPD from the neotropical blueberry Anthopterus wardii. Food Chem., 2012, 131(1), 119-125.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.044] [PMID: 22363097]
[140]
Kang, I.; Choi, S.; Ha, T.J.; Choi, M.; Wi, H-R.; Lee, B.W.; Lee, M. Effects of mung bean (Vigna Radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the KK-Ay diabetes mouse model. J. Med. Food, 2015, 18(8), 841-849.
[http://dx.doi.org/10.1089/jmf.2014.3364] [PMID: 25826234]
[141]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[142]
Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol., 2014, 14(7), 463-477.
[http://dx.doi.org/10.1038/nri3705] [PMID: 24962261]
[143]
Meng, X.; Yang, J.; Dong, M.; Zhang, K.; Tu, E.; Gao, Q.; Chen, W.; Zhang, C.; Zhang, Y. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol., 2016, 13(3), 167-179.
[http://dx.doi.org/10.1038/nrcardio.2015.169] [PMID: 26525543]
[144]
Liang, X.; Xu, C.; Cao, X.; Wang, W. Isovitexin suppresses cancer stemness property and induces apoptosis of osteosarcoma cells by disruption of the DNMT1/MiR-34a/Bcl-2 Axis. Cancer Manag. Res., 2019, 11, 8923-8936.
[http://dx.doi.org/10.2147/CMAR.S222708] [PMID: 31686915]
[145]
Xu, C.; Cao, X.; Cao, X.; Liu, L.; Qiu, Y.; Li, X.; Zhou, L.; Ning, Y.; Ren, K.; Cao, J. Isovitexin inhibits stemness and induces apoptosis in hepatocellular carcinoma SK-Hep-1 spheroids by upregulating MiR-34a expression. Anticancer. Agents Med. Chem., 2020, 20(14), 1654-1663.
[http://dx.doi.org/10.2174/1871520620666200424123139] [PMID: 32329692]
[146]
Valachovicova, T.; Slivova, V.; Bergman, H.; Shuherk, J.; Sliva, D. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. Int. J. Oncol., 2004, 25(5), 1389-1395.
[PMID: 15492830]
[147]
Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur. J. Drug Metab. Pharmacokinet., 2013, 38(1), 15-25.
[http://dx.doi.org/10.1007/s13318-012-0112-y] [PMID: 23161396]
[148]
Paul, A.; Das, S.; Das, J.; Samadder, A.; Bishayee, K.; Sadhukhan, R.; Khuda-Bukhsh, A.R. Diarylheptanoid-myricanone isolated from ethanolic extract of Myrica cerifera shows anticancer effects on HeLa and PC3 cell lines: Signalling pathway and drug-DNA interaction. J. Integr. Med., 2013, 11(6), 405-415.
[http://dx.doi.org/10.3736/jintegrmed2013057] [PMID: 24299604]
[149]
Choi, E.J.; Kim, G-H. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine, 2008, 15(9), 683-690.
[http://dx.doi.org/10.1016/j.phymed.2008.04.006] [PMID: 18541420]
[150]
Sun, M-Y.; Ye, Y.; Xiao, L.; Rahman, K.; Xia, W.; Zhang, H. Daidzein: A review of pharmacological effects. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(3), 117.
[http://dx.doi.org/10.4314/ajtcam.v13i3.15]
[151]
Chu, H.; Li, J.; Liu, T.; Miao, N.; Zhang, W. Anticancer effects of Daidzein against the human melanoma cell lines involves cell cycle arrest, autophagy and deactivation of PI3K/AKT signalling pathways. J. BUON, 2020, 25(1), 485-490.
[PMID: 32277673]
[152]
Guo, S.; Wang, Y.; Li, Y.; Li, Y.; Feng, C.; Li, Z. Daidzein-rich isoflavones aglycone inhibits lung cancer growth through inhibition of NF-κB signaling pathway. Immunol. Lett., 2020, 222, 67-72.
[http://dx.doi.org/10.1016/j.imlet.2020.03.004] [PMID: 32197974]
[153]
Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel), 2019, 12(1), 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[154]
Prasad, K.N. Modulation of the effects of tumor therapeutic agents by vitamin C. Life Sci., 1980, 27(4), 275-280.
[http://dx.doi.org/10.1016/0024-3205(80)90194-0] [PMID: 6997665]
[155]
Pulley, G.N. Solubility of naringin in water. Ind. Eng. Chem. Anal. Ed., 1936, 8(5), 360-360.
[http://dx.doi.org/10.1021/ac50103a020]
[156]
Zheng, Y.Z.; Deng, G.; Guo, R.; Chen, D.F.; Fu, Z.M. DFT studies on the antioxidant activity of naringenin and its derivatives: Effects of the substituents at C3. Int. J. Mol. Sci., 2019, 20(6), 1450.
[http://dx.doi.org/10.3390/ijms20061450] [PMID: 30909377]
[157]
Zhao, Z.; Jin, G.; Ge, Y.; Guo, Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacol., 2019, 27(5), 1021-1036.
[http://dx.doi.org/10.1007/s10787-018-00556-3] [PMID: 30941613]
[158]
Heidary Moghaddam, R.; Samimi, Z.; Moradi, S.Z.; Little, P.J.; Xu, S.; Farzaei, M.H. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. Eur. J. Pharmacol., 2020, 887, 173535.
[http://dx.doi.org/10.1016/j.ejphar.2020.173535] [PMID: 32910944]
[159]
Hughes, L.A.E.; Arts, I.C.W.; Ambergen, T.; Brants, H.A.M.; Dagnelie, P.C.; Goldbohm, R.A.; van den Brandt, P.A.; Weijenberg, M.P. Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: A longitudinal analysis from the Netherlands Cohort Study. Am. J. Clin. Nutr., 2008, 88(5), 1341-1352.
[PMID: 18996871]
[160]
Liao, B.; Li, Y.; Jiang, Y.; Cai, L. Using multi-instance hierarchical clustering learning system to predict yeast gene function. PLoS One, 2014, 9(3), e90962.
[http://dx.doi.org/10.1371/journal.pone.0090962] [PMID: 24621610]
[161]
Qin, L.; Jin, L.; Lu, L.; Lu, X.; Zhang, C.; Zhang, F.; Liang, W. Naringenin reduces lung metastasis in a breast cancer resection model. Protein Cell, 2011, 2(6), 507-516.
[http://dx.doi.org/10.1007/s13238-011-1056-8] [PMID: 21748601]
[162]
Wang, R.; Wang, J.; Dong, T.; Shen, J.; Gao, X.; Zhou, J. Naringenin has a chemoprotective effect in MDA-MB-231 breast cancer cells via inhibition of caspase-3 and -9 activities. Oncol. Lett., 2019, 17(1), 1217-1222.
[PMID: 30655887]
[163]
Chen, Y-Y.; Chang, Y-M.; Wang, K-Y.; Chen, P-N.; Hseu, Y-C.; Chen, K-M.; Yeh, K-T.; Chen, C-J.; Hsu, L-S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ. Toxicol., 2019, 34(3), 233-239.
[http://dx.doi.org/10.1002/tox.22677] [PMID: 30431227]
[164]
Sanderson, J.T.; Hordijk, J.; Denison, M.S.; Springsteel, M.F.; Nantz, M.H.; van den Berg, M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol. Sci., 2004, 82(1), 70-79.
[http://dx.doi.org/10.1093/toxsci/kfh257] [PMID: 15319488]
[165]
Weng, M-S.; Ho, Y-S.; Lin, J-K. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: Involvement of p38 mitogen-activated protein kinase. Biochem. Pharmacol., 2005, 69(12), 1815-1827.
[http://dx.doi.org/10.1016/j.bcp.2005.03.011] [PMID: 15869744]
[166]
Zhong, X.; Liu, D.; Jiang, Z.; Li, C.; Chen, L.; Xia, Y.; Liu, D.; Yao, Q.; Wang, D. Chrysin induced cell apoptosis and inhibited invasion through regulation of TET1 expression in gastric cancer cells. OncoTargets Ther., 2020, 13, 3277-3287.
[http://dx.doi.org/10.2147/OTT.S246031] [PMID: 32368086]
[167]
Mehdi, S.H.; Zafaryab, M.; Nafees, S.; Khan, A.; Ahmad, I.; Hafeez, Z.B.; Rizvi, M.A. Chrysin sensitizes human lung cancer cells to tumour necrosis factor related apoptosis-inducing ligand (TRAIL) mediated apoptosis. Asian Pac. J. Canc. Biol., 2019, 4(2), 27-33.
[http://dx.doi.org/10.31557/apjcb.2019.4.2.27-33]
[168]
Pop, R.; Ştefănut, M.; Căta, A.; Tănasie, C.; Medeleanu, M. Ab initio study regarding the evaluation of the antioxidant character of cyanidin, delphinidin and malvidin. Open Chem., 2012, 10(1), 180-186.
[http://dx.doi.org/10.2478/s11532-011-0128-1]
[169]
Zhang, Y.; Vareed, S.K.; Nair, M.G. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci., 2005, 76(13), 1465-1472.
[http://dx.doi.org/10.1016/j.lfs.2004.08.025] [PMID: 15680311]
[170]
Krauss, A.; Fischer, J. Malvidin and delphinidin exhibit a dose-dependent effect on cell viability and apoptosis in HT-29 cells; University of Georgia, 2013.
[171]
Lee, C.; Han, D.; Kim, B.; Baek, N.; Baik, B-K. Antioxidant and anti-hypertensive activity of anthocyanin-rich extracts from hulless pigmented barley cultivars. Int. J. Food Sci. Technol., 2013, 48(5), 984-991.
[http://dx.doi.org/10.1111/ijfs.12050]
[172]
Huang, W-Y.; Wang, J.; Liu, Y-M.; Zheng, Q-S.; Li, C-Y. Inhibitory effect of Malvidin on TNF-α-induced inflammatory response in endothelial cells. Eur. J. Pharmacol., 2014, 723, 67-72.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.041] [PMID: 24333549]
[173]
Shih, P-H.; Yeh, C-T.; Yen, G-C. Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem. Toxicol., 2005, 43(10), 1557-1566.
[http://dx.doi.org/10.1016/j.fct.2005.05.001] [PMID: 15964118]
[174]
Xu, H.; Zhang, J.; Huang, H.; Liu, L.; Sun, Y. Malvidin induced anticancer activity in human colorectal HCT-116 cancer cells involves apoptosis, G2/M cell cycle arrest and upregulation of P21WAFI. Int. J. Clin. Exp. Med., 2018, 11(3), 1734-1741.
[175]
Baba, A.B.; Nivetha, R.; Chattopadhyay, I.; Nagini, S. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway. Food Chem. Toxicol., 2017, 109(Pt 1), 534-543.
[http://dx.doi.org/10.1016/j.fct.2017.09.054] [PMID: 28974439]
[176]
Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem., 2003, 51(1), 68-75.
[http://dx.doi.org/10.1021/jf025781x] [PMID: 12502387]
[177]
Sundarraj, K.; Raghunath, A.; Perumal, E. A review on the chemotherapeutic potential of fisetin: In vitro evidences. Biomed. Pharmacother., 2018, 97, 928-940.
[http://dx.doi.org/10.1016/j.biopha.2017.10.164] [PMID: 29136771]
[178]
Rengarajan, T.; Yaacob, N.S. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur. J. Pharmacol., 2016, 789, 8-16.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.001] [PMID: 27377217]
[179]
Maher, P. Protective effects of fisetin and other berry flavonoids in Parkinson’s disease. Food Funct., 2017, 8(9), 3033-3042.
[http://dx.doi.org/10.1039/C7FO00809K] [PMID: 28714503]
[180]
Sun, Y. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic. Biol. Med., 1990, 8(6), 583-599.
[http://dx.doi.org/10.1016/0891-5849(90)90156-D] [PMID: 2193855]
[181]
Maher, P.; Akaishi, T.; Abe, K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc. Natl. Acad. Sci. USA, 2006, 103(44), 16568-16573.
[http://dx.doi.org/10.1073/pnas.0607822103] [PMID: 17050681]
[182]
Khan, N.; Asim, M.; Afaq, F.; Abu Zaid, M.; Mukhtar, H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res., 2008, 68(20), 8555-8563.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0240] [PMID: 18922931]
[183]
Suh, Y.; Afaq, F.; Johnson, J.J.; Mukhtar, H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways. Carcinogenesis, 2009, 30(2), 300-307.
[http://dx.doi.org/10.1093/carcin/bgn269] [PMID: 19037088]
[184]
Chien, C-S.; Shen, K-H.; Huang, J-S.; Ko, S-C.; Shih, Y-W. Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells. Mol. Cell. Biochem., 2010, 333(1-2), 169-180.
[http://dx.doi.org/10.1007/s11010-009-0217-z] [PMID: 19633975]
[185]
Kang, K.A.; Piao, M.J.; Hyun, J.W. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. in vitro Cell. Dev. Biol. Anim., 2015, 51(3), 300-309.
[http://dx.doi.org/10.1007/s11626-014-9830-6] [PMID: 25381036]
[186]
Liao, Y-C.; Shih, Y-W.; Chao, C-H.; Lee, X-Y.; Chiang, T-A. Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. J. Agric. Food Chem., 2009, 57(19), 8933-8941.
[http://dx.doi.org/10.1021/jf902630w] [PMID: 19725538]
[187]
Li, Y-S.; Qin, X-J.; Dai, W. Fisetin suppresses malignant proliferation in human oral squamous cell carcinoma through inhibition of Met/Src signaling pathways. Am. J. Transl. Res., 2017, 9(12), 5678-5683.
[PMID: 29312520]
[188]
Won, D-H.; Chung, S.H.; Shin, J-A.; Hong, K-O.; Yang, I-H.; Yun, J-W.; Cho, S-D. Induction of sestrin 2 is associated with fisetin-mediated apoptosis in human head and neck cancer cell lines. J. Clin. Biochem. Nutr., 2019, 64(2), 97-105.
[http://dx.doi.org/10.3164/jcbn.18-63] [PMID: 30936621]
[189]
Fu, C-Y.; Chen, M-C.; Tseng, Y-S.; Chen, M-C.; Zhou, Z.; Yang, J-J.; Lin, Y-M.; Viswanadha, V.P.; Wang, G.; Huang, C-Y. Fisetin activates Hippo pathway and JNK/ERK/AP-1 signaling to inhibit proliferation and induce apoptosis of human osteosarcoma cells via ZAK overexpression. Environ. Toxicol., 2019, 34(8), 902-911.
[http://dx.doi.org/10.1002/tox.22761] [PMID: 31044527]
[190]
Guo, G.; Zhang, W.; Dang, M.; Yan, M.; Chen, Z. Fisetin induces apoptosis in breast cancer MDA-MB-453 cells through degradation of HER2/neu and via the PI3K/Akt pathway. J. Biochem. Mol. Toxicol., 2019, 33(4), e22268.
[http://dx.doi.org/10.1002/jbt.22268] [PMID: 30431692]
[191]
Liang, Y.; Kong, D.; Zhang, Y.; Li, S.; Li, Y.; Ramamoorthy, A.; Ma, J. Fisetin inhibits cell proliferation and induces apoptosis via JAK/STAT3 signaling pathways in human thyroid TPC 1 cancer cells. Biotechnol. Bioprocess Eng.; BBE, 2020, 25(2), 197-205.
[http://dx.doi.org/10.1007/s12257-019-0326-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy