Review Article

Thioethers: An Overview

Author(s): M. İhsan Han and Ş. Güniz Küçükgüzel*

Volume 23, Issue 2, 2022

Published on: 14 June, 2021

Page: [170 - 219] Pages: 50

DOI: 10.2174/1389450122666210614121237

Price: $65

conference banner
Abstract

Spreading rapidly in recent years, cancer has become one of the causes of the highest mortality rates after cardiovascular diseases. The reason for cancer development is still not clearly understood despite enormous research activities in this area. Scientists are now working on the biology of cancer, especially on the root cause of cancer development. The aim is to treat the cancer disease and thus cure the patients. The continuing efforts for the development of novel molecules as potential anti-cancer agents are essential for this purpose. The main aim of this review was to present a survey on the medicinal chemistry of thioethers and provide practical data on their cytotoxicities against various cancer cell lines. The research articles published between 2001-2020 were consulted to prepare this review article; however, patent literature has not been included. The thioether-containing heterocyclic compounds may emerge as a new class of potent and effective anti-cancer agents in the future.

Keywords: Thioether, anticancer activity, antineoplastic, cytotoxicity, pharmacokinetics, cardiovascular diseases.

Graphical Abstract
[1]
Stenholm S, Kivimäki M, Jylhä M, et al. Trajectories of self-rated health in the last 15 years of life by cause of death. Eur J Epidemiol 2016; 31(2): 177-85.
[http://dx.doi.org/10.1007/s10654-015-0071-0] [PMID: 26202668]
[2]
Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T. Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis 2014; 7: 9-18.
[http://dx.doi.org/10.4137/CGM.S11285] [PMID: 24926201]
[3]
Kumar S, Ahmad MK, Waseem M, Pandey AK. Drug targets for cancer treatment: an overview. Med Chem 2015; 5(3): 115-23.
[4]
Saijo N, Tamura T, Nishio K. Strategy for the development of novel anticancer drugs. Cancer Chemother Pharmacol 2003; 52(1): S97-S101.
[http://dx.doi.org/10.1007/s00280-003-0596-x] [PMID: 12856152]
[5]
Watson J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 2013; 3(1)120144
[http://dx.doi.org/10.1098/rsob.120144] [PMID: 23303309]
[6]
Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol 2015. 10-20: 1-24.
[7]
Selvakumar P, Lakshmikuttyamma A, Das U, Pati HN, Dimmock JR, Sharma RK. NC2213: a novel methionine aminopeptidase 2 inhibitor in human colon cancer HT29 cells. Mol Cancer 2009; 8(65): 65.
[http://dx.doi.org/10.1186/1476-4598-8-65] [PMID: 19703310]
[8]
Küçükgüzel I, Güniz Küçükgüzel S, Rollas S, et al. Synthesis of some 3-(arylalkylthio)-4-alkyl/aryl-5-(4-aminophenyl)-4H-1,2,4-triazole derivatives and their anticonvulsant activity. Farmaco 2004; 59(11): 893-901.
[http://dx.doi.org/10.1016/j.farmac.2004.07.005] [PMID: 15544794]
[9]
Gülerman NN, Doğan HN, Rollas S, Johansson C, Çelik C. Synthesis and structure elucidation of some new thioether derivatives of 1,2,4-triazoline-3-thiones and their antimicrobial activities. Farmaco 2001; 56(12): 953-8.
[http://dx.doi.org/10.1016/S0014-827X(01)01167-3] [PMID: 11829116]
[10]
Rostom SAF, Ashour HMA, Abd El Razik HA. Synthesis and biological evaluation of some novel polysubstituted pyrimidine derivatives as potential antimicrobial and anticancer agents. Arch Pharm (Weinheim) 2009; 342(5): 299-310.
[http://dx.doi.org/10.1002/ardp.200800223] [PMID: 19415663]
[11]
Eskandariyan Z, Esfahani Zadeh M, Haj Mohammad Ebrahim Tehrani K, Mashayekhi V, Kobarfard F. Synthesis of thioether derivatives of quinazoline-4-one-2-thione and evaluation of their antiplatelet aggregation activity. Arch Pharm Res 2014; 37(3): 332-9.
[http://dx.doi.org/10.1007/s12272-013-0192-5] [PMID: 23856968]
[12]
Luo Y, Zhang S, Liu ZJ, et al. Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: derivatives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety. Eur J Med Chem 2013; 64: 54-61.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.014] [PMID: 23644188]
[13]
Küçükgüzel I, Küçükgüzel ŞG, Rollas S, Kiraz M. Some 3-thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials. Bioorg Med Chem Lett 2001; 11(13): 1703-7.
[http://dx.doi.org/10.1016/S0960-894X(01)00283-9] [PMID: 11425542]
[14]
Hajjar NP, Hodgson E. Flavin adenine dinucleotide--dependent monooxygenase: its role in the sulfoxidation of pesticides in mammals. Science 1980; 209(4461): 1134-6.
[http://dx.doi.org/10.1126/science.7403873] [PMID: 7403873]
[15]
Ziegler MD. Microsomal oxidases. The Mol Biol Memb 1978; pp. 193-204.
[16]
Poulsen LL, Ziegler DM. The liver microsomal FAD-containing monooxygenase. Spectral characterization and kinetic studies. J Biol Chem 1979; 254(14): 6449-55.
[http://dx.doi.org/10.1016/S0021-9258(18)50388-4] [PMID: 36396]
[17]
Boonyapiwat B, Panaretou B, Forbes B, Mitchell SC, Steventon GB. Human phenylalanine monooxygenase and thioether metabolism. J Pharm Pharmacol 2009; 61(1): 63-7.
[http://dx.doi.org/10.1211/jpp.61.01.0009] [PMID: 19126298]
[18]
Herrmann DBJ, Besenfelder E, Bicker U, Pahlke W, Böhm E. Pharmacokinetics of the thioether phospholipid analogue BM 41.440 in rats. Lipids 1987; 22(11): 952-4.
[http://dx.doi.org/10.1007/BF02535562] [PMID: 3444391]
[19]
Heim ME, Kleeberg UR, Winkelmann M, et al. study of llmofosine in patients with malignant melanoma. onkologie 1992; 15: 465-9.
[20]
Herrmann DBJ, Opitz HG, Munder PG. Antitumor activity of Ilmofosine (BM 41.440) in the 3Lewis-lung carcinoma model. Lipids 1991; 26(12): 1431-6.
[http://dx.doi.org/10.1007/BF02536581] [PMID: 1819746]
[21]
Kluskens LD, Nelemans SA, Rink R, et al. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther 2009; 328(3): 849-54.
[http://dx.doi.org/10.1124/jpet.108.146431] [PMID: 19038778]
[22]
Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008; 68(22): 9280-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[23]
Erickson HK, Lewis Phillips GD, Leipold DD, et al. The effect of different linkers on target cell catabolism and pharmacokinetics/pharmacodynamics of trastuzumab maytansinoid conjugates. Mol Cancer Ther 2012; 11(5): 1133-42.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0727] [PMID: 22408268]
[24]
Sahu R, Shrivastava SP. Conventional synthesis, in vitro antimicrobial activity and calculation of pharmacokinetic properties of thioether derivatives of quinoxaline. Chem Sci Trans 2016; 5(2): 305-10.
[25]
Seto S, Okada K, Kiyota K, et al. Design, synthesis, and structure-activity relationship studies of novel 2,4,6-trisubstituted-5-pyrimidinecarboxylic acids as peroxisome proliferator-activated receptor γ (PPARgamma) partial agonists with comparable antidiabetic efficacy to rosiglitazone. J Med Chem 2010; 53(13): 5012-24.
[http://dx.doi.org/10.1021/jm100443s] [PMID: 20527969]
[26]
Shimizu M, Uno T, Yasui-Furukori N, Sugawara K, Tateishi T. Effects of clarithromycin and verapamil on rabeprazole pharmacokinetics between CYP2C19 genotypes. Eur J Clin Pharmacol 2006; 62(8): 597-603.
[http://dx.doi.org/10.1007/s00228-006-0152-9] [PMID: 16783561]
[27]
Uno T, Yasui-Furukori N, Shimizu M, Sugawara K, Tateishi T. Determination of rabeprazole and its active metabolite, rabeprazole thioether in human plasma by column-switching high-performance liquid chromatography and its application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 824(1-2): 238-43.
[http://dx.doi.org/10.1016/j.jchromb.2005.07.027] [PMID: 16087412]
[28]
Alanazi AM, Al-Suwaidan IM, Abdelaziz AAM, Mohamed MA, Morsy AME, El-Azab AS. Design, synthesis and biological evaluation of some novel substituted 2-mercapto-3-phenethylquinazolines as antitumor agents. Med Chem Res 2013; 22: 5566-77.
[http://dx.doi.org/10.1007/s00044-013-0546-z]
[29]
Hou YP, Sun J, Pang ZH, et al. Synthesis and antitumor activity of 1,2,4-triazoles having 1,4-benzodioxan fragment as a novel class of potent methionine aminopeptidase type II inhibitors. Bioorg Med Chem 2011; 19(20): 5948-54.
[http://dx.doi.org/10.1016/j.bmc.2011.08.063] [PMID: 21925884]
[30]
Klimesová V, Zahajská L, Waisser K, Kaustová J, Möllmann U. Synthesis and antimycobacterial activity of 1,2,4-triazole 3-benzylsulfanyl derivatives. Farmaco 2004; 59(4): 279-88.
[http://dx.doi.org/10.1016/j.farmac.2004.01.006] [PMID: 15081345]
[31]
Patel RV, Park SW. Access to a new class of biologically active quinoline based 1,2,4-triazoles. Eur J Med Chem 2014; 71: 24-30.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.059] [PMID: 24269513]
[32]
Popiołek L, Kosikowska U, Mazur L, Dobosz M, Malm A. Synthesis and antimicrobial evaluation of some novel 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Med Chem Res 2013; 22(7): 3134-47.
[http://dx.doi.org/10.1007/s00044-012-0302-9] [PMID: 23710121]
[33]
Fenga C. Occupational exposure and risk of breast cancer. Biomed Rep 2016; 4(3): 282-92.
[http://dx.doi.org/10.3892/br.2016.575] [PMID: 26998264]
[34]
Chen C, Liu YZ, Shia KS, Tseng HY. Synthesis and anticancer evaluation of vitamin K(3) analogues. Bioorg Med Chem Lett 2002; 12(19): 2729-32.
[http://dx.doi.org/10.1016/S0960-894X(02)00532-2] [PMID: 12217364]
[35]
Ott I, Xu Y, Liu J, et al. Sulfur-substituted naphthalimides as photoactivatable anticancer agents: DNA interaction, fluorescence imaging, and phototoxic effects in cultured tumor cells. Bioorg Med Chem 2008; 16(15): 7107-16.
[http://dx.doi.org/10.1016/j.bmc.2008.06.052] [PMID: 18644732]
[36]
Cloonan SM, Keating JJ, Butler SG, et al. Synthesis and serotonin transporter activity of sulphur-substituted alpha-alkyl phenethylamines as a new class of anticancer agents. Eur J Med Chem 2009; 44(12): 4862-88.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.027] [PMID: 19717215]
[37]
Zhang HZ, Crogan-Grundy C, May C, Drewe J, Tseng B, Cai SX. Discovery and structure-activity relationships of (2-(arylthio)benzylideneamino)guanidines as a novel series of potent apoptosis inducers. Bioorg Med Chem 2009; 17(7): 2852-8.
[http://dx.doi.org/10.1016/j.bmc.2009.02.029] [PMID: 19282188]
[38]
Alafeefy AM. Some new quinazolin-4(3H)-one derivatives, synthesis, and antitumor activity. J Saudi Chem Soc 2011; 15: 337-43.
[http://dx.doi.org/10.1016/j.jscs.2011.06.019]
[39]
Abd El Hamid MK, Mihovilovic MD, El-Nassan HB. Synthesis of novel pyrazolo[3,4-d]pyrimidine derivatives as potential anti-breast cancer agents. Eur J Med Chem 2012; 57: 323-8.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.031] [PMID: 23085106]
[40]
dos Santos Edos A, Hamel E, Bai R, et al. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorg Med Chem Lett 2013; 23(16): 4669-73.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.009] [PMID: 23810282]
[41]
La Regina G, Bai R, Rensen WM, et al. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J Med Chem 2013; 56(1): 123-49.
[http://dx.doi.org/10.1021/jm3013097] [PMID: 23214452]
[42]
Marciniec K, Latocha M, Boryczka S, Kurczab R. Synthesis, molecular docking study, and evaluation of the antiproliferative action of a new group of propargylthio- and propargylselenoquinolines. Med Chem Res 2014; 23: 3468-77.
[http://dx.doi.org/10.1007/s00044-014-0922-3]
[43]
Mudududdla R, Sharma R, Guru SK, et al. Trifluoroacetic acid-catalyzed thiophenylmethylation and thioalkylmethylation of lactams and phenols via domino three-component reaction in water. RSC Advances 2014; 4: 14081-8.
[http://dx.doi.org/10.1039/C3RA47874B]
[44]
Kandeel MM, Refaat HM, Kassab AE, Shahin IG, Abdelghany TM. Synthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c]pyrimidine derivatives. Eur J Med Chem 2015; 90: 620-32.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.009] [PMID: 25499930]
[45]
Argyros O, Lougiakis N, Kouvari E, et al. Design and synthesis of novel 7-aminosubstituted pyrido[2,3-b]pyrazines exhibiting anti-breast cancer activity. Eur J Med Chem 2017; 126: 954-68.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.025] [PMID: 28006668]
[46]
Liu Y, Liang RM, Ma QP, et al. Synthesis of thioether andrographolide derivatives and their inhibitory effect against cancer cells. MedChemComm 2017; 8(6): 1268-74.
[http://dx.doi.org/10.1039/C7MD00169J] [PMID: 30108837]
[47]
Rostom SAF, Badr MH, Abd El Razik HA, Ashour HMA. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies. Eur J Med Chem 2017; 139: 263-79.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.053] [PMID: 28803043]
[48]
Yang L, Ma X, Yuan C, et al. Discovery of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors. Eur J Med Chem 2017; 134: 230-41.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.010] [PMID: 28415012]
[49]
Rob L, Skapa P, Robova H. Fertility-sparing surgery in patients with cervical cancer. Lancet Oncol 2011; 12(2): 192-200.
[http://dx.doi.org/10.1016/S1470-2045(10)70084-X] [PMID: 20619737]
[50]
Sreelatha T, Kandhasamy S, Dinesh R, et al. Synthesis and SAR study of novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorg Med Chem Lett 2014; 24(15): 3647-51.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.080] [PMID: 24913712]
[51]
Cefalo MG, Carai A, Miele E, et al. Human iPSC for therapeutic approaches to the nervous system: present and future applications. Stem Cells Int 2016; 20164869071
[http://dx.doi.org/10.1155/2016/4869071] [PMID: 26697076]
[52]
Ismail MMF, Rateb HS, Hussein MMM. Synthesis and docking studies of novel benzopyran-2-ones with anticancer activity. Eur J Med Chem 2010; 45(9): 3950-9.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.050] [PMID: 20580139]
[53]
Abuo-Rahma Gel-D Abdel-Aziz M, Beshr EAM, Ali TFS. 1,2,4-Triazole/oxime hybrids as new strategy for nitric oxide donors: Synthesis, anti-inflammatory, ulceroginicity and antiproliferative activities. Eur J Med Chem 2014; 71: 185-98.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.006] [PMID: 24308998]
[54]
Chen TC, Yu DS, Huang KF, et al. Structure-based design, synthesis and biological evaluation of novel anthra[1,2-d]imidazole-6,11-dione homologues as potential antitumor agents. Eur J Med Chem 2013; 69: 278-93.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.058] [PMID: 24051300]
[55]
Kaplancıklı ZA, Yurttas L, Ozdemir A, et al. Synthesis and antiproliferative activity of new 1,5-disubstituted tetrazoles bearing hydrazone moiety. Med Chem Res 2014; 23: 1067-75.
[http://dx.doi.org/10.1007/s00044-013-0717-y]
[56]
Harrison LE, Bleiler M, Giardina C. A look into centrosome abnormalities in colon cancer cells, how they arise and how they might be targeted therapeutically. Biochem Pharmacol 2018; 147: 1-8.
[http://dx.doi.org/10.1016/j.bcp.2017.11.003] [PMID: 29128368]
[57]
Zhao LM, Xie TP, He YQ, Xu DF, Li SS. Synthesis and antitumor activity of 6- and 2-(1-substituted-thio-4-methylpent-3-enyl)-5,8-dimethoxynaphthalene-1,4-diones. Eur J Med Chem 2009; 44(4): 1410-4.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.039] [PMID: 18996624]
[58]
el-Enany MM, Kamel MM, Khalil OM, el-Nassan HB. Synthesis and antitumor activity of novel 6-aryl and 6-alkylpyrazolo[3,4-d]pyrimidin-4-one derivatives. Eur J Med Chem 2010; 45(11): 5286-91.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.048] [PMID: 20846758]
[59]
Özkay Y, Işikdağ I, Incesu Z, Akalin G. Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity. Eur J Med Chem 2010; 45(8): 3320-8.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.015] [PMID: 20451307]
[60]
Tangeda SJ, Garlapati A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives and evaluation of their activities against human colon cancer cell lines. Eur J Med Chem 2010; 45(4): 1453-8.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.050] [PMID: 20163895]
[61]
Yao J, Chen J, He Z, Sun W, Fang H, Xu W. Thiourea and thioether derivatives of sorafenib: synthesis, crystal structure, and antiproliferative activity. Med Chem Res 2013; 22: 3959-68.
[http://dx.doi.org/10.1007/s00044-012-0400-8]
[62]
Abdel-Aziz HA, Ghabbour HA, Eldehna WM, et al. 2-((Benzimidazol-2-yl)thio)-1-arylethan-1-ones: Synthesis, crystal study and cancer stem cells CD133 targeting potential. Eur J Med Chem 2015; 104: 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.023] [PMID: 26413725]
[63]
Ma H, Zhuang C, Xu X, et al. Discovery of benzothiazole derivatives as novel non-sulfamide NEDD8 activating enzyme inhibitors by target-based virtual screening. Eur J Med Chem 2017; 133: 174-83.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.076] [PMID: 28388520]
[64]
Liu T, Sun C, Xing X, et al. Synthesis and evaluation of 2-[2-(phenylthiomethyl)-1H-benzo[d] imidazol-1-yl)acetohydrazide derivatives as antitumor agents. Bioorg Med Chem Lett 2012; 22(9): 3122-5.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.061] [PMID: 22483608]
[65]
Altıntop MD, Kaplancıklı ZA, Ciftçi GA, Demirel R. Synthesis and biological evaluation of thiazoline derivatives as new antimicrobial and anticancer agents. Eur J Med Chem 2014; 74: 264-77.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.060] [PMID: 24480358]
[66]
Kunzmann AT, McMenamin ÚC, Spence AD, et al. Blood biomarkers for early diagnosis of oesophageal cancer: a systematic review. Eur J Gastroenterol Hepatol 2018; 30(3): 263-73.
[http://dx.doi.org/10.1097/MEG.0000000000001029] [PMID: 29189391]
[67]
Ma LY, Pang LP, Wang B, et al. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur J Med Chem 2014; 86: 368-80.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.010] [PMID: 25180925]
[68]
Garrido M, Fonseca PJ, Vieitez JM, Frunza M, Lacave AJ. Challenges in first line chemotherapy and targeted therapy in advanced gastric cancer. Expert Rev Anticancer Ther 2014; 14(8): 887-900.
[http://dx.doi.org/10.1586/14737140.2014.915194] [PMID: 24953238]
[69]
Suda A, Kawasaki K, Komiyama S, et al. Design and synthesis of 2-amino-6-(1H,3H-benzo[de]isochromen-6-yl)-1,3,5-triazines as novel Hsp90 inhibitors. Bioorg Med Chem 2014; 22(2): 892-905.
[http://dx.doi.org/10.1016/j.bmc.2013.11.036] [PMID: 24369839]
[70]
Li ZH, Yang DX, Geng PF, et al. Design, synthesis and biological evaluation of [1,2,3]triazolo[4,5-d]pyrimidine derivatives possessing a hydrazone moiety as antiproliferative agents. Eur J Med Chem 2016; 124: 967-80.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.022] [PMID: 27771599]
[71]
El-Gohary NS, Shaaban MI. Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. Eur J Med Chem 2017; 137: 439-49.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.064] [PMID: 28623814]
[72]
King HD, Staab AJ, Pham-Kaplita K, et al. BR96 conjugates of highly potent anthracyclines. Bioorg Med Chem Lett 2003; 13(13): 2119-22.
[http://dx.doi.org/10.1016/S0960-894X(03)00375-5] [PMID: 12798317]
[73]
Leese MP, Newman SP, Purohit A, Reed MJ, Potter BVL. 2-Alkylsulfanyl estrogen derivatives: synthesis of a novel class of multi-targeted anti-tumour agents. Bioorg Med Chem Lett 2004; 14(12): 3135-8.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.027] [PMID: 15149660]
[74]
Gangjee A, Jain HD, Kisliuk RL. Novel 2-amino-4-oxo-5-arylthio-substituted-pyrrolo[2,3-d]pyrimidines as nonclassical antifolate inhibitors of thymidylate synthase. Bioorg Med Chem Lett 2005; 15(9): 2225-30.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.029] [PMID: 15837298]
[75]
Grigoryan LA, Kaldrikyan MA, Melik-Ogandzhanyan RG, Arsenyan FG, Stepanyan GM, Garibdzhanyan BG. Synthesis and antitumor activity of 2-S-substituted pyrimidine derivatives. Pharm Chem J 2005; 39: 468-72.
[http://dx.doi.org/10.1007/s11094-006-0003-0]
[76]
Mellon C, Aspiotis R, Black CW, et al. Lipophilic versus hydrogen-bonding effect in P3 on potency and selectivity of valine aspartyl ketones as caspase 3 inhibitors. Bioorg Med Chem Lett 2005; 15(17): 3886-90.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.116] [PMID: 16023344]
[77]
Saczewski F, Innocenti A, Sławiński J, et al. Carbonic anhydrase inhibitors: inhibition of human cytosolic isozymes I and II and tumor-associated isozymes IX and XII with S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides. Bioorg Med Chem 2008; 16(7): 3933-40.
[http://dx.doi.org/10.1016/j.bmc.2008.01.034] [PMID: 18242998]
[78]
Cuny GD, Robin M, Ulyanova NP, et al. Structure-activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors. Bioorg Med Chem Lett 2010; 20(12): 3491-4.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.150] [PMID: 20836251]
[79]
Albrecht S, Salomon E, Defoin A, Tarnus C. Rapid and efficient synthesis of a novel series of substituted aminobenzosuberone derivatives as potent, selective, non-peptidic neutral aminopeptidase inhibitors. Bioorg Med Chem 2012; 20(16): 4942-53.
[http://dx.doi.org/10.1016/j.bmc.2012.06.041] [PMID: 22796349]
[80]
Ling Y, Xiao YA, Chen GT, et al. Synthesis and in vitro biological evaluation of farnesylthiosalicylic acid derivatives as anti-tumor carcinoma agents. Chin Chem Lett 2012; 23: 1141-4.
[http://dx.doi.org/10.1016/j.cclet.2012.08.007]
[81]
Zheng CH, Yang H, Zhang M, et al. Design, synthesis, and activity evaluation of broad-spectrum small-molecule inhibitors of anti-apoptotic Bcl-2 family proteins: characteristics of broad-spectrum protein binding and its effects on anti-tumor activity. Bioorg Med Chem Lett 2012; 22(1): 39-44.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.101] [PMID: 22172701]
[82]
Čapkauskaitė E, Zubrienė A, Smirnov A, et al. Benzenesulfonamides with pyrimidine moiety as inhibitors of human carbonic anhydrases I, II, VI, VII, XII, and XIII. Bioorg Med Chem 2013; 21(22): 6937-47.
[http://dx.doi.org/10.1016/j.bmc.2013.09.029] [PMID: 24103428]
[83]
Fargualy AM, Habib NS, Ismail KA, Hassan AMM, Sarg MTM. Synthesis, biological evaluation and molecular docking studies of some pyrimidine derivatives. Eur J Med Chem 2013; 66: 276-95.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.028] [PMID: 23811090]
[84]
Hamdy R, Ziedan N, Ali S, et al. Synthesis and evaluation of 3-(benzylthio)-5-(1H-indol-3-yl)-1,2,4-triazol-4-amines as Bcl-2 inhibitory anticancer agents. Bioorg Med Chem Lett 2013; 23(8): 2391-4.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.029] [PMID: 23474389]
[85]
Rakse M, Karthikeyan C, Deora GS, et al. Design, synthesis and molecular modelling studies of novel 3-acetamido-4-methyl benzoic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. Eur J Med Chem 2013; 70: 469-76.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.030] [PMID: 24185377]
[86]
Sun L, Li J, Bera H, Dolzhenko AV, Chiu GNC, Chui WK. Fragment-based approach to the design of 5-chlorouracil-linked-pyrazolo[1,5-a][1,3,5]triazines as thymidine phosphorylase inhibitors. Eur J Med Chem 2013; 70: 400-10.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.022] [PMID: 24177367]
[87]
Zhang D, Zhang X, Ai J, et al. Synthesis and biological evaluation of 2-amino-5-aryl-3-benzylthiopyridine scaffold based potent c-Met inhibitors. Bioorg Med Chem 2013; 21(21): 6804-20.
[http://dx.doi.org/10.1016/j.bmc.2013.07.032] [PMID: 23993328]
[88]
Żołnowska B, Sławiński J, Pogorzelska A, Chojnacki J, Vullo D, Supuran CT. Carbonic anhydrase inhibitors. Synthesis, and molecular structure of novel series N-substituted N′-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)guanidines and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII. Eur J Med Chem 2014; 71: 135-47.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.081] [PMID: 24291567]
[89]
Çoruh I, Çevik Ö, Yelekçi K, Djikic T, Küçükgüzel ŞG. Synthesis, anti-cancer activity, and molecular modeling of etodolac-thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch Pharm 2018; 351: 1-16.
[http://dx.doi.org/10.1002/ardp.201700195]
[90]
Abdelhamid SG, El-Obeid HA, Al-Rashood KA, Khalil AA, El-Subbagh HI. Substituted Quinazolines, 1. Synthesis and antitumor activity of certain substituted 2-mercapto-4(3H)-quinazolinone analogs. Sci Pharm 2001; 69: 351-66.
[http://dx.doi.org/10.3797/scipharm.aut-01-205]
[91]
Ranise A, Spallarossa A, Schenone S, et al. Synthesis and antiproliferative activity of basic thioanalogues of merbarone. Bioorg Med Chem 2003; 11(12): 2575-89.
[http://dx.doi.org/10.1016/S0968-0896(03)00158-5] [PMID: 12757725]
[92]
Tandon VK, Singh RV, Yadav DB. Synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antiviral, antifungal and anticancer agents. Bioorg Med Chem Lett 2004; 14(11): 2901-4.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.047] [PMID: 15125956]
[93]
Lauria A, Patella C, Abbate I, Martorana A, Almerico AM. Lead optimization through VLAK protocol: new annelated pyrrolo-pyrimidine derivatives as antitumor agents. Eur J Med Chem 2012; 55: 375-83.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.046] [PMID: 22892346]
[94]
Murty MSR, Rama KR, Raoa RV, et al. Synthesis of new S-alkylated-3-mercapto-1,2,4-triazole derivatives bearing cyclic amine moiety as potent anti-cancer agents. Lett Drug Des Discov 2012; 9: 276-81.
[http://dx.doi.org/10.2174/157018012799129882]
[95]
Antypenko LM, Kovalenko SI, Antypenko OM, Katsev AM, Achkasova OM. Design and evaluation of novel antimicrobial and anti-cancer agents among tetrazolo[1,5-c]quinazoline-5-thione S-derivatives. Sci Pharm 2013; 81(1): 15-42.
[http://dx.doi.org/10.3797/scipharm.1208-13] [PMID: 23641327]
[96]
Ragab FAF, Abou-Seri SM, Abdel-Aziz SA, Alfayomy AM, Aboelmagd M. Design, synthesis and anticancer activity of new monastrol analogues bearing 1,3,4-oxadiazole moiety. Eur J Med Chem 2017; 138: 140-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.026] [PMID: 28667871]
[97]
Li L, Wang H. Heterogeneity of liver cancer and personalized therapy. Cancer Lett 2016; 379(2): 191-7.
[http://dx.doi.org/10.1016/j.canlet.2015.07.018] [PMID: 26213370]
[98]
Li J, Zhao YF, Yuan XY, Xu JX, Gong P. Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines. Molecules 2006; 11(7): 574-82.
[http://dx.doi.org/10.3390/11070574] [PMID: 17971729]
[99]
Wang Z, Shi XH, Wang J, et al. Synthesis, structure-activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers. Bioorg Med Chem Lett 2011; 21(4): 1097-101.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.124] [PMID: 21262571]
[100]
Zhang XY, Zhang P. Sensitization strategies in lung cancer. Oncol Lett 2016; 12(5): 3669-73.
[http://dx.doi.org/10.3892/ol.2016.5146] [PMID: 27900051]
[101]
Thomson P, Naylor MA, Stratford MRL, et al. Hypoxia-driven elimination of thiopurines from their nitrobenzyl prodrugs. Bioorg Med Chem Lett 2007; 17(15): 4320-2.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.018] [PMID: 17517505]
[102]
Altıntop MD, Özdemir A, Turan-Zitouni G, et al. Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur J Med Chem 2012; 58: 299-307.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.011] [PMID: 23142671]
[103]
Chen Y, Liu HR, Liu HS, et al. Antitumor agents 292. Design, synthesis and pharmacological study of S- and O-substituted 7-mercapto- or hydroxy-coumarins and chromones as potent cytotoxic agents. Eur J Med Chem 2012; 49: 74-85.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.025] [PMID: 22265685]
[104]
Seenaiah D, Reddy PR, Reddy GM, Padmaja A, Padmavathi V, Krishna NS. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur J Med Chem 2014; 77: 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.050] [PMID: 24607584]
[105]
Cai H, Huang X, Xu S, et al. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur J Med Chem 2016; 108: 89-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.013] [PMID: 26638042]
[106]
Xu CC, Wu JJ, Xu T, Yao CH, Yu BY, Liu JH. Synthesis and cytotoxicity of novel artemisinin derivatives containing sulfur atoms. Eur J Med Chem 2016; 123: 763-8.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.015] [PMID: 27537924]
[107]
Wang W, Zhao B, Xu C, Wu W. Synthesis and antitumor activity of the thiazoline and thiazine multithioether. Int J Org Chem (Irvine) 2012; 2: 117-20.
[http://dx.doi.org/10.4236/ijoc.2012.22018]
[108]
Yun F, Cheng C, Ullah S, He J, Zahi MR, Yuan Q. Thioether-based 2-aminobenzamide derivatives: Novel HDAC inhibitors with potent in vitro and in vivo antitumor activity. Eur J Med Chem 2019; 176: 195-207.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.007] [PMID: 31103900]
[109]
Suzuki T, Muto N, Bando M, et al. Design, synthesis, and biological activity of NCC149 derivatives as histone deacetylase 8-selective inhibitors. ChemMedChem 2014; 9(3): 657-64.
[http://dx.doi.org/10.1002/cmdc.201300414] [PMID: 24403121]
[110]
Zhao L, Li X, Zhang L, et al. Novel small molecules as apoptosis inducers: synthesis, preliminary structure-activity relationships, and in vitro biological evaluation. Bioorg Med Chem Lett 2013; 23(8): 2293-7.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.076] [PMID: 23489624]
[111]
Cui W, Lv W, Qu Y, et al. Discovery of 2-((3-cyanopyridin-2-yl)thio)acetamides as human lactate dehydrogenase A inhibitors to reduce the growth of MG-63 osteosarcoma cells: Virtual screening and biological validation. Bioorg Med Chem Lett 2016; 26(16): 3984-7.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.083] [PMID: 27406795]
[112]
Schröder FH, Roobol MJ. Prostate cancer epidemic in sight? Eur Urol 2012; 61(6): 1093-5.
[http://dx.doi.org/10.1016/j.eururo.2012.03.019] [PMID: 22464308]
[113]
Pakarainen T, Raitanen J, Talala K, et al. Number of screening rounds and postscreening prostate cancer ıncidence: results from the Finnish section of the European randomized study of screening for prostate cancer study. Eur Urol 2016; 70(3): 499-505.
[http://dx.doi.org/10.1016/j.eururo.2016.05.009] [PMID: 27210461]
[114]
Xue W, Song B, He W, et al. Synthesis and biological activity of novel 1-(2,3,4-trimethoxyphenyl)-2-{[5-(3,4,5-trimethoxyphenyl)-1,3,4-thiadiazol-2-yl]thio} ethanone oxime ester derivatives. J Heterocycl Chem 2006; 43: 867-71.
[http://dx.doi.org/10.1002/jhet.5570430409]
[115]
Yang S, Li Z, Jin L, et al. Synthesis and bioactivity of 4-alkyl(aryl)thioquinazoline derivatives. Bioorg Med Chem Lett 2007; 17(8): 2193-6.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.101] [PMID: 17317179]
[116]
Liu XH, Lv PC, Xue JY, Song BA, Zhu HL. Novel 2,4,5-trisubstituted oxazole derivatives: synthesis and antiproliferative activity. Eur J Med Chem 2009; 44(10): 3930-5.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.019] [PMID: 19423198]
[117]
Han Mİ, Bekçi H, Uba Aİ, et al. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-naproxen. Arch Pharm (Weinheim) 2019; 352(6)e1800365
[http://dx.doi.org/10.1002/ardp.201800365] [PMID: 31115928]
[118]
Han Mİ, Bekçi H, Cumaoğlu A, Küçükgüzel ŞG. Synthesis and characterization of 1;2;4-triazole containing hydrazide-hydrazones derived from (S)-naproxen as anticancer agents. Marmara Pharm J 2018; 22(4): 559-69.
[119]
Yılmaz Ö, Bayer B, Bekçi H, et al. Synthesis, anticancer activity on prostate cancer cell lines and molecular modeling studies of flurbiprofen-thioether derivatives as potential target of MetAP (Type II). Med Chem 2020; 16(6): 735-49.
[PMID: 31203805]
[120]
Birgül K, Yıldırım Y, Karasulu HY, et al. Synthesis, molecular modeling, in vivo study and anticancer activity against prostate cancer of (+) (S)-naproxen derivatives. Eur J Med Chem 2020; 208112841
[http://dx.doi.org/10.1016/j.ejmech.2020.112841] [PMID: 32998089]
[121]
Schrader AJ, Hofmann R. Metastatic renal cell carcinoma: recent advances and current therapeutic options. Anticancer Drugs 2008; 19(3): 235-45.
[http://dx.doi.org/10.1097/CAD.0b013e3282f444de] [PMID: 18510169]
[122]
Abdel-Aziz M. Abuo-Rahma Gel-D, Beshr EAM, Ali TFS. New nitric oxide donating 1,2,4-triazole/oxime hybrids: synthesis, investigation of anti-inflammatory, ulceroginic liability and antiproliferative activities. Bioorg Med Chem 2013; 21(13): 3839-49.
[http://dx.doi.org/10.1016/j.bmc.2013.04.022] [PMID: 23665142]
[123]
Khalil AA, AbdelHamide SG, Al-Obaid AM, El-Subbagh HI. Substituted quinazolines, part 2. synthesis and in-vitro anti-cancer evaluation of new 2-substituted mercapto-3H-quinazoline analogs. Arch Pharm Pharm Med Chem 2003; 2: 95-103.
[http://dx.doi.org/10.1002/ardp.200390011]
[124]
El-Azab AS, Al-Omar MA, Abdel-Aziz AAM, et al. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: molecular docking study. Eur J Med Chem 2010; 45(9): 4188-98.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.013] [PMID: 20599299]
[125]
Abdel Gawad NM, Georgey HH, Youssef RM, El-Sayed NA. Synthesis and antitumor activity of some 2, 3-disubstituted quinazolin-4(3H)-ones and 4, 6- disubstituted- 1, 2, 3, 4-tetrahydroquinazolin-2H-ones. Eur J Med Chem 2010; 45(12): 6058-67.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.008] [PMID: 21051122]
[126]
Jin C, Liang YJ, He H, Fu L. Synthesis and antitumor activity of ureas containing pyrimidinyl group. Eur J Med Chem 2011; 46(1): 429-32.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.026] [PMID: 21144621]
[127]
Saad HA, Moustafa AH. Synthesis and anticancer activity of some new s-glycosyl and s-alkyl 1,2,4-triazinone derivatives. Molecules 2011; 16(7): 5682-700.
[http://dx.doi.org/10.3390/molecules16075682] [PMID: 21727893]
[128]
Brożewicz K, Sławiński J. 1-(2-Mercaptobenzenesulfonyl)-3-hydroxyguanidines--novel potent antiproliferatives, synthesis and in vitro biological activity. Eur J Med Chem 2012; 55: 384-94.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.042] [PMID: 22892345]
[129]
Purohit M, Mayur YC. Synthesis, in vitro cytotoxicity, and anti-microbial studies of 1,4-bis(4-substituted-5-mercapto-1,2,4-triazol-3-yl)butanes. Med Chem Res 2012; 21: 174-84.
[http://dx.doi.org/10.1007/s00044-010-9517-9]
[130]
Al-Suwaidan IA, Alanazi AM, Abdel-Aziz AAM, Mohamed MA, El-Azab AS. Design, synthesis and biological evaluation of 2-mercapto-3-phenethylquinazoline bearing anilide fragments as potential antitumor agents: molecular docking study. Bioorg Med Chem Lett 2013; 23(13): 3935-41.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.056] [PMID: 23683592]
[131]
Du QR, Li DD, Pi YZ. Li, J.R.; Sun, J.; Fang, F.; Zhong, W.Q.; Gong, H.B.; Zhu, H.L. Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anti-cancer/antimicrobial agents. Bioorg Med Chem 2013; 21: 2286-97.
[http://dx.doi.org/10.1016/j.bmc.2013.02.008] [PMID: 23490159]
[132]
Huang W, Chen Q, Yang WC, Yang GF. Efficient synthesis and antiproliferative activity of novel thioether-substituted flavonoids. Eur J Med Chem 2013; 66: 161-70.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.037] [PMID: 23792763]
[133]
Insuasty B, Becerra D, Quiroga J, Abonia R, Nogueras M, Cobo J. Microwave-assisted synthesis of pyrimido[4,5-b][1,6]naphthyridin-4(3H)-ones with potential antitumor activity. Eur J Med Chem 2013; 60: 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.037] [PMID: 23279862]
[134]
Kopel LC, Ahmed MS, Halaweish FT. Synthesis of novel estrone analogs by incorporation of thiophenols via conjugate addition to an enone side chain. Steroids 2013; 78(11): 1119-25.
[http://dx.doi.org/10.1016/j.steroids.2013.07.005] [PMID: 23899492]
[135]
Kovalenko SI, Nosulenko IS, Voskoboynik AY, et al. Novel N-aryl(alkaryl)-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-6-yl)thio]acetamides: synthesis, cytotoxicity, anti-cancer activity, compare analysis and docking. Med Chem Res 2013; 22: 2610-32.
[http://dx.doi.org/10.1007/s00044-012-0257-x]
[136]
Yurttaş L, Duran M, Demirayak Ş, Gençer HK, Tunalı Y. Synthesis and initial biological evaluation of substituted 1-phenylamino-2-thio-4,5-dimethyl-1H-imidazole derivatives. Bioorg Med Chem Lett 2013; 23(24): 6764-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.024] [PMID: 24176398]
[137]
Markosyan AI, Torshirzad NM, Shakhbazyan GH, Arsenyan FG. Synthesis and antineoplastic properties of 3-substituted 5,5-dimethylbenzo[h]quinazolin-4(3H)-ones. Pharm Chem J 2014; 47(12): 651-4.
[http://dx.doi.org/10.1007/s11094-014-1025-7]
[138]
Murty MSR, Ram KR, Rao BR, et al. Synthesis, characterization, and anti-cancer studies of S and N alkyl piperazine-substituted positional isomers of 1,2,4-triazole derivatives. Med Chem Res 2014; 23: 1661-71.
[http://dx.doi.org/10.1007/s00044-013-0757-3]
[139]
Shao KP, Zhang XY, Chen PJ, et al. Synthesis and biological evaluation of novel pyrimidine-benzimidazol hybrids as potential anticancer agents. Bioorg Med Chem Lett 2014; 24(16): 3877-81.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.050] [PMID: 25001482]
[140]
Song Y, Lin X, Kang D, et al. Discovery and characterization of novel imidazopyridine derivative CHEQ-2 as a potent CDC25 inhibitor and promising anticancer drug candidate. Eur J Med Chem 2014; 82: 293-307.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.063] [PMID: 24922544]
[141]
Wang XJ, Yang ML, Zhang LP, et al. Design of novel bis-benzimidazole derivatives as DNA minor groove binding agents. Chin Chem Lett 2014; 25: 589-92.
[http://dx.doi.org/10.1016/j.cclet.2014.01.019]
[142]
Wu XQ, Huang C, Jia YM, Song BA, Li J, Liu XH. Novel coumarin-dihydropyrazole thio-ethanone derivatives: design, synthesis and anticancer activity. Eur J Med Chem 2014; 74: 717-25.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.014] [PMID: 24119869]
[143]
Park HS, Kim C, Park MS. Discovery and synthesis of novel allylthioaralkylthiopyridazines: their antiproliferative activity against MCF-7 and Hep3B cells. Arch Pharm Res 2015; 38(5): 791-800.
[http://dx.doi.org/10.1007/s12272-014-0416-3] [PMID: 24925344]
[144]
El-Messery SMS, Hassan GS, Nagi MN, Habib EE, Al-Rashood ST, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of some new methoxylated 2-benzylthio-quinazoline-4(3H)-ones as nonclassical antifolates. Bioorg Med Chem Lett 2016; 26(19): 4815-23.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.022] [PMID: 27554444]
[145]
Kulabaş N, Tatar E, Bingöl Özakpınar Ö, et al. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur J Med Chem 2016; 121: 58-70.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.017] [PMID: 27214512]
[146]
Mavrova AT, Dimov S, Yancheva D, Rangelov M, Wesselinova D, Tsenov JA. Synthesis, anticancer activity and photostability of novel 3-ethyl-2-mercapto-thieno[2,3-d]pyrimidin-4(3H)-ones. Eur J Med Chem 2016; 123: 69-79.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.022] [PMID: 27474924]
[147]
Wang Y, Richard MA, Top S, et al. VessiÀres, A.; Mansuy, D.; Jaouen, G. Ferrocenyl quinone methide–thiol adducts as new antiproliferative agents: synthesis, metabolic formation from ferrociphenols, and oxidative transformation. Angew Chem Int Ed Engl 2016; 55(35): 10431-4.
[http://dx.doi.org/10.1002/anie.201603931] [PMID: 27276169]
[148]
Yan L, Liang J, Yao C, et al. Pyrimidine triazole thioether derivatives as toll-like receptor 5 (TLR5)/flagellin complex inhibitors. Chem. Med. ChemMedChem 2016; 11(8): 822-6.
[http://dx.doi.org/10.1002/cmdc.201500471] [PMID: 26634412]
[149]
Zhao PL, Chen P, Li Q, et al. Design, synthesis and biological evaluation of novel 3-alkylsulfanyl-4-amino-1,2,4-triazole derivatives. Bioorg Med Chem Lett 2016; 26(15): 3679-83.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.086] [PMID: 27287368]
[150]
Abuelizz HA, Marzouk M, Ghabbour H, Al-Salahi R. Synthesis and anticancer activity of new quinazoline derivatives. Saudi Pharm J 2017; 25(7): 1047-54.
[http://dx.doi.org/10.1016/j.jsps.2017.04.022] [PMID: 29158714]
[151]
El-Gazzar YI, Georgey HH, El-Messery SM, et al. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3H)-one as DHFR inhibitors. Bioorg Chem 2017; 72: 282-92.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.019] [PMID: 28499189]
[152]
Li ZH, Liu XQ, Zhao TQ, et al. Design, synthesis and preliminary antiproliferative activity studies of new diheteroaryl thioether derivatives. Bioorg Med Chem Lett 2017; 27(18): 4377-82.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.021] [PMID: 28838695]
[153]
Pogorzelska A, Sławiński J, Żołnowska B, et al. Novel 2-(2-alkylthiobenzenesulfonyl)-3-(phenylprop-2-ynylideneamino)guanidine derivatives as potent anticancer agents - Synthesis, molecular structure, QSAR studies and metabolic stability. Eur J Med Chem 2017; 138: 357-70.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.059] [PMID: 28688276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy