Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

靶向自噬治疗癌症的治疗潜力

卷 21, 期 9, 2021

发表于: 01 June, 2021

页: [725 - 736] 页: 12

弟呕挨: 10.2174/1568009621666210601113144

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

自噬是一种机制,通过该机制,不需要的细胞成分通过涉及溶酶体的途径降解,并导致癌症等多种病理状况。 胃肠道癌症影响从食道到肛门的消化器官,是全球最常见的癌症之一。 使用药物调节自噬为癌症治疗提供了巨大的潜力。 在这篇综述中,总结了一些常用的化合物及其分子靶点、它们刺激或阻断自噬途径的机制,以及它们在治疗胃肠道癌症患者中的治疗益处。

关键词: 自噬、溶酶体、药物、胃肠道癌症、治疗潜力、化疗药物。

Next »
图形摘要
[1]
Taniguchi, H.; Moriya, C.; Igarashi, H.; Saitoh, A.; Yamamoto, H.; Adachi, Y.; Imai, K. Cancer stem cells in human gastrointestinal cancer. Cancer Sci., 2016, 107(11), 1556-1562.
[http://dx.doi.org/10.1111/cas.13069] [PMID: 27575869]
[2]
Jiang, P.; Mizushima, N. Autophagy and human diseases. Cell Res., 2014, 24(1), 69-79.
[http://dx.doi.org/10.1038/cr.2013.161] [PMID: 24323045]
[3]
Koustas, E.; Sarantis, P.; Kyriakopoulou, G.; Papavassiliou, A.G.; Karamouzis, M.V. The interplay of autophagy and tumor microenvironment in colorectal cancer-ways of enhancing immunotherapy action. Cancers (Basel), 2019, 11(4), E533.
[http://dx.doi.org/10.3390/cancers11040533] [PMID: 31013961]
[4]
Li, F.; Guo, H.; Yang, Y.; Feng, M.; Liu, B.; Ren, X.; Zhou, H. Autophagy modulation in bladder cancer development and treatment (Review). Oncol. Rep., 2019, 42(5), 1647-1655.
[http://dx.doi.org/10.3892/or.2019.7286] [PMID: 31436298]
[5]
Folkerts, H.; Hilgendorf, S.; Vellenga, E.; Bremer, E.; Wiersma, V.R. The multifaceted role of autophagy in cancer and the microenvironment. Med. Res. Rev., 2019, 39(2), 517-560.
[http://dx.doi.org/10.1002/med.21531] [PMID: 30302772]
[6]
Barth, S.; Glick, D.; Macleod, K.F. Autophagy: assays and artifacts. J. Pathol., 2010, 221(2), 117-124.
[http://dx.doi.org/10.1002/path.2694] [PMID: 20225337]
[7]
Limpert, A.S.; Lambert, L.J.; Bakas, N.A.; Bata, N.; Brun, S.N.; Shaw, R.J.; Cosford, N.D.P. Autophagy in cancer: regulation by small molecules. Trends Pharmacol. Sci., 2018, 39(12), 1021-1032.
[http://dx.doi.org/10.1016/j.tips.2018.10.004] [PMID: 30454769]
[8]
Heckmann, B.L.; Yang, X.; Zhang, X.; Liu, J. The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br. J. Pharmacol., 2013, 168(1), 163-171.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02110.x] [PMID: 22817685]
[9]
Pasquier, B. Autophagy inhibitors. Cell. Mol. Life Sci., 2016, 73(5), 985-1001.
[http://dx.doi.org/10.1007/s00018-015-2104-y] [PMID: 26658914]
[10]
Yang, Y.P.; Hu, L.F.; Zheng, H.F.; Mao, C.J.; Hu, W.D.; Xiong, K.P.; Wang, F.; Liu, C.F. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin., 2013, 34(5), 625-635.
[http://dx.doi.org/10.1038/aps.2013.5] [PMID: 23524572]
[11]
Pesce, E.; Sondo, E.; Ferrera, L.; Tomati, V.; Caci, E.; Scudieri, P.; Musante, I.; Renda, M.; Baatallah, N.; Servel, N.; Hinzpeter, A.; di Bernardo, D.; Pedemonte, N.; Galietta, L.J.V. The autophagy inhibitor spautin-1 antagonizes rescue of mutant CFTR through an autophagy-independent and USP13-mediated mechanism. Front. Pharmacol., 2018, 9, 1464.
[http://dx.doi.org/10.3389/fphar.2018.01464] [PMID: 30618756]
[12]
Ronan, B.; Flamand, O.; Vescovi, L.; Dureuil, C.; Durand, L.; Fassy, F.; Bachelot, M.F.; Lamberton, A.; Mathieu, M.; Bertrand, T.; Marquette, J.P.; El-Ahmad, Y.; Filoche-Romme, B.; Schio, L.; Garcia-Echeverria, C.; Goulaouic, H.; Pasquier, B. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol., 2014, 10(12), 1013-1019.
[http://dx.doi.org/10.1038/nchembio.1681] [PMID: 25326666]
[13]
Egan, D.F.; Chun, M.G.; Vamos, M.; Zou, H.; Rong, J.; Miller, C.J.; Lou, H.J.; Raveendra-Panickar, D.; Yang, C.C.; Sheffler, D.J.; Teriete, P.; Asara, J.M.; Turk, B.E.; Cosford, N.D.; Shaw, R.J. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell, 2015, 59(2), 285-297.
[http://dx.doi.org/10.1016/j.molcel.2015.05.031] [PMID: 26118643]
[14]
Mauvezin, C.; Neufeld, T.P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 2015, 11(8), 1437-1438.
[http://dx.doi.org/10.1080/15548627.2015.1066957] [PMID: 26156798]
[15]
Al-Bari, A.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[16]
Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14(8), 1435-1455.
[http://dx.doi.org/10.1080/15548627.2018.1474314] [PMID: 29940786]
[17]
Ben-Zvi, I.; Kivity, S.; Langevitz, P.; Shoenfeld, Y. Hydroxychloroquine: from malaria to autoimmunity. Clin. Rev. Allergy Immunol., 2012, 42(2), 145-153.
[http://dx.doi.org/10.1007/s12016-010-8243-x] [PMID: 21221847]
[18]
Dielschneider, R.F.; Henson, E.S.; Gibson, S.B. Lysosomes as oxidative targets for cancer therapy. Oxid. Med. Cell. Longev., 2017, 2017, 3749157.
[http://dx.doi.org/10.1155/2017/3749157] [PMID: 28757908]
[19]
Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781.
[http://dx.doi.org/10.3332/ecancer.2017.781] [PMID: 29225688]
[20]
McAfee, Q.; Zhang, Z.; Samanta, A.; Levi, S.M.; Ma, X.H.; Piao, S.; Lynch, J.P.; Uehara, T.; Sepulveda, A.R.; Davis, L.E.; Winkler, J.D.; Amaravadi, R.K. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl. Acad. Sci. USA, 2012, 109(21), 8253-8258.
[http://dx.doi.org/10.1073/pnas.1118193109] [PMID: 22566612]
[21]
Motoi, Y.; Shimada, K.; Ishiguro, K.; Hattori, N. Lithium and autophagy. ACS Chem. Neurosci., 2014, 5(6), 434-442.
[http://dx.doi.org/10.1021/cn500056q] [PMID: 24738557]
[22]
Vakifahmetoglu-Norberg, H.; Xia, H.G.; Yuan, J. Pharmacologic agents targeting autophagy. J. Clin. Invest., 2015, 125(1), 5-13.
[http://dx.doi.org/10.1172/JCI73937] [PMID: 25654545]
[23]
Kondratskyi, A.; Kondratska, K.; Skryma, R.; Klionsky, D.J.; Prevarskaya, N. Ion channels in the regulation of autophagy. Autophagy, 2018, 14(1), 3-21.
[http://dx.doi.org/10.1080/15548627.2017.1384887] [PMID: 28980859]
[24]
Wu, Y.C.; Wu, W.K.; Li, Y.; Yu, L.; Li, Z.J.; Wong, C.C.; Li, H.T.; Sung, J.J.; Cho, C.H. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem. Biophys. Res. Commun., 2009, 382(2), 451-456.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.051] [PMID: 19289106]
[25]
Li, L.Q.; Xie, W.J.; Pan, D.; Chen, H.; Zhang, L. Inhibition of autophagy by bafilomycin A1 promotes chemosensitivity of gastric cancer cells. Tumour Biol., 2016, 37(1), 653-659.
[http://dx.doi.org/10.1007/s13277-015-3842-z] [PMID: 26242265]
[26]
Qiao, X.; Wang, X.; Shang, Y.; Li, Y.; Chen, S.Z. Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun (Lond), 2018, 38(1), 43.
[http://dx.doi.org/10.1186/s40880-018-0309-9] [PMID: 29970185]
[27]
Dong, Y.; Wu, Y.; Zhao, G.L.; Ye, Z.Y.; Xing, C.G.; Yang, X.D. Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3), 1047-1054.
[PMID: 30779071]
[28]
Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int. J. Oncol., 2010, 37(4), 821-828.
[http://dx.doi.org/10.3892/ijo-00000732] [PMID: 20811703]
[29]
He, X.X.; Huang, C.K.; Xie, B.S. Autophagy inhibition enhanced 5-FU-induced cell death in human gastric carcinoma BGC-823 cells. Mol. Med. Rep., 2018, 17(5), 6768-6776.
[http://dx.doi.org/10.3892/mmr.2018.8661] [PMID: 29512733]
[30]
Sasaki, K.; Tsuno, N.H.; Sunami, E.; Tsurita, G.; Kawai, K.; Okaji, Y.; Nishikawa, T.; Shuno, Y.; Hongo, K.; Hiyoshi, M.; Kaneko, M.; Kitayama, J.; Takahashi, K.; Nagawa, H. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer, 2010, 10, 370.
[http://dx.doi.org/10.1186/1471-2407-10-370] [PMID: 20630104]
[31]
Song, Y.J.; Zhang, S.S.; Guo, X.L.; Sun, K.; Han, Z.P.; Li, R.; Zhao, Q.D.; Deng, W.J.; Xie, X.Q.; Zhang, J.W.; Wu, M.C.; Wei, L.X. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett., 2013, 339(1), 70-81.
[http://dx.doi.org/10.1016/j.canlet.2013.07.021] [PMID: 23879969]
[32]
Hashimoto, D.; Bläuer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur. J. Cancer, 2014, 50(7), 1382-1390.
[http://dx.doi.org/10.1016/j.ejca.2014.01.011] [PMID: 24503026]
[33]
Dong, X.; Wang, Y.; Zhou, Y.; Wen, J.; Wang, S.; Shen, L. Aquaporin 3 facilitates chemoresistance in gastric cancer cells to cisplatin via autophagy. Cell Death Discov., 2016, 2, 16087.
[http://dx.doi.org/10.1038/cddiscovery.2016.87] [PMID: 27867537]
[34]
Cai, Q.; Wang, X.; Wang, S.; Jin, L.; Ding, J.; Zhou, D.; Ma, F. Gallbladder cancer progression is reversed by nanomaterial-induced photothermal therapy in combination with chemotherapy and autophagy inhibition. Int. J. Nanomedicine, 2020, 15, 253-262.
[http://dx.doi.org/10.2147/IJN.S231289] [PMID: 32021178]
[35]
Liang, X.; Tang, J.; Liang, Y.; Jin, R.; Cai, X. Suppression of autophagy by chloroquine sensitizes 5-fluorouracil-mediated cell death in gallbladder carcinoma cells. Cell Biosci., 2014, 4(1), 10.
[http://dx.doi.org/10.1186/2045-3701-4-10] [PMID: 24581180]
[36]
Amaravadi, R.K.; Winkler, J.D. Lys05: a new lysosomal autophagy inhibitor. Autophagy, 2012, 8(9), 1383-1384.
[http://dx.doi.org/10.4161/auto.20958] [PMID: 22878685]
[37]
Scott, A.J.; Arcaroli, J.J.; Bagby, S.M.; Yahn, R.; Huber, K.M.; Serkova, N.J.; Nguyen, A.; Kim, J.; Thorburn, A.; Vogel, J.; Quackenbush, K.S.; Capasso, A.; Schreiber, A.; Blatchford, P.; Klauck, P.J.; Pitts, T.M.; Eckhardt, S.G.; Messersmith, W.A. Cabozantinib exhibits potent antitumor activity in colorectal cancer patient-derived tumor xenograft models via autophagy and signaling mechanisms. Mol. Cancer Ther., 2018, 17(10), 2112-2122.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0131] [PMID: 30026382]
[38]
Gil-Ad, I.; Zolokov, A.; Lomnitski, L.; Taler, M.; Bar, M.; Luria, D.; Ram, E.; Weizman, A. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int. J. Oncol., 2008, 33(2), 277-286.
[http://dx.doi.org/10.3892/ijo_00000007] [PMID: 18636148]
[39]
Park, W.H.; Kim, E.S.; Jung, C.W.; Kim, B.K.; Lee, Y.Y. Monensin-mediated growth inhibition of SNU-C1 colon cancer cells via cell cycle arrest and apoptosis. Int. J. Oncol., 2003, 22(2), 377-382.
[http://dx.doi.org/10.3892/ijo.22.2.377] [PMID: 12527937]
[40]
Wang, X.; Wu, X.; Zhang, Z.; Ma, C.; Wu, T.; Tang, S.; Zeng, Z.; Huang, S.; Gong, C.; Yuan, C.; Zhang, L.; Feng, Y.; Huang, B.; Liu, W.; Zhang, B.; Shen, Y.; Luo, W.; Wang, X.; Liu, B.; Lei, Y.; Ye, Z.; Zhao, L.; Cao, D.; Yang, L.; Chen, X.; Haydon, R.C.; Luu, H.H.; Peng, B.; Liu, X.; He, T.C. Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci. Rep., 2018, 8(1), 17914.
[http://dx.doi.org/10.1038/s41598-018-36214-5] [PMID: 30559409]
[41]
Vakifahmetoglu-Norberg, H.; Kim, M.; Xia, H.G.; Iwanicki, M.P.; Ofengeim, D.; Coloff, J.L.; Pan, L.; Ince, T.A.; Kroemer, G.; Brugge, J.S.; Yuan, J. Chaperone-mediated autophagy degrades mutant p53. Genes Dev., 2013, 27(15), 1718-1730.
[http://dx.doi.org/10.1101/gad.220897.113] [PMID: 23913924]
[42]
Zhu, M.M.; Tong, J.L.; Xu, Q.; Nie, F.; Xu, X.T.; Xiao, S.D.; Ran, Z.H. Increased JNK1 signaling pathway is responsible for ABCG2-mediated multidrug resistance in human colon cancer. PLoS One, 2012, 7(8), e41763.
[http://dx.doi.org/10.1371/journal.pone.0041763] [PMID: 22870247]
[43]
Zhou, G.; Yang, J.; Song, P. Correlation of ERK/MAPK signaling pathway with proliferation and apoptosis of colon cancer cells. Oncol. Lett., 2019, 17(2), 2266-2270.
[http://dx.doi.org/10.3892/ol.2018.9857] [PMID: 30675292]
[44]
Wang, Q.; Li, N.; Wang, X.; Kim, M.M.; Evers, B.M. Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3′-kinase inhibition in the KM20 human colon cancer cell line. Clin. Cancer Res., 2002, 8(6), 1940-1947.
[PMID: 12060639]
[45]
Ng, S.S.W.; Tsao, M.S.; Nicklee, T.; Hedley, D.W. Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin. Cancer Res., 2001, 7(10), 3269-3275.
[PMID: 11595724]
[46]
Li, B.; Li, J.; Xu, W.W.; Guan, X.Y.; Qin, Y.R.; Zhang, L.Y.; Law, S.; Tsao, S.W.; Cheung, A.L. Suppression of esophageal tumor growth and chemoresistance by directly targeting the PI3K/AKT pathway. Oncotarget, 2014, 5(22), 11576-11587.
[http://dx.doi.org/10.18632/oncotarget.2596] [PMID: 25344912]
[47]
Semba, S.; Itoh, N.; Ito, M.; Harada, M.; Yamakawa, M. The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenylchromone (LY294002), a specific inhibitor of phosphatidylinositol 3′-kinase, in human colon cancer cells. Clin. Cancer Res., 2002, 8(6), 1957-1963.
[PMID: 12060641]
[48]
Fujiwara, M.; Izuishi, K.; Sano, T.; Hossain, M.A.; Kimura, S.; Masaki, T.; Suzuki, Y. Modulating effect of the PI3-kinase inhibitor LY294002 on cisplatin in human pancreatic cancer cells. J. Exp. Clin. Cancer Res., 2008, 27, 76.
[http://dx.doi.org/10.1186/1756-9966-27-76] [PMID: 19032736]
[49]
Yang, S.Y.; Miah, A.; Sales, K.M.; Fuller, B.; Seifalian, A.M.; Winslet, M. Inhibition of the p38 MAPK pathway sensitises human colon cancer cells to 5-fluorouracil treatment. Int. J. Oncol., 2011, 38(6), 1695-1702.
[http://dx.doi.org/10.3892/ijo.2011.982] [PMID: 21424124]
[50]
Wei, R.; Xiao, Y.; Song, Y.; Yuan, H.; Luo, J.; Xu, W. FAT4 regulates the EMT and autophagy in colorectal cancer cells in part via the PI3K-AKT signaling axis. J. Exp. Clin. Cancer Res., 2019, 38(1), 112.
[http://dx.doi.org/10.1186/s13046-019-1043-0] [PMID: 30832706]
[51]
Xu, N.; Zhang, J.; Shen, C.; Luo, Y.; Xia, L.; Xue, F.; Xia, Q. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochem. Biophys. Res. Commun., 2012, 423(4), 826-831.
[http://dx.doi.org/10.1016/j.bbrc.2012.06.048] [PMID: 22713463]
[52]
Chang, Y.; Yan, W.; He, X.; Zhang, L.; Li, C.; Huang, H.; Nace, G.; Geller, D.A.; Lin, J.; Tsung, A. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology, 2012, 143(1), 177-87.e8.
[http://dx.doi.org/10.1053/j.gastro.2012.04.009] [PMID: 22504094]
[53]
Xu, Y.; An, Y.; Wang, Y.; Zhang, C.; Zhang, H.; Huang, C.; Jiang, H.; Wang, X.; Li, X. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol. Rep., 2013, 29(5), 2019-2024.
[http://dx.doi.org/10.3892/or.2013.2338] [PMID: 23483142]
[54]
He, C.; Dong, X.; Zhai, B.; Jiang, X.; Dong, D.; Li, B.; Jiang, H.; Xu, S.; Sun, X. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget, 2015, 6(30), 28867-28881.
[http://dx.doi.org/10.18632/oncotarget.4814] [PMID: 26311740]
[55]
Timme, C.R.; Gruidl, M.; Yeatman, T.J. Gamma-secretase inhibition attenuates oxaliplatin-induced apoptosis through increased Mcl-1 and/or Bcl-xL in human colon cancer cells. Apoptosis, 2013, 18(10), 1163-1174.
[http://dx.doi.org/10.1007/s10495-013-0883-x] [PMID: 23887890]
[56]
Law, B.Y.K.; Chan, W.K.; Xu, S.W.; Wang, J.R.; Bai, L.P.; Liu, L.; Wong, V.K. Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells. Sci. Rep., 2014, 4, 5510.
[http://dx.doi.org/10.1038/srep05510] [PMID: 24981420]
[57]
Rattanawong, A.; Payon, V.; Limpanasittikul, W.; Boonkrai, C.; Mutirangura, A.; Wonganan, P. Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1. Oncol. Rep., 2018, 39(1), 227-238.
[http://dx.doi.org/10.3892/or.2017.6084] [PMID: 29138869]
[58]
Song, X.; Zhu, S.; Chen, P.; Hou, W.; Wen, Q.; Liu, J.; Xie, Y.; Liu, J.; Klionsky, D.J.; Kroemer, G.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc- activity. Curr. Biol., 2018, 28(15), 2388-2399.e5.
[http://dx.doi.org/10.1016/j.cub.2018.05.094] [PMID: 30057310]
[59]
Tang, J.Y.; Dai, T.; Zhang, H.; Xiong, W.J.; Xu, M.Z.; Wang, X.J.; Tang, Q.H.; Chen, B.; Xu, M. GDC-0980-induced apoptosis is enhanced by autophagy inhibition in human pancreatic cancer cells. Biochem. Biophys. Res. Commun., 2014, 453(3), 533-538.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.115] [PMID: 25285629]
[60]
Floris, G.; Wozniak, A.; Sciot, R.; Li, H.; Friedman, L.; Van Looy, T.; Wellens, J.; Vermaelen, P.; Deroose, C.M.; Fletcher, J.A.; Debiec-Rychter, M.; Schöffski, P. A potent combination of the novel PI3K Inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal. Clin. Cancer Res., 2013, 19(3), 620-630.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2853] [PMID: 23231951]
[61]
Patil, S.P.; Pacitti, M.F.; Gilroy, K.S.; Ruggiero, J.C.; Griffin, J.D.; Butera, J.J.; Notarfrancesco, J.M.; Tran, S.; Stoddart, J.W. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study. J. Comput. Aided Mol. Des., 2015, 29(2), 155-163.
[http://dx.doi.org/10.1007/s10822-014-9811-6] [PMID: 25377899]
[62]
Bearzatto, A. Nimodipine as a modulator of resistance to doxorubicin in human colon-adenocarcinoma cells: A comparative study with verapamil. Int. J. Oncol., 1996.
[http://dx.doi.org/10.3892/ijo.9.1.57]
[63]
Huang, S.T.; Hsu, W.F.; Huang, H.S.; Yen, J.H.; Lin, M.C.; Peng, C.Y.; Yen, H.R. Improved survival in hepatocellular carcinoma patients with cardiac arrhythmia by amiodarone treatment through autophagy. Int. J. Mol. Sci., 2019, 20(16), E3978.
[http://dx.doi.org/10.3390/ijms20163978] [PMID: 31443312]
[64]
Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[65]
Huang, T.; Song, X.; Yang, Y.; Wan, X.; Alvarez, A.A.; Sastry, N.; Feng, H.; Hu, B.; Cheng, S.Y. Autophagy and hallmarks of cancer. Crit. Rev. Oncog., 2018, 23(5-6), 247-267.
[http://dx.doi.org/10.1615/CritRevOncog.2018027913] [PMID: 30311559]
[66]
Burada, F.; Nicoli, E.R.; Ciurea, M.E.; Uscatu, D.C.; Ioana, M.; Gheonea, D.I. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J. Gastrointest. Oncol., 2015, 7(11), 271-284.
[http://dx.doi.org/10.4251/wjgo.v7.i11.271] [PMID: 26600927]
[67]
Mahalingam, D.; Mita, M.; Sarantopoulos, J.; Wood, L.; Amaravadi, R.K.; Davis, L.E.; Mita, A.C.; Curiel, T.J.; Espitia, C.M.; Nawrocki, S.T.; Giles, F.J.; Carew, J.S. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy, 2014, 10(8), 1403-1414.
[http://dx.doi.org/10.4161/auto.29231] [PMID: 24991835]
[68]
Yang, A.; Herter-Sprie, G.; Zhang, H.; Lin, E.Y.; Biancur, D.; Wang, X.; Deng, J.; Hai, J.; Yang, S.; Wong, K.K.; Kimmelman, A.C. Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov., 2018, 8(3), 276-287.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0952] [PMID: 29317452]
[69]
Yang, A.; Kimmelman, A.C. Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status. Autophagy, 2014, 10(9), 1683-1684.
[http://dx.doi.org/10.4161/auto.29961] [PMID: 25046107]
[70]
Donohue, E.; Thomas, A.; Maurer, N.; Manisali, I.; Zeisser-Labouebe, M.; Zisman, N.; Anderson, H.J.; Ng, S.S.; Webb, M.; Bally, M.; Roberge, M. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J. Cancer, 2013, 4(7), 585-596.
[http://dx.doi.org/10.7150/jca.7030] [PMID: 24069069]
[71]
Huggett, M.T.; Jermyn, M.; Gillams, A.; Illing, R.; Mosse, S.; Novelli, M.; Kent, E.; Bown, S.G.; Hasan, T.; Pogue, B.W.; Pereira, S.P. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer, 2014, 110(7), 1698-1704.
[http://dx.doi.org/10.1038/bjc.2014.95] [PMID: 24569464]
[72]
Chak, A.; Buttar, N.S.; Foster, N.R.; Seisler, D.K.; Marcon, N.E.; Schoen, R.; Cruz-Correa, M.R.; Falk, G.W.; Sharma, P.; Hur, C.; Katzka, D.A.; Rodriguez, L.M.; Richmond, E.; Sharma, A.N.; Smyrk, T.C.; Mandrekar, S.J.; Limburg, P.J. Metformin does not reduce markers of cell proliferation in esophageal tissues of patients with Barrett’s esophagus. Clin. Gastroenterol. Hepatol., 2015, 13(4), 665-72.e1, 4.
[http://dx.doi.org/10.1016/j.cgh.2014.08.040] [PMID: 25218668]
[73]
Akkoç, Y.; Gözüaçık, D. Autophagy and liver cancer. Turk. J. Gastroenterol., 2018, 29(3), 270-282.
[http://dx.doi.org/10.5152/tjg.2018.150318] [PMID: 29755011]
[74]
Manogaran, P.; Beeraka, N.M.; Padma, V.V. The cytoprotective and anti-cancer potential of bisbenzylisoquinoline alkaloids from Nelumbo nucifera. Curr. Top. Med. Chem., 2019, 19(32), 2940-2957.
[http://dx.doi.org/10.2174/1568026619666191116160908] [PMID: 31738137]
[75]
Gao, J.J.; Shi, Z.Y.; Xia, J.F.; Inagaki, Y.; Tang, W. Sorafenib-based combined molecule targeting in treatment of hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(42), 12059-12070.
[http://dx.doi.org/10.3748/wjg.v21.i42.12059] [PMID: 26576091]
[76]
Wainberg, Z.A.; Soares, H.P.; Patel, R.; DiCarlo, B.; Park, D.J.; Liem, A.; Wang, H.J.; Yonemoto, L.; Martinez, D.; Laux, I.; Brennan, M.; Hecht, J.R. Phase II trial of everolimus in patients with refractory metastatic adenocarcinoma of the esophagus, gastroesophageal junction and stomach: possible role for predictive biomarkers. Cancer Chemother. Pharmacol., 2015, 76(1), 61-67.
[http://dx.doi.org/10.1007/s00280-015-2744-5] [PMID: 25969130]
[77]
Hundal, R.; Shaffer, E.A. Gallbladder cancer: epidemiology and outcome. Clin. Epidemiol., 2014, 6, 99-109.
[http://dx.doi.org/10.2147/CLEP.S37357] [PMID: 24634588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy