Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Gene Therapy as the New Frontier for Sickle Cell Disease

Author(s): Himanshu Garg, Kristina J. Tatiossian, Karsten Peppel, Gregory J. Kato and Eva Herzog*

Volume 29, Issue 3, 2022

Published on: 23 August, 2021

Page: [453 - 466] Pages: 14

DOI: 10.2174/0929867328666210527092456

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Sickle Cell Disease (SCD) is one of the most common monogenic disorders caused by a point mutation in the β-globin gene. This mutation results in polymerization of hemoglobin (Hb) under reduced oxygenation conditions, causing rigid sickle-shaped RBCs and hemolytic anemia. This clearly defined fundamental molecular mechanism makes SCD a prototypical target for precision therapy. Both the mutant β-globin protein and its downstream pathophysiology are pharmacological targets of intensive research. SCD also is a disease well-suited for biological interventions like gene therapy. Recent advances in hematopoietic stem cell (HSC) transplantation and gene therapy platforms, like Lentiviral vectors and gene editing strategies, expand the potentially curative options for patients with SCD. This review discusses the recent advances in precision therapy for SCD and the preclinical and clinical advances in autologous HSC gene therapy for SCD.

Keywords: Sickle cell disease, gene therapy, gene editing, hematopoietic stem cells, stem cell transplant, precision therapy.

[1]
Kato, G.J.; Piel, F.B.; Reid, C.D.; Gaston, M.H.; Ohene-Frempong, K.; Krishnamurti, L.; Smith, W.R.; Panepinto, J.A.; Weatherall, D.J.; Costa, F.F.; Vichinsky, E.P. Sickle cell disease. Nat. Rev. Dis. Primers, 2018, 4, 18010.
[http://dx.doi.org/10.1038/nrdp.2018.10] [PMID: 29542687]
[2]
Hassell, K.L. Population estimates of sickle cell disease in the U.S. Am. J. Prev. Med., 2010, 38(4)(Suppl.), S512-S521.
[http://dx.doi.org/10.1016/j.amepre.2009.12.022] [PMID: 20331952]
[3]
Pauling, L.; Itano, H.A. Sickle cell anemia, a molecular disease. Sci., 1949, 109(2835), 443.
[PMID: 18213804]
[4]
Ware, R.E.; de Montalembert, M.; Tshilolo, L.; Abboud, M.R. Sickle cell disease. Lancet, 2017, 390(10091), 311-323.
[http://dx.doi.org/10.1016/S0140-6736(17)30193-9] [PMID: 28159390]
[5]
Nader, E.; Romana, M.; Connes, P. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Front. Immunol., 2020, 11, 454.
[http://dx.doi.org/10.3389/fimmu.2020.00454] [PMID: 32231672]
[6]
Taylor, S.M.; Parobek, C.M.; Fairhurst, R.M. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect. Dis., 2012, 12(6), 457-468.
[http://dx.doi.org/10.1016/S1473-3099(12)70055-5] [PMID: 22445352]
[7]
Ojodu, J.; Hulihan, M.M.; Pope, S.N.; Grant, A.M. Centers for Disease Control and Prevention (CDC). Incidence of sickle cell trait-United States, 2010. MMWR Morb. Mortal. Wkly. Rep., 2014, 63(49), 1155-1158.
[PMID: 25503918]
[8]
Thoreson, C.K.; O’Connor, M.Y.; Ricks, M.; Chung, S.T.; Sumner, A.E. Sickle Cell Trait from a Metabolic, Renal, and Vascular Perspective: Linking History, Knowledge, and Health. J. Racial Ethn. Health Disparities, 2015, 2(3), 330-335.
[http://dx.doi.org/10.1007/s40615-014-0077-4] [PMID: 26322267]
[9]
Naik, R.P.; Smith-Whitley, K.; Hassell, K.L.; Umeh, N.I.; de Montalembert, M.; Sahota, P.; Haywood, C., Jr; Jenkins, J.; Lloyd-Puryear, M.A.; Joiner, C.H.; Bonham, V.L.; Kato, G.J. Clinical Outcomes Associated With Sickle Cell Trait: A Systematic Review. Ann. Intern. Med., 2018, 169(9), 619-627.
[http://dx.doi.org/10.7326/M18-1161] [PMID: 30383109]
[10]
Grosse, S.D.; Odame, I.; Atrash, H.K.; Amendah, D.D.; Piel, F.B.; Williams, T.N. Sickle cell disease in Africa: a neglected cause of early childhood mortality. Am. J. Prev. Med., 2011, 41(6)(Suppl. 4), S398-S405.
[http://dx.doi.org/10.1016/j.amepre.2011.09.013] [PMID: 22099364]
[11]
Lanzkron, S.; Carroll, C.P.; Haywood, C., Jr Mortality rates and age at death from sickle cell disease: U.S., 1979-2005. Public Health Rep., 2013, 128(2), 110-116.
[http://dx.doi.org/10.1177/003335491312800206] [PMID: 23450875]
[12]
Elmariah, H.; Garrett, M.E.; De Castro, L.M.; Jonassaint, J.C.; Ataga, K.I.; Eckman, J.R.; Ashley-Koch, A.E.; Telen, M.J. Factors associated with survival in a contemporary adult sickle cell disease cohort. Am. J. Hematol., 2014, 89(5), 530-535.
[http://dx.doi.org/10.1002/ajh.23683] [PMID: 24478166]
[13]
Pecker, L.H.; Naik, R.P. The current state of sickle cell trait: implications for reproductive and genetic counseling. Hematology (Am. Soc. Hematol. Educ. Program), 2018, 2018(1), 474-481.
[http://dx.doi.org/10.1182/asheducation-2018.1.474] [PMID: 30504348]
[14]
Obstetrics, A.C.o. ACOG Practice Bulletin No. 78: hemoglobinopathies in pregnancy. Obstet. Gynecol., 2007, 109(1), 229-237.
[http://dx.doi.org/10.1097/00006250-200701000-00055] [PMID: 17197616]
[15]
Xu, K.; Shi, Z.M.; Veeck, L.L.; Hughes, M.R.; Rosenwaks, Z. First unaffected pregnancy using preimplantation genetic diagnosis for sickle cell anemia. JAMA, 1999, 281(18), 1701-1706.
[http://dx.doi.org/10.1001/jama.281.18.1701] [PMID: 10328069]
[16]
Cordeiro Mitchell, C.N.; Pradhan, A.; Singh, B.; Naik, R.P.; Baker, V.L.; Lanzkron, S.M.; Christianson, M.S.; Pecker, L.H. Primary prevention of sickle cell disease using preimplantation genetic testing and in vitro fertilization is cost-effective. Am. J. Hematol., 2020.
[http://dx.doi.org/10.1002/ajh.25974] [PMID: 32818300]
[17]
Rai, P.; Ataga, K.I. Drug Therapies for the Management of Sickle Cell Disease. F1000 Res., 2020, 9, 9.
[http://dx.doi.org/10.12688/f1000research.22433.1] [PMID: 32765834]
[18]
Telen, M.J.; Malik, P.; Vercellotti, G.M. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat. Rev. Drug Discov., 2019, 18(2), 139-158.
[http://dx.doi.org/10.1038/s41573-018-0003-2] [PMID: 30514970]
[19]
Saunthararajah, Y. Targeting sickle cell disease root-cause pathophysiology with small molecules. Haematologica, 2019, 104(9), 1720-1730.
[http://dx.doi.org/10.3324/haematol.2018.207530] [PMID: 31399526]
[20]
Odièvre, M.H.; Bony, V.; Benkerrou, M.; Lapouméroulie, C.; Alberti, C.; Ducrocq, R.; Jacqz-Aigrain, E.; Elion, J.; Cartron, J.P. Modulation of erythroid adhesion receptor expression by hydroxyurea in children with sickle cell disease. Haematologica, 2008, 93(4), 502-510.
[http://dx.doi.org/10.3324/haematol.12070] [PMID: 18322255]
[21]
Agrawal, R.K.; Patel, R.K.; Shah, V.; Nainiwal, L.; Trivedi, B. Hydroxyurea in sickle cell disease: drug review. Indian J. Hematol. Blood Transfus., 2014, 30(2), 91-96.
[http://dx.doi.org/10.1007/s12288-013-0261-4] [PMID: 24839362]
[22]
Dufu, K.; Patel, M.; Oksenberg, D.; Cabrales, P. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions. Clin. Hemorheol. Microcirc., 2018, 70(1), 95-105.
[http://dx.doi.org/10.3233/CH-170340] [PMID: 29660913]
[23]
Vichinsky, E.; Hoppe, C.C.; Ataga, K.I.; Ware, R.E.; Nduba, V.; El-Beshlawy, A.; Hassab, H.; Achebe, M.M.; Alkindi, S.; Brown, R.C.; Diuguid, D.L.; Telfer, P.; Tsitsikas, D.A.; Elghandour, A.; Gordeuk, V.R.; Kanter, J.; Abboud, M.R.; Lehrer-Graiwer, J.; Tonda, M.; Intondi, A.; Tong, B.; Howard, J.; Investigators, H.T. HOPE Trial Investigators. A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease. N. Engl. J. Med., 2019, 381(6), 509-519.
[http://dx.doi.org/10.1056/NEJMoa1903212] [PMID: 31199090]
[24]
Blair, H.A. Voxelotor: First Approval. Drugs, 2020, 80(2), 209-215.
[http://dx.doi.org/10.1007/s40265-020-01262-7] [PMID: 32020554]
[25]
Oder, E.; Safo, M.K.; Abdulmalik, O.; Kato, G.J. New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo? Br. J. Haematol., 2016, 175(1), 24-30.
[http://dx.doi.org/10.1111/bjh.14264] [PMID: 27605087]
[26]
Embury, S.H.; Matsui, N.M.; Ramanujam, S.; Mayadas, T.N.; Noguchi, C.T.; Diwan, B.A.; Mohandas, N.; Cheung, A.T. The contribution of endothelial cell P-selectin to the microvascular flow of mouse sickle erythrocytes in vivo. Blood, 2004, 104(10), 3378-3385.
[http://dx.doi.org/10.1182/blood-2004-02-0713] [PMID: 15271798]
[27]
Matsui, N.M.; Borsig, L.; Rosen, S.D.; Yaghmai, M.; Varki, A.; Embury, S.H. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood, 2001, 98(6), 1955-1962.
[http://dx.doi.org/10.1182/blood.V98.6.1955] [PMID: 11535535]
[28]
Blair, H.A. Crizanlizumab: First Approval. Drugs, 2020, 80(1), 79-84.
[http://dx.doi.org/10.1007/s40265-019-01254-2] [PMID: 31933169]
[29]
Ataga, K.I.; Kutlar, A.; Kanter, J.; Liles, D.; Cancado, R.; Friedrisch, J.; Guthrie, T.H.; Knight-Madden, J.; Alvarez, O.A.; Gordeuk, V.R.; Gualandro, S.; Colella, M.P.; Smith, W.R.; Rollins, S.A.; Stocker, J.W.; Rother, R.P. Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease. N. Engl. J. Med., 2017, 376(5), 429-439.
[http://dx.doi.org/10.1056/NEJMoa1611770] [PMID: 27959701]
[30]
Niihara, Y.; Miller, S.T.; Kanter, J.; Lanzkron, S.; Smith, W.R.; Hsu, L.L.; Gordeuk, V.R.; Viswanathan, K.; Sarnaik, S.; Osunkwo, I.; Guillaume, E.; Sadanandan, S.; Sieger, L.; Lasky, J.L.; Panosyan, E.H.; Blake, O.A.; New, T.N.; Bellevue, R.; Tran, L.T.; Razon, R.L.; Stark, C.W.; Neumayr, L.D.; Vichinsky, E.P. Investigators of the Phase 3 Trial of l-Glutamine in Sickle Cell Disease. A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. N. Engl. J. Med., 2018, 379(3), 226-235.
[http://dx.doi.org/10.1056/NEJMoa1715971] [PMID: 30021096]
[31]
Robinson, T.M.; Fuchs, E.J. Allogeneic stem cell transplantation for sickle cell disease. Curr. Opin. Hematol., 2016, 23(6), 524-529.
[http://dx.doi.org/10.1097/MOH.0000000000000282] [PMID: 27496639]
[32]
Eapen, M.; Brazauskas, R.; Walters, M.C.; Bernaudin, F.; Bo-Subait, K.; Fitzhugh, C.D.; Hankins, J.S.; Kanter, J.; Meerpohl, J.J.; Bolaños-Meade, J.; Panepinto, J.A.; Rondelli, D.; Shenoy, S.; Williamson, J.; Woolford, T.L.; Gluckman, E.; Wagner, J.E.; Tisdale, J.F. Effect of donor type and conditioning regimen intensity on allogeneic transplantation outcomes in patients with sickle cell disease: a retrospective multicentre, cohort study. Lancet Haematol., 2019, 6(11), e585-e596.
[http://dx.doi.org/10.1016/S2352-3026(19)30154-1] [PMID: 31495699]
[33]
de la Fuente, J.; Dhedin, N.; Koyama, T.; Bernaudin, F.; Kuentz, M.; Karnik, L.; Socié, G.; Culos, K.A.; Brodsky, R.A.; DeBaun, M.R.; Kassim, A.A. Haploidentical Bone Marrow Transplantation with Post-Transplantation Cyclophosphamide Plus Thiotepa Improves Donor Engraftment in Patients with Sickle Cell Anemia: Results of an International Learning Collaborative. Biol. Blood Marrow Transplant., 2019, 25(6), 1197-1209.
[http://dx.doi.org/10.1016/j.bbmt.2018.11.027] [PMID: 30500440]
[34]
Limerick, E.; Fitzhugh, C. Choice of Donor Source and Conditioning Regimen for Hematopoietic Stem Cell Transplantation in Sickle Cell Disease. J. Clin. Med., 2019, 8(11)E1997
[http://dx.doi.org/10.3390/jcm8111997] [PMID: 31731790]
[35]
Wagner, J.E. Cord blood 2.0: state of the art and future directions in transplant medicine. Blood Res., 2019, 54(1), 7-9.
[http://dx.doi.org/10.5045/br.2019.54.1.7] [PMID: 30956957]
[36]
Rafii, H.; Bernaudin, F.; Rouard, H.; Vanneaux, V.; Ruggeri, A.; Cavazzana, M.; Gauthereau, V.; Stanislas, A.; Benkerrou, M.; De Montalembert, M.; Ferry, C.; Girot, R.; Arnaud, C.; Kamdem, A.; Gour, J.; Touboul, C.; Cras, A.; Kuentz, M.; Rieux, C.; Volt, F.; Cappelli, B.; Maio, K.T.; Paviglianiti, A.; Kenzey, C.; Larghero, J.; Gluckman, E. Family cord blood banking for sickle cell disease: a twenty-year experience in two dedicated public cord blood banks. Haematologica, 2017, 102(6), 976-983.
[http://dx.doi.org/10.3324/haematol.2016.163055] [PMID: 28302713]
[37]
Abraham, A.; Cluster, A.; Jacobsohn, D.; Delgado, D.; Hulbert, M.L.; Kukadiya, D.; Murray, L.; Shenoy, S. Unrelated Umbilical Cord Blood Transplantation for Sickle Cell Disease Following Reduced-Intensity Conditioning: Results of a Phase I Trial. Biol. Blood Marrow Transplant., 2017, 23(9), 1587-1592.
[http://dx.doi.org/10.1016/j.bbmt.2017.05.027] [PMID: 28578010]
[38]
Wagner, J.E., Jr; Brunstein, C.G.; Boitano, A.E.; DeFor, T.E.; McKenna, D.; Sumstad, D.; Blazar, B.R.; Tolar, J.; Le, C.; Jones, J.; Cooke, M.P.; Bleul, C.C. Phase I/II Trial of StemRegenin-1 Expanded Umbilical Cord Blood Hematopoietic Stem Cells Supports Testing as a Stand-Alone Graft. Cell Stem Cell, 2016, 18(1), 144-155.
[http://dx.doi.org/10.1016/j.stem.2015.10.004] [PMID: 26669897]
[39]
Miyoshi, H.; Blömer, U.; Takahashi, M.; Gage, F.H.; Verma, I.M. Development of a self-inactivating lentivirus vector. J. Virol., 1998, 72(10), 8150-8157.
[http://dx.doi.org/10.1128/JVI.72.10.8150-8157.1998] [PMID: 9733856]
[40]
Hacein-Bey-Abina, S.; Garrigue, A.; Wang, G.P.; Soulier, J.; Lim, A.; Morillon, E.; Clappier, E.; Caccavelli, L.; Delabesse, E.; Beldjord, K.; Asnafi, V.; MacIntyre, E.; Dal Cortivo, L.; Radford, I.; Brousse, N.; Sigaux, F.; Moshous, D.; Hauer, J.; Borkhardt, A.; Belohradsky, B.H.; Wintergerst, U.; Velez, M.C.; Leiva, L.; Sorensen, R.; Wulffraat, N.; Blanche, S.; Bushman, F.D.; Fischer, A.; Cavazzana-Calvo, M. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest., 2008, 118(9), 3132-3142.
[http://dx.doi.org/10.1172/JCI35700] [PMID: 18688285]
[41]
Ryu, B.Y.; Evans-Galea, M.V.; Gray, J.T.; Bodine, D.M.; Persons, D.A.; Nienhuis, A.W. An experimental system for the evaluation of retroviral vector design to diminish the risk for proto-oncogene activation. Blood, 2008, 111(4), 1866-1875.
[http://dx.doi.org/10.1182/blood-2007-04-085506] [PMID: 17991809]
[42]
Escors, D.; Breckpot, K. Lentiviral vectors in gene therapy: their current status and future potential. Arch. Immunol. Ther. Exp. (Warsz.), 2010, 58(2), 107-119.
[http://dx.doi.org/10.1007/s00005-010-0063-4] [PMID: 20143172]
[43]
Milone, M.C.; O’Doherty, U. Clinical use of lentiviral vectors. Leukemia, 2018, 32(7), 1529-1541.
[http://dx.doi.org/10.1038/s41375-018-0106-0] [PMID: 29654266]
[44]
Morgan, R.A.; Unti, M.J.; Aleshe, B.; Brown, D.; Osborne, K.S.; Koziol, C.; Ayoub, P.G.; Smith, O.B.; O’Brien, R.; Tam, C.; Miyahira, E.; Ruiz, M.; Quintos, J.P.; Senadheera, S.; Hollis, R.P.; Kohn, D.B. Improved Titer and Gene Transfer by Lentiviral Vectors Using Novel, Small β-Globin Locus Control Region Elements. Mol. Ther., 2020, 28(1), 328-340.
[http://dx.doi.org/10.1016/j.ymthe.2019.09.020] [PMID: 31628051]
[45]
Sawado, T.; Halow, J.; Bender, M.A.; Groudine, M. The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev., 2003, 17(8), 1009-1018.
[http://dx.doi.org/10.1101/gad.1072303] [PMID: 12672691]
[46]
Ghiaccio, V.; Chappell, M.; Rivella, S.; Breda, L. Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Mol. Diagn. Ther., 2019, 23(2), 173-186.
[http://dx.doi.org/10.1007/s40291-019-00383-4] [PMID: 30701409]
[47]
Novak, U.; Harris, E.A.; Forrester, W.; Groudine, M.; Gelinas, R. High-level beta-globin expression after retroviral transfer of locus activation region-containing human beta-globin gene derivatives into murine erythroleukemia cells. Proc. Natl. Acad. Sci. USA, 1990, 87(9), 3386-3390.
[http://dx.doi.org/10.1073/pnas.87.9.3386] [PMID: 2333288]
[48]
Karlsson, S.; Bodine, D.M.; Perry, L.; Papayannopoulou, T.; Nienhuis, A.W. Expression of the human beta-globin gene following retroviral-mediated transfer into multipotential hematopoietic progenitors of mice. Proc. Natl. Acad. Sci. USA, 1988, 85(16), 6062-6066.
[http://dx.doi.org/10.1073/pnas.85.16.6062] [PMID: 3413076]
[49]
Dzierzak, E.A.; Papayannopoulou, T.; Mulligan, R.C. Lineage-specific expression of a human beta-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature, 1988, 331(6151), 35-41.
[http://dx.doi.org/10.1038/331035a0] [PMID: 2893284]
[50]
Cone, R.D.; Weber-Benarous, A.; Baorto, D.; Mulligan, R.C. Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector. Mol. Cell. Biol., 1987, 7(2), 887-897.
[http://dx.doi.org/10.1128/MCB.7.2.887] [PMID: 3029570]
[51]
McCune, S.L.; Reilly, M.P.; Chomo, M.J.; Asakura, T.; Townes, T.M. Recombinant human hemoglobins designed for gene therapy of sickle cell disease. Proc. Natl. Acad. Sci. USA, 1994, 91(21), 9852-9856.
[http://dx.doi.org/10.1073/pnas.91.21.9852] [PMID: 7937904]
[52]
Levasseur, D.N.; Ryan, T.M.; Reilly, M.P.; McCune, S.L.; Asakura, T.; Townes, T.M. A recombinant human hemoglobin with anti-sickling properties greater than fetal hemoglobin. J. Biol. Chem., 2004, 279(26), 27518-27524.
[http://dx.doi.org/10.1074/jbc.M402578200] [PMID: 15084588]
[53]
Negre, O.; Eggimann, A.V.; Beuzard, Y.; Ribeil, J.A.; Bourget, P.; Borwornpinyo, S.; Hongeng, S.; Hacein-Bey, S.; Cavazzana, M.; Leboulch, P.; Payen, E. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene. Hum. Gene Ther., 2016, 27(2), 148-165.
[http://dx.doi.org/10.1089/hum.2016.007] [PMID: 26886832]
[54]
Ribeil, J.A.; Hacein-Bey-Abina, S.; Payen, E.; Magnani, A.; Semeraro, M.; Magrin, E.; Caccavelli, L.; Neven, B.; Bourget, P.; El Nemer, W.; Bartolucci, P.; Weber, L.; Puy, H.; Meritet, J.F.; Grevent, D.; Beuzard, Y.; Chrétien, S.; Lefebvre, T.; Ross, R.W.; Negre, O.; Veres, G.; Sandler, L.; Soni, S.; de Montalembert, M.; Blanche, S.; Leboulch, P.; Cavazzana, M. Gene Therapy in a Patient with Sickle Cell Disease. N. Engl. J. Med., 2017, 376(9), 848-855.
[http://dx.doi.org/10.1056/NEJMoa1609677] [PMID: 28249145]
[55]
Urbinati, F.; Wherley, J.; Geiger, S.; Fernandez, B.C.; Kaufman, M.L.; Cooper, A.; Romero, Z.; Marchioni, F.; Reeves, L.; Read, E.; Nowicki, B.; Grassman, E.; Viswanathan, S.; Wang, X.; Hollis, R.P.; Kohn, D.B. Preclinical studies for a phase 1 clinical trial of autologous hematopoietic stem cell gene therapy for sickle cell disease. Cytotherapy, 2017, 19(9), 1096-1112.
[http://dx.doi.org/10.1016/j.jcyt.2017.06.002] [PMID: 28733131]
[56]
Poletti, V.; Urbinati, F.; Charrier, S.; Corre, G.; Hollis, R.P.; Campo Fernandez, B.; Martin, S.; Rothe, M.; Schambach, A.; Kohn, D.B.; Mavilio, F. Pre-clinical Development of a Lentiviral Vector Expressing the Anti-sickling βAS3 Globin for Gene Therapy for Sickle Cell Disease. Mol. Ther. Methods Clin. Dev., 2018, 11, 167-179.
[http://dx.doi.org/10.1016/j.omtm.2018.10.014] [PMID: 30533448]
[57]
Sankaran, V.G.; Orkin, S.H. The switch from fetal to adult hemoglobin. Cold Spring Harb. Perspect. Med., 2013, 3(1)a011643
[http://dx.doi.org/10.1101/cshperspect.a011643] [PMID: 23209159]
[58]
Forget, B.G. Molecular basis of hereditary persistence of fetal hemoglobin. Ann. N. Y. Acad. Sci., 1998, 850, 38-44.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb10460.x] [PMID: 9668525]
[59]
Joly, P.; Lacan, P.; Garcia, C.; Couprie, N.; Francina, A. Identification and molecular characterization of four new large deletions in the beta-globin gene cluster. Blood Cells Mol. Dis., 2009, 43(1), 53-57.
[http://dx.doi.org/10.1016/j.bcmd.2009.01.017] [PMID: 19269866]
[60]
Pestina, T.I.; Hargrove, P.W.; Jay, D.; Gray, J.T.; Boyd, K.M.; Persons, D.A. Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin. Mol. Ther., 2009, 17(2), 245-252.
[http://dx.doi.org/10.1038/mt.2008.259] [PMID: 19050697]
[61]
Perumbeti, A.; Higashimoto, T.; Urbinati, F.; Franco, R.; Meiselman, H.J.; Witte, D.; Malik, P. A novel human gamma-globin gene vector for genetic correction of sickle cell anemia in a humanized sickle mouse model: critical determinants for successful correction. Blood, 2009, 114(6), 1174-1185.
[http://dx.doi.org/10.1182/blood-2009-01-201863] [PMID: 19474450]
[62]
Kiem, H.P.; Arumugam, P.I.; Burtner, C.R.; Fox, C.F.; Beard, B.C.; Dexheimer, P.; Adair, J.E.; Malik, P. Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. Mol. Ther. Methods Clin. Dev., 2014, 1, 14055.
[http://dx.doi.org/10.1038/mtm.2014.55] [PMID: 26052523]
[63]
Norton, L.J.; Funnell, A.P.W.; Burdach, J.; Wienert, B.; Kurita, R.; Nakamura, Y.; Philipsen, S.; Pearson, R.C.M.; Quinlan, K.G.R.; Crossley, M. KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells. Blood Adv., 2017, 1(11), 685-692.
[http://dx.doi.org/10.1182/bloodadvances.2016002303] [PMID: 29296711]
[64]
Wienert, B.; Funnell, A.P.; Norton, L.J.; Pearson, R.C.; Wilkinson-White, L.E.; Lester, K.; Vadolas, J.; Porteus, M.H.; Matthews, J.M.; Quinlan, K.G.; Crossley, M. Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat. Commun., 2015, 6, 7085.
[http://dx.doi.org/10.1038/ncomms8085] [PMID: 25971621]
[65]
Martyn, G.E.; Wienert, B.; Yang, L.; Shah, M.; Norton, L.J.; Burdach, J.; Kurita, R.; Nakamura, Y.; Pearson, R.C.M.; Funnell, A.P.W.; Quinlan, K.G.R.; Crossley, M. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat. Genet., 2018, 50(4), 498-503.
[http://dx.doi.org/10.1038/s41588-018-0085-0] [PMID: 29610478]
[66]
Orkin, S.H.; Bauer, D.E. Emerging Genetic Therapy for Sickle Cell Disease. Annu. Rev. Med., 2019, 70, 257-271.
[http://dx.doi.org/10.1146/annurev-med-041817-125507] [PMID: 30355263]
[67]
Li, C.; Psatha, N.; Gil, S.; Wang, H.; Papayannopoulou, T.; Lieber, A. HDAd5/35++ Adenovirus Vector Expressing Anti-CRISPR Peptides Decreases CRISPR/Cas9 Toxicity in Human Hematopoietic Stem Cells. Mol. Ther. Methods Clin. Dev., 2018, 9, 390-401.
[http://dx.doi.org/10.1016/j.omtm.2018.04.008] [PMID: 30038942]
[68]
Li, C.; Psatha, N.; Sova, P.; Gil, S.; Wang, H.; Kim, J.; Kulkarni, C.; Valensisi, C.; Hawkins, R.D.; Stamatoyannopoulos, G.; Lieber, A. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood, 2018, 131(26), 2915-2928.
[http://dx.doi.org/10.1182/blood-2018-03-838540] [PMID: 29789357]
[69]
Liu, N.; Hargreaves, V.V.; Zhu, Q.; Kurland, J.V.; Hong, J.; Kim, W.; Sher, F.; Macias-Trevino, C.; Rogers, J.M.; Kurita, R.; Nakamura, Y.; Yuan, G.C.; Bauer, D.E.; Xu, J.; Bulyk, M.L.; Orkin, S.H. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell, 2018., 173(2), 430-442 e417.,
[http://dx.doi.org/10.1016/j.cell.2018.03.016]
[70]
Métais, J.Y.; Doerfler, P.A.; Mayuranathan, T.; Bauer, D.E.; Fowler, S.C.; Hsieh, M.M.; Katta, V.; Keriwala, S.; Lazzarotto, C.R.; Luk, K.; Neel, M.D.; Perry, S.S.; Peters, S.T.; Porter, S.N.; Ryu, B.Y.; Sharma, A.; Shea, D.; Tisdale, J.F.; Uchida, N.; Wolfe, S.A.; Woodard, K.J.; Wu, Y.; Yao, Y.; Zeng, J.; Pruett-Miller, S.; Tsai, S.Q.; Weiss, M.J. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv., 2019, 3(21), 3379-3392.
[http://dx.doi.org/10.1182/bloodadvances.2019000820] [PMID: 31698466]
[71]
Weber, L.; Frati, G.; Felix, T.; Hardouin, G.; Casini, A.; Wollenschlaeger, C.; Meneghini, V.; Masson, C.; De Cian, A.; Chalumeau, A.; Mavilio, F.; Amendola, M.; Andre-Schmutz, I.; Cereseto, A.; El Nemer, W.; Concordet, J.P.; Giovannangeli, C.; Cavazzana, M.; Miccio, A. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci. Adv., 2020, 6(7)eaay9392
[http://dx.doi.org/10.1126/sciadv.aay9392] [PMID: 32917636]
[72]
Wu, Y.; Zeng, J.; Roscoe, B.P.; Liu, P.; Yao, Q.; Lazzarotto, C.R.; Clement, K.; Cole, M.A.; Luk, K.; Baricordi, C.; Shen, A.H.; Ren, C.; Esrick, E.B.; Manis, J.P.; Dorfman, D.M.; Williams, D.A.; Biffi, A.; Brugnara, C.; Biasco, L.; Brendel, C.; Pinello, L.; Tsai, S.Q.; Wolfe, S.A.; Bauer, D.E. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med., 2019, 25(5), 776-783.
[http://dx.doi.org/10.1038/s41591-019-0401-y] [PMID: 30911135]
[73]
Brendel, C.; Guda, S.; Renella, R.; Bauer, D.E.; Canver, M.C.; Kim, Y.J.; Heeney, M.M.; Klatt, D.; Fogel, J.; Milsom, M.D.; Orkin, S.H.; Gregory, R.I.; Williams, D.A. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J. Clin. Invest., 2016, 126(10), 3868-3878.
[http://dx.doi.org/10.1172/JCI87885] [PMID: 27599293]
[74]
Brendel, C.; Negre, O.; Rothe, M.; Guda, S.; Parsons, G.; Harris, C.; McGuinness, M.; Abriss, D.; Tsytsykova, A.; Klatt, D.; Bentler, M.; Pellin, D.; Christiansen, L.; Schambach, A.; Manis, J.; Trebeden-Negre, H.; Bonner, M.; Esrick, E.; Veres, G.; Armant, M.; Williams, D.A. Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy. Mol. Ther. Methods Clin. Dev., 2020, 17, 589-600.
[http://dx.doi.org/10.1016/j.omtm.2020.03.015] [PMID: 32300607]
[75]
Carroll, D. Genome engineering with targetable nucleases. Annu. Rev. Biochem., 2014, 83, 409-439.
[http://dx.doi.org/10.1146/annurev-biochem-060713-035418] [PMID: 24606144]
[76]
Shin, J.J.; Schröder, M.S.; Caiado, F.; Wyman, S.K.; Bray, N.L.; Bordi, M.; Dewitt, M.A.; Vu, J.T.; Kim, W.T.; Hockemeyer, D.; Manz, M.G.; Corn, J.E. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep., 2020, 32(9)108093
[http://dx.doi.org/10.1016/j.celrep.2020.108093] [PMID: 32877675]
[77]
Traxler, E.A.; Yao, Y.; Wang, Y.D.; Woodard, K.J.; Kurita, R.; Nakamura, Y.; Hughes, J.R.; Hardison, R.C.; Blobel, G.A.; Li, C.; Weiss, M.J. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med., 2016, 22(9), 987-990.
[http://dx.doi.org/10.1038/nm.4170] [PMID: 27525524]
[78]
Chang, K.H.; Smith, S.E.; Sullivan, T.; Chen, K.; Zhou, Q.; West, J.A.; Liu, M.; Liu, Y.; Vieira, B.F.; Sun, C.; Hong, V.P.; Zhang, M.; Yang, X.; Reik, A.; Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Danos, O.; Jiang, H.; Tan, S. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells. Mol. Ther. Methods Clin. Dev., 2017, 4, 137-148.
[http://dx.doi.org/10.1016/j.omtm.2016.12.009] [PMID: 28344999]
[79]
Zeng, J.; Wu, Y.; Ren, C.; Bonanno, J.; Shen, A.H.; Shea, D.; Gehrke, J.M.; Clement, K.; Luk, K.; Yao, Q.; Kim, R.; Wolfe, S.A.; Manis, J.P.; Pinello, L.; Joung, J.K.; Bauer, D.E. Therapeutic base editing of human hematopoietic stem cells. Nat. Med., 2020, 26(4), 535-541.
[http://dx.doi.org/10.1038/s41591-020-0790-y] [PMID: 32284612]
[80]
Rees, H.A.; Liu, D.R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet., 2018, 19(12), 770-788.
[http://dx.doi.org/10.1038/s41576-018-0059-1] [PMID: 30323312]
[81]
Viprakasit, V.; Wiriyasateinkul, A.; Sattayasevana, B.; Miles, K.L.; Laosombat, V. Hb G-Makassar [beta6(A3)Glu-->Ala; codon 6 (GAG-->GCG)]: molecular characterization, clinical, and hematological effects. Hemoglobin, 2002, 26(3), 245-253.
[http://dx.doi.org/10.1081/HEM-120015028] [PMID: 12403489]
[82]
Dever, D.P.; Bak, R.O.; Reinisch, A.; Camarena, J.; Washington, G.; Nicolas, C.E.; Pavel-Dinu, M.; Saxena, N.; Wilkens, A.B.; Mantri, S.; Uchida, N.; Hendel, A.; Narla, A.; Majeti, R.; Weinberg, K.I.; Porteus, M.H. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 2016, 539(7629), 384-389.
[http://dx.doi.org/10.1038/nature20134] [PMID: 27820943]
[83]
Hoban, M.D.; Lumaquin, D.; Kuo, C.Y.; Romero, Z.; Long, J.; Ho, M.; Young, C.S.; Mojadidi, M.; Fitz-Gibbon, S.; Cooper, A.R.; Lill, G.R.; Urbinati, F.; Campo-Fernandez, B.; Bjurstrom, C.F.; Pellegrini, M.; Hollis, R.P.; Kohn, D.B. CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells. Mol. Ther., 2016, 24(9), 1561-1569.
[http://dx.doi.org/10.1038/mt.2016.148] [PMID: 27406980]
[84]
Park, S.H.; Lee, C.M.; Dever, D.P.; Davis, T.H.; Camarena, J.; Srifa, W.; Zhang, Y.; Paikari, A.; Chang, A.K.; Porteus, M.H.; Sheehan, V.A.; Bao, G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res., 2019, 47(15), 7955-7972.
[http://dx.doi.org/10.1093/nar/gkz475] [PMID: 31147717]
[85]
DeWitt, M.A.; Magis, W.; Bray, N.L.; Wang, T.; Berman, J.R.; Urbinati, F.; Heo, S.J.; Mitros, T.; Muñoz, D.P.; Boffelli, D.; Kohn, D.B.; Walters, M.C.; Carroll, D.; Martin, D.I.; Corn, J.E. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med., 2016, 8(360)360ra134
[http://dx.doi.org/10.1126/scitranslmed.aaf9336] [PMID: 27733558]
[86]
Falanga, A.; Marchetti, M.; Evangelista, V.; Manarini, S.; Oldani, E.; Giovanelli, S.; Galbusera, M.; Cerletti, C.; Barbui, T. Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. Blood, 1999, 93(8), 2506-2514.
[http://dx.doi.org/10.1182/blood.V93.8.2506] [PMID: 10194429]
[87]
Spiel, A.O.; Bartko, J.; Schwameis, M.; Firbas, C.; Siller-Matula, J.; Schuetz, M.; Weigl, M.; Jilma, B. Increased platelet aggregation and in vivo platelet activation after granulocyte colony-stimulating factor administration. A randomised controlled trial. Thromb. Haemost., 2011, 105(4), 655-662.
[http://dx.doi.org/10.1160/TH10-08-0530] [PMID: 21301783]
[88]
Canales, M.A.; Arrieta, R.; Gomez-Rioja, R.; Diez, J.; Jimenez-Yuste, V.; Hernandez-Navarro, F. Induction of a hypercoagulability state and endothelial cell activation by granulocyte colony-stimulating factor in peripheral blood stem cell donors. J. Hematother. Stem Cell Res., 2002, 11(4), 675-681.
[http://dx.doi.org/10.1089/15258160260194820] [PMID: 12201956]
[89]
Fitzhugh, C.D.; Hsieh, M.M.; Bolan, C.D.; Saenz, C.; Tisdale, J.F. Granulocyte colony-stimulating factor (G-CSF) administration in individuals with sickle cell disease: time for a moratorium? Cytotherapy, 2009, 11(4), 464-471.
[http://dx.doi.org/10.1080/14653240902849788] [PMID: 19513902]
[90]
Broxmeyer, H.E.; Orschell, C.M.; Clapp, D.W.; Hangoc, G.; Cooper, S.; Plett, P.A.; Liles, W.C.; Li, X.; Graham-Evans, B.; Campbell, T.B.; Calandra, G.; Bridger, G.; Dale, D.C.; Srour, E.F. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med., 2005, 201(8), 1307-1318.
[http://dx.doi.org/10.1084/jem.20041385] [PMID: 15837815]
[91]
Tisdale, J.F.; Pierciey, F.J., Jr; Bonner, M.; Thompson, A.A.; Krishnamurti, L.; Mapara, M.Y.; Kwiatkowski, J.L.; Shestopalov, I.; Ribeil, J.A.; Huang, W.; Asmal, M.; Kanter, J.; Walters, M.C. Safety and feasibility of hematopoietic progenitor stem cell collection by mobilization with plerixafor followed by apheresis vs bone marrow harvest in patients with sickle cell disease in the multi-center HGB-206 trial. Am. J. Hematol., 2020, 95(9), E239-E242.
[http://dx.doi.org/10.1002/ajh.25867] [PMID: 32401372]
[92]
Lagresle-Peyrou, C.; Lefrère, F.; Magrin, E.; Ribeil, J.A.; Romano, O.; Weber, L.; Magnani, A.; Sadek, H.; Plantier, C.; Gabrion, A.; Ternaux, B.; Félix, T.; Couzin, C.; Stanislas, A.; Tréluyer, J.M.; Lamhaut, L.; Joseph, L.; Delville, M.; Miccio, A.; André-Schmutz, I.; Cavazzana, M. Plerixafor enables safe, rapid, efficient mobilization of hematopoietic stem cells in sickle cell disease patients after exchange transfusion. Haematologica, 2018, 103(5), 778-786.
[http://dx.doi.org/10.3324/haematol.2017.184788] [PMID: 29472357]
[93]
Boulad, F.; Shore, T.; van Besien, K.; Minniti, C.; Barbu-Stevanovic, M.; Fedus, S.W.; Perna, F.; Greenberg, J.; Guarneri, D.; Nandi, V.; Mauguen, A.; Yazdanbakhsh, K.; Sadelain, M.; Shi, P.A. Safety and efficacy of plerixafor dose escalation for the mobilization of CD34+ hematopoietic progenitor cells in patients with sickle cell disease: interim results. Haematologica, 2018, 103(9), 1577.
[http://dx.doi.org/10.3324/haematol.2018.199414] [PMID: 30171018]
[94]
Esrick, E.B.; Manis, J.P.; Daley, H.; Baricordi, C.; Trébéden-Negre, H.; Pierciey, F.J.; Armant, M.; Nikiforow, S.; Heeney, M.M.; London, W.B.; Biasco, L.; Asmal, M.; Williams, D.A.; Biffi, A. Successful hematopoietic stem cell mobilization and apheresis collection using plerixafor alone in sickle cell patients. Blood Adv., 2018, 2(19), 2505-2512.
[http://dx.doi.org/10.1182/bloodadvances.2018016725] [PMID: 30282642]
[95]
Hoggatt, J.; Singh, P.; Tate, T.A.; Chou, B.K.; Datari, S.R.; Fukuda, S.; Liu, L.; Kharchenko, P.V.; Schajnovitz, A.; Baryawno, N.; Mercier, F.E.; Boyer, J.; Gardner, J.; Morrow, D.M.; Scadden, D.T.; Pelus, L.M. Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell.Cell, 2018., 172(1-2), 191-204 e110.,
[http://dx.doi.org/10.1016/j.cell.2017.11.003]
[96]
Bernardo, M.E.; Aiuti, A. The Role of Conditioning in Hematopoietic Stem-Cell Gene Therapy. Hum. Gene Ther., 2016, 27(10), 741-748.
[http://dx.doi.org/10.1089/hum.2016.103] [PMID: 27530055]
[97]
Uchida, N.; Nassehi, T.; Drysdale, C.M.; Gamer, J.; Yapundich, M.; Demirci, S.; Haro-Mora, J.J.; Leonard, A.; Hsieh, M.M.; Tisdale, J.F. High-Efficiency Lentiviral Transduction of Human CD34+ Cells in High-Density Culture with Poloxamer and Prostaglandin E2. Mol. Ther. Methods Clin. Dev., 2019, 13, 187-196.
[http://dx.doi.org/10.1016/j.omtm.2019.01.005] [PMID: 30788387]
[98]
Jang, Y.; Kim, Y.S.; Wielgosz, M.M.; Ferrara, F.; Ma, Z.; Condori, J.; Palmer, L.E.; Zhao, X.; Kang, G.; Rawlings, D.J.; Zhou, S.; Ryu, B.Y. Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy. Gene Ther., 2020, 27(12), 545-556.
[http://dx.doi.org/10.1038/s41434-020-0150-z] [PMID: 32341484]
[99]
Masiuk, K.E.; Zhang, R.; Osborne, K.; Hollis, R.P.; Campo-Fernandez, B.; Kohn, D.B. PGE2 and Poloxamer Synperonic F108 Enhance Transduction of Human HSPCs with a β-Globin Lentiviral Vector. Mol. Ther. Methods Clin. Dev., 2019, 13, 390-398.
[http://dx.doi.org/10.1016/j.omtm.2019.03.005] [PMID: 31024981]
[100]
Morgan, R.A.; Ma, F.; Unti, M.J.; Brown, D.; Ayoub, P.G.; Tam, C.; Lathrop, L.; Aleshe, B.; Kurita, R.; Nakamura, Y.; Senadheera, S.; Wong, R.L.; Hollis, R.P.; Pellegrini, M.; Kohn, D.B. Creating New β-Globin-Expressing Lentiviral Vectors by High-Resolution Mapping of Locus Control Region Enhancer Sequences. Mol. Ther. Methods Clin. Dev., 2020, 17, 999-1013.
[http://dx.doi.org/10.1016/j.omtm.2020.04.006] [PMID: 32426415]
[101]
Uchida, N.; Hsieh, M.M.; Raines, L.; Haro-Mora, J.J.; Demirci, S.; Bonifacino, A.C.; Krouse, A.E.; Metzger, M.E.; Donahue, R.E.; Tisdale, J.F. Development of a forward-oriented therapeutic lentiviral vector for hemoglobin disorders. Nat. Commun., 2019, 10(1), 4479.
[http://dx.doi.org/10.1038/s41467-019-12456-3] [PMID: 31578323]
[102]
Li, C.; Wang, H.; Georgakopoulou, A.; Gil, S.; Yannaki, E.; Lieber, A. In Vivo HSC Gene Therapy Using a Bi-modular HDAd5/35++ Vector Cures Sickle Cell Disease in a Mouse Model. Mol. Ther., 2020.
[http://dx.doi.org/10.1016/j.ymthe.2020.09.001] [PMID: 32949495]
[103]
Urbinati, F.; Campo Fernandez, B.; Masiuk, K.E.; Poletti, V.; Hollis, R.P.; Koziol, C.; Kaufman, M.L.; Brown, D.; Mavilio, F.; Kohn, D.B. Gene Therapy for Sickle Cell Disease: A Lentiviral Vector Comparison Study. Hum. Gene Ther., 2018, 29(10), 1153-1166.
[http://dx.doi.org/10.1089/hum.2018.061] [PMID: 30198339]
[104]
Pattabhi, S.; Lotti, S.N.; Berger, M.P.; Singh, S.; Lux, C.T.; Jacoby, K.; Lee, C.; Negre, O.; Scharenberg, A.M.; Rawlings, D.J. In Vivo Outcome of Homology-Directed Repair at the HBB Gene in HSC Using Alternative Donor Template Delivery Methods. Mol. Ther. Nucleic Acids, 2019, 17, 277- 288..
[http://dx.doi.org/10.1016/j.omtn.2019.05.025] [PMID: 31279229]
[105]
Romero, Z.; Lomova, A.; Said, S.; Miggelbrink, A.; Kuo, C.Y.; Campo-Fernandez, B.; Hoban, M.D.; Masiuk, K.E.; Clark, D.N.; Long, J.; Sanchez, J.M.; Velez, M.; Miyahira, E.; Zhang, R.; Brown, D.; Wang, X.; Kurmangaliyev, Y.Z.; Hollis, R.P.; Kohn, D.B. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates. Mol. Ther.,, 2019, 27(8), 1389-1406.
[http://dx.doi.org/10.1016/j.ymthe.2019.05.014] [PMID: 31178391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy